首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Epithelial Na(+) Channel (ENaC) is an apical heteromeric channel that mediates Na(+) entry into epithelial cells from the luminal cell surface. ENaC is activated by proteases that interact with the channel during biosynthesis or at the extracellular surface. Meprins are cell surface and secreted metalloproteinases of the kidney and intestine. We discovered by affinity chromatography that meprins bind γ-ENaC, a subunit of the ENaC hetero-oligomer. The physical interaction involves NH(2)-terminal cytoplasmic residues 37-54 of γ-ENaC, containing a critical gating domain immediately before the first transmembrane domain, and the cytoplasmic COOH-terminal tail of meprin β (residues 679-704). This potential association was confirmed by co-expression and co-immunoprecipitation studies. Functional assays revealed that meprins stimulate ENaC expressed exogenously in Xenopus oocytes and endogenously in epithelial cells. Co-expression of ENaC subunits and meprin β or α/β in Xenopus oocytes increased amiloride-sensitive Na(+) currents approximately two-fold. This increase was blocked by preincubation with an inhibitor of meprin activity, actinonin. The meprin-mediated increase in ENaC currents in oocytes and epithelial cell monolayers required meprin β, but not the α subunit. Meprin β promoted cleavage of α and γ-ENaC subunits at sites close to the second transmembrane domain in the extracellular domain of each channel subunit. Thus, meprin β regulates the activity of ENaC in a metalloprotease-dependent fashion.  相似文献   

2.
Active Na(+) absorption by alveolar ENaC is the main driving force of liquid clearance at birth and lung edema resorption in adulthood. We have demonstrated previously that long-term modulation of KvLQT1 and K(ATP) K(+) channel activities exerts sustained control in Na(+) transport through the regulation of ENaC expression in primary alveolar type II (ATII) cells. The goal of the present study was: 1) to investigate the role of the α-ENaC promoter, transfected in the A549 alveolar cell line, in the regulation of ENaC expression by K(+) channels, and 2) to determine the physiological impact of K(+) channels and ENaC modulation on fluid clearance in ATII cells. KvLQT1 and K(ATP) channels were first identified in A549 cells by PCR and Western blotting. We showed, for the first time, that KvLQT1 activation by R-L3 (applied for 24h) increased α-ENaC expression, similarly to K(ATP) activation by pinacidil. Conversely, pharmacological KvLQT1 and K(ATP) inhibition or silencing with siRNAs down-regulated α-ENaC expression. Furthermore, K(+) channel blockers significantly decreased α-ENaC promoter activity. Our results indicated that this decrease in promoter activity could be mediated, at least in part, by the repressor activity of ERK1/2. Conversely, KvLQT1 and K(ATP) activation dose-dependently enhanced α-ENaC promoter activity. Finally, we noted a physiological impact of changes in K(+) channel functions on ERK activity, α-, β-, γ-ENaC subunit expression and fluid absorption through polarized ATII cells. In summary, our results disclose that K(+) channels regulate α-ENaC expression by controlling its promoter activity and thus affect the alveolar function of fluid clearance.  相似文献   

3.
Epithelial sodium channel (ENaC) is a heteromultimeric Na+ channel at the apical membrane in the kidney, colon, and lung. Because ENaC plays a crucial role in regulating Na+ absorption and extracellular fluid volume, its dysregulation causes severe phenotypes including hypertension, hypokalemia, and airway obstruction. Despite the importance of ENaC, its protein quality control mechanism remains less established. Here we firstly show the role of calreticulin (CRT), a lectin-like molecular chaperone in the endoplasmic reticulum (ER), on the regulation of ENaC. Overexpression and knockdown analyses clearly indicated that CRT positively affects the expression of each ENaC subunit (α, β and γ). CRT overexpression also up-regulated the cell surface expression of α-, β- and γ-ENaC. Moreover, we found that CRT directly interacts with each ENaC subunit. Although CRT knockdown did not affect the de novo synthesis of ENaC subunits, CRT overexpression decreased α-, β- and γ-ENaC expression in the detergent (RIPA)-insoluble fraction, suggesting that CRT enhanced the solubility of ENaC subunits. Consistent with the increased intracellular and cell surface expression of ENaC subunits, increased channel activity of ENaC was also observed upon overexpression of CRT. Our study thus identifies CRT as an ER chaperone that regulates ENaC expression and function.  相似文献   

4.
Epithelial sodium channels (ENaC) are composed of three homologous subunits whose extracellular domains (ECD) form a funnel that directs ions from the lumen into the pore of ENaC. To examine the roles of conserved charged residues (Asp, Glu, Arg, and Lys) on ECD, we mutated 16 residues in human α-ENaC to alanine. The modified cRNAs were expressed in Xenopus laevis oocytes together with wild-type β- and γ-ENaC. The effect of each mutation was examined on three parameters: amiloride-sensitive Na(+) conductance (assayed by the two-electrode voltage-clamp method), Na(+)-dependent self-inhibition of ENaC, and oocyte cell surface expression of ENaC (quantitated by confocal microscopy of yellow fluorescent protein linked to γ-ENaC). Mutation of 13 of 16 residues reduced the ENaC Na(+) conductance (to 40-80% of WT). Mutation of only six residues showed a significant effect on the Na(+) self-inhibition time constant (τ). All 16 mutants showed a strong correlation between ENaC activity and oocyte surface expression (r = 0.62). Exclusion of four mutants showing the greatest effect on self-inhibition kinetics (Glu250 and Arg350 with τ = ~30% of WT, and Asp393 and Glu530 with τ = ~170% of WT) increased the correlation to r = 0.87. In the ASIC1 homotrimeric model, the homologs of α-ENaC Asp400 and Asp446 are exposed on the protein surface far from the other two chains. The mutations of these two residues showed the strongest effect on cell surface expression but had no effect on self-inhibition. Control mutations to a homologous charged residue (e.g., Asp to Glu) did not significantly affect ENaC activity. Changes in the two parameters, Na(+) self-inhibition and oocyte surface expression level, accounted for the magnitude of reduction in ENaC activity as a result of the mutation to Ala. These results establish that while some conserved charged residues are part of the structure responsible for Na(+) self-inhibition, most are essential for transport to the oocyte cell surface.  相似文献   

