首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The toxin–antitoxin (TA) systems widely spread among bacteria and archaea are important for antibiotic resistance and microorganism virulence. The bacterial kingdom uses TA systems to adjust the global level of gene expression and translation through RNA degradation. In Helicobacter pylori, only two TA systems are known thus far. Our previous studies showed that HP0894–HP0895 acts as a TA system and that HP0894 exhibits intrinsic RNase activity. However, the precise molecular basis for interaction with substrate or antitoxin and the mechanism of mRNA cleavage remain unclear. Therefore, in an attempt to shed some light on the mechanism behind the TA system of HP0894–HP0895, here we present the crystal structures of apo- and metal-bound H. pylori 0894 at 1.28 Å and 1.89 Å, respectively. Through the combined approach of structural analysis and structural homology search, the amino acids involved in mRNase active site were monitored and the reorientations of different residues were discussed in detail. In the mRNase active site of HP0894 toxin, His84 acts as a catalytic residue and reorients itself to exhibit this type of activity, acting as a general acid in an acid–base catalysis reaction, while His47 and His60 stabilize the transition state. Lys52, Glu58, Asp64 and Arg80 have phosphate binding and specific sequence recognition. Glu58 also acts as a general base, and substrate reorientation is caused by Phe88. Based on experimental findings, a model for antitoxin binding could be suggested.  相似文献   

2.
Bacterial chromosomal toxin-antitoxin (TA) systems have been proposed not only to play an important role in the stress response, but also to be associated with antibiotic resistance. Here, we identified the chromosomal HP0892-HP0893 TA proteins in the gastric pathogen, Helicobacter pylori, and structurally characterized their protein-protein interaction. Previously, HP0892 protein was suggested to be a putative TA toxin based on its structural similarity to other RelE family TA toxins. In this study, we demonstrated that HP0892 binds to HP0893 strongly with a stoichiometry of 1:1, and HP0892-HP0893 interaction occurs mainly between the N-terminal secondary structure elements of HP0892 and the C-terminal region of HP0893. HP0892 cleaved mRNA in vitro, preferentially at the 5′ end of A or G, and the RNase activity of HP0892 was inhibited by HP0893. In addition, heterologous expression of HP0892 in Escherichia coli cells led to cell growth arrest, and the cell toxicity of HP0892 was neutralized by co-expression with HP0893. From these results and a structural comparison with other TA toxins, it is concluded that HP0892 is a toxin with intrinsic RNase activity and HP0893 is an antitoxin against HP0892 from a TA system of H. pylori. It has been known that hp0893 gene and another TA antitoxin gene, hp0895, of H. pylori, are both genomic open reading frames that correspond to genes that are potentially expressed in response to interactions with the human gastric mucosa. Therefore, it is highly probable that TA systems of H. pylori are involved in virulence of H. pylori.  相似文献   

3.
Speckle-type Poz protein (SPOP), an E3 ubiquitin ligase adaptor, is the most frequently mutated gene in prostate cancer. The SPOP-mutated subtype of prostate cancer shows high genomic instability, but the underlying mechanisms causing this phenotype are still largely unknown. Here, we report that upon DNA damage, SPOP is phosphorylated at Ser119 by the ATM serine/threonine kinase, which potentiates the binding of SPOP to homeodomain-interacting protein kinase 2 (HIPK2), resulting in a nondegradative ubiquitination of HIPK2. This modification subsequently increases the phosphorylation activity of HIPK2 toward HP1γ, and then promotes the dissociation of HP1γ from trimethylated (Lys9) histone H3 (H3K9me3) to initiate DNA damage repair. Moreover, the effect of SPOP on the HIPK2-HP1γ axis is abrogated by prostate cancer-associated SPOP mutations. Our findings provide new insights into the molecular mechanism of SPOP mutations-driven genomic instability in prostate cancer.  相似文献   

4.
5.
HP0894 (SwissProt/TrEMBL ID O25554) is an 88-residue conserved hypothetical protein from Helicobacter pylori strain 26695 with a calculated pI of 8.5 and a molecular weight of 10.38 kDa. Proteins with sequence similarity to HP0894 exist in Vibrio choierae, Enterococcus faecalis, Campylobacter jejuni, Streptococcus pneumoniae, Haemophilus influenzae, Escherichia coli O157, etc. Here we report the sequence-specific backbone resonance assignments of HP0894. About 97.5% (418/429) of the HN, N, CO, Ca, Cbeta resonances of the 88 residues of HP0894 were assigned. On the basis of these assignments, three helical regions and four strand regions were identified using the CSI program. This study is a prerequisite for calculating the solution structure of HP0894, and studying its interaction with its substrates, if any, and/or with other proteins.  相似文献   

6.
7.
A model for the complex between E. coli RNase HI and the DNA/RNA hybrid (previously refined by molecular dynamics simulations) was used to determine the impact of the internucleotide linkage modifications (either 3-O-CH2-P-O-5' or 3-O-P-CH2-O-5) on the ability of the modified-DNA/RNA hybrid to create a complex with the protein. Modified internucleotide linkages were incorporated systematically at different positions close to the 3-end of the DNA strand to interfere with the DNA binding site of RNase H. Altogether, six trajectories were produced (length 1.5ns). Mutual hydrogen bonds connecting both strands of the nucleic acids hybrid, DNA with RNase H, RNA with RNase H, and the scissile bond with the Mg++. 4H2O chelate complex (bound in the active site) were analyzed in detaiL Many residues were involved in binding of the DNA (Arg88, Asn84, Trp85, Trp104, Tyr73, Lys99, Asn100, Thr43, and Asn 16) and RNA (Gln76, Gln72, Tyr73, Lys122, Glu48, Asn44, and Cys13) strand to the substrate-binding site of the RNase H enzyme. The most remarkable disturbance of the hydrogen bonding net was observed for structures with modified internucleotide linkages positioned in a way to interact with the Trp104, Tyr73, Lys99, and Asn100 residues (situated in the middle of the DNA binding site, where a cluster of Trp residues forms a rigid core of the protein structure).  相似文献   

8.
9.
VapC-1 of nontypeable Haemophilus influenzae is a ribonuclease   总被引:1,自引:0,他引:1       下载免费PDF全文
Nontypeable Haemophilus influenzae (NTHi) organisms are obligate parasites of the human upper respiratory tract that can exist as commensals or pathogens. Toxin-antitoxin (TA) loci are highly conserved gene pairs that encode both a toxin and antitoxin moiety. Seven TA gene families have been identified to date, and NTHi carries two alleles of the vapBC family. Here, we have characterized the function of one of the NTHi alleles, vapBC-1. The gene pair is transcribed as an operon in two NTHi clinical isolates, and promoter fusions display an inverse relationship to culture density. The antitoxin VapB-1 forms homomultimers both in vitro and in vivo. The expression of the toxin VapC-1 conferred growth inhibition to an Escherichia coli expression strain and was successfully purified only when cloned in tandem with its cognate antitoxin. Using total RNA isolated from both E. coli and NTHi, we show for the first time that VapC-1 is an RNase that is active on free RNA but does not degrade DNA in vitro. Preincubation of the purified toxin and antitoxin together results in the formation of a protein complex that abrogates the activity of the toxin. We conclude that the NTHi vapBC-1 gene pair functions as a classical TA locus and that the induction of VapC-1 RNase activity leads to growth inhibition via the mechanism of mRNA cleavage.  相似文献   

10.
11.
A model for the complex between E. coli RNase HI and the DNA/RNA hybrid (previously refined by molecular dynamics simulations) was used to determine the impact of the internucleotide linkage modifications (either 3′–O–CH2–P–O–5′ or 3′–O–P–CH2–O–5′) on the ability of the modified-DNA/RNA hybrid to create a complex with the protein. Modified internucleotide linkages were incorporated systematically at different positions close to the 3′-end of the DNA strand to interfere with the DNA binding site of RNase H. Altogether, six trajectories were produced (length 1.5). Mutual hydrogen bonds connecting both strands of the nucleic acids hybrid, DNA with RNase H, RNA with RNase H, and the scissile bond with the Mg++ · 4H2O chelate complex (bound in the active site) were analyzed in detail. Many residues were involved in binding of the DNA (Arg88, Asn84, Trp85, Trp104, Tyr73, Lys99, Asn100, Thr43, and Asn16) and RNA (Gln76, Gln72, Tyr73, Lys122, Glu48, Asn44, and Cys13) strand to the substrate-binding site of the RNase H enzyme. The most remarkable disturbance of the hydrogen bonding net was observed for structures with modified internucleotide linkages positioned in a way to interact with the Trp104, Tyr73, Lys99, and Asn100 residues (situated in the middle of the DNA binding site, where a cluster of Trp residues forms a rigid core of the protein structure).  相似文献   

12.
The replication of a bacterial chromosome is initiated by the DnaA protein, which binds to the specific chromosomal region oriC and unwinds duplex DNA within the DNA‐unwinding element (DUE). The initiation is tightly regulated by many factors, which control either DnaA or oriC activity and ensure that the chromosome is duplicated only when the conditions favor the survival of daughter cells. The factors controlling oriC activity often belong to the protein families of two‐component systems. Here, we found that Helicobacter pylori oriC activity is controlled by HP1021, a member of the atypical response regulator family. HP1021 protein specifically interacts with H. pylori oriC at HP1021 boxes (5′‐TGTT[TA]C[TA]‐3′), which overlap with three modules important for oriC function: DnaA boxes, the hypersensitivity (hs) region and the DUE. Consequently, HP1021 binding to oriC precludes DnaA‐oriC interactions and inhibits DNA unwinding at the DUE. Thus, HP1021 constitutes a negative regulator of the H. pylori orisome assembly in vitro. Furthermore, HP1021 boxes were found upstream of at least 70 genes, including those encoding CagA and Fur proteins. We postulate that HP1021 might coordinate chromosome replication, and thus bacterial growth, with other cellular processes and conditions in the human stomach.  相似文献   

13.
The HIV-1 integrase protein catalyzes integration of the viral genome into host cell DNA. Whereas the structures of the three domains of integrase have been solved separately, both the structural organization of the full-length protein and its interaction with DNA remain unresolved. A protein footprinting approach was employed to investigate the accessibility of residues in the full-length soluble integrase mutant, INF(185K,C280S), to proteolytic attack in the absence and presence of DNA. The N-terminal and C-terminal domains were relatively more accessible to proteolytic attack than the core domain. The susceptibility to proteolytic attack was specifically affected by DNA at residues Lys34, in the N-terminal domain, Lys111, Lys136, Glu138, Lys156-Lys160, Lys185-Lys188, in the core domain, and Asp207, Lys 215, Glu246, Lys258 and Lys273 in the linker and C-terminal domain, suggesting that these regions are involved in, or shielded by, DNA binding. Lys34 is positioned in a putative dimerization domain, consistent with the notion that DNA stabilizes the dimeric state of integrase.  相似文献   

14.
15.
16.
17.
Two closely related bacterial toxins, heat-labile enterotoxin (LT-I) and cholera toxin (CT), not only invoke a toxic activity that affects many victims worldwide but also contain a beneficial mucosal adjuvant activity that significantly enhances the potency of vaccines in general. For the purpose of vaccine design it is most interesting that the undesirable toxic activity of these toxins can be eliminated by the single-site mutation Ser63Lys in the A subunit while the mucosal adjuvant activity is still present. The crystal structure of the Ser63Lys mutant of LT-I is determined at 2.0 A resolution. Its structure appears to be essentially the same as the wild-type LT-I structure. The substitution Ser63Lys was designed, based on the wild-type LT-I crystal structure, to decrease toxicity by interfering with NAD binding and/or catalysis. In the mutant crystal structure, the newly introduced lysine side chain is indeed positioned such that it could potentially obstruct the productive binding mode of the substrate NAD while at the same time its positive charge could possibly interfere with the critical function of nearby charged groups in the active site of LT-I. The fact that the Ser63Lys mutant of LT-I does not disrupt the wild-type LT-I structure makes the non-toxic mutant potentially suitable, from a structural point of view, to be used as a vaccine to prevent enterotoxigenic E. coli infections. The structural similarity of mutant and wild-type toxin might also be the reason why the inactive Ser63Lys variant retains its adjuvant activity.  相似文献   

18.
R Lodaya  S R Blanke  R J Collier  J T Slama 《Biochemistry》1999,38(42):13877-13886
Diphtheria toxin fragment A (DT-A) is an important enzyme in the class of mono(ADP-ribosyl)transferases. To identify peptides and amino acid residues which form the NAD(+) binding site of DT-A using a photoaffinity approach, the photoprobes nicotinamide 8-azidoadenine dinucleotide (8-N(3)-NAD) and nicotinamide 2-azidoadenine dinucleotide (2-N(3)-NAD) were synthesized. Binding studies gave an IC(50) of 2.5 microM for 8-N(3)-NAD and 5.0 microM for 2-N(3)-NAD. Irradiation of DT-A and low concentrations of [alpha-(32)P]-8-N(3)-NAD with short-wavelength UV light resulted in rapid covalent incorporation of the photoprobe into the protein. The photoincorporation was shown to be specific for the active site with a stoichiometry of photoincorporation of 75-80%. After proteolytic digestion of photolabeled DT-A, derivatized peptides were isolated using immobilized boronate affinity chromatography followed by reversed phase HPLC. Radiolabeled peptides originating from two regions of the protein were identified. Chymotryptic digestion produced labeled peptides corresponding to His(21)-Gln(32) and Lys(33)-Phe(53). Lys-C digestion gave overlapping peptides Ser(11)-Lys(33) and Ser(40)-Lys(59). Tyr(27) was identified as the site of photoinsertion within the peptide His(21)-Gln(32) on the basis of the absence of PTH-Tyr at the predicted cycle during sequence analysis and by the lack of predicted chymotryptic cleavage at Tyr(27). Within the second modified peptide Ser(40)-Lys(59), Trp(50) is the most probable site of modification. Identification of Tyr(27) as a site of photoinsertion is in agreement with its placement in the NAD binding site of the X-ray structure of the proenzyme DT-NAD complex [Bell, C. E., and Eisenberg, D. (1996) Biochemistry 35, 1137]. Trp(50) is far from the adenine ring in the crystallographic model; however, site-directed mutagenesis studies suggest that Trp(50) is a major determinant of NAD binding affinity [Wilson, B. A., Blanke, S. R., Reich, K. A., and Collier, R. J. (1994) J. Biol. Chem. 269, 23296-23301].  相似文献   

19.
20.
To elucidate the domains on the extrinsic 23 kDa protein involved in electrostatic interaction with the extrinsic 33 kDa protein in spinach photosystem II, we modified amino or carboxyl groups of the 23 kDa protein to uncharged methyl ester groups with N-succinimidyl propionate or glycine methyl ester in the presence of a water-soluble carbodiimide, respectively. The N-succinimidyl propionate-modified 23 kDa protein did not bind to the 33 kDa protein associated with PSII membranes, whereas the glycine methyl ester-modified 23 kDa protein completely bound. This indicates that positive charges on the 23 kDa protein are important for electrostatic interaction with the 33 kDa protein associated with the PSII membranes. Mapping of the N-succinimidyl propionate-modified sites of the 23 kDa protein was performed using Staphylococcus V8 protease digestion of the modified protein followed by determination of the mass of the resultant peptide fragments with MALDI-TOF MS. The results showed that six domains (Lys11-Lys14, Lys27-Lys38, Lys40, Lys90-Lys96, Lys143-Lys152, Lys166-Lys174) were modified with N-succinimidyl propionate. In these domains, Lys11, Lys13, Lys33, Lys38, Lys143, Lys166, Lys170 and Lys174 were wholly conserved in the 23 kDa protein from 12 species of higher plants. These positively charged lysyl residues on the 23 kDa protein may be involved in electrostatic interactions with the negatively charged carboxyl groups on the 33 kDa protein, the latter has been suggested to be important for the 23 kDa binding [Bricker, T.M. & Frankel, L.K. (2003) Biochemistry42, 2056-2061].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号