5.
We investigated a physiological role for ERK, a member of the MAPK family, in the hypotonic stimulation of epithelial Na(+) channel (ENaC)-mediated Na(+) reabsorption in renal epithelial A6 cells. We show that hypotonic stress causes a major dephosphorylation of ERK following a rapid transient phosphorylation. PD98059 (a MEK inhibitor) increases dephosphorylated ERK and enhances the hypotonic-stress-stimulated Na(+) reabsorption. ERK dephosphorylation is mediated by MAPK phosphatase (MKP). Hypotonic stress activates p38, which in turn induces MKP-1 and to a lesser extent MKP-3 mRNA expression. Inhibition of p38 suppresses MKP-1 induction, preventing hypotonic stress from dephosphorylating ERK. Inhibition of MKP-1 and -3 by the inhibitor NSC95397 also suppresses the hypotonicity-induced dephosphorylation of ERK. NSC95397 reduces both β- and γ-ENaC mRNA expression and ENaC-mediated Na(+) reabsorption stimulated by hypotonic stress. In contrast, pretreatment with PD98059 significantly enhances mRNA and protein expression of β- and γ-ENaC even under isotonic conditions. However, PD98059 only stimulates Na(+) reabsorption in response to hypotonic stress, suggesting that ERK inactivation by itself (i.e., under isotonic conditions) is not sufficient to stimulate Na(+) reabsorption, even though ERK inactivation enhances β- and γ-ENaC expression. Based on these results, we conclude that hypotonic stress stimulates Na(+) reabsorption through at least two signaling pathways: 1) induction of MKP-1 that suppresses ERK activity and induces β- and γ-ENaC expression, and 2) promotion of translocation of the newly synthesized ENaC to the apical membrane.  相似文献   

6.
The epithelial sodium channel (ENaC) is a member of the ENaC/degenerin superfamily. ENaC is a heteromultimer containing three homologous subunits (α, β, and γ); however, the subunit stoichiometry is still controversial. Here, we addressed this issue using atomic force microscopy imaging of complexes between isolated ENaC and antibodies/Fab fragments directed against specific epitope tags on the α-, β- and γ-subunits. We show that for α-, β- and γ-ENaC alone, pairs of antibodies decorate the channel at an angle of 120°, indicating that the individual subunits assemble as homotrimers. A similar approach demonstrates that αβγ-ENaC assembles as a heterotrimer containing one copy of each subunit. Intriguingly, all four subunit combinations also produce higher-order structures containing two or three individual trimers. The trimer-of-trimers organization would account for earlier reports that ENaC contains eight to nine subunits.  相似文献   

7.
The epithelial Na(+) channel (ENaC) is modulated by membrane lipid composition. However, the effect of an in vivo change of membrane composition is unknown. We examined the effect of a 70-day enhanced cholesterol diet (ECD) on ENaC and renal Na(+) handling. Rats were fed a standard chow or one supplemented with 1% cholesterol and 0.5% cholic acid (ECD). ECD animals exhibited marked anti-diuresis and anti-natriuresis (40 and 47%), which peaked at 1-3 weeks. Secondary compensation returned urine output and urinary Na(+) excretion to control levels by week 10. During these initial changes, there were no accompanying effects on systolic blood pressure, serum creatinine, or urinary creatinine excretion, indicating that the these effects of ECD preceded those which modify renal filtration and blood pressure. The effects of ECD on ENaC were evaluated by measuring the relative protein content of α, β, and γ subunits. α and γ blots were further examined for subunit cleavage (a process that activates ENaC). No significant changes were observed in α and β levels throughout the study. However, levels of cleaved γ were elevated, suggesting that ENaC was activated. The changes of γ persisted at week 10 and were accompanied by additional subunit fragments, indicating potential changes of γ-cleaving proteases. Enhanced protease activity, and specifically that which could act on the second identified cleavage site in γ, was verified in a newly developed urinary protease assay. These results predict enhanced ENaC activity, an effect that was confirmed in patch clamp experiments of principal cells of split open collecting ducts, where ENaC open probability was increased by 40% in the ECD group. These data demonstrate a complex series of events and a new regulatory paradigm that is initiated by ECD prior to the onset of elevated blood pressure. These events lead to changes of renal Na(+) handling, which occur in part by effects on extracellular γ-ENaC cleavage.  相似文献   

8.
Epithelial Na Channels (ENaC) are responsible for the apical entry of Na(+) in a number of different epithelia including the renal connecting tubule and cortical collecting duct. Proteolytic cleavage of γ-ENaC by serine proteases, including trypsin, furin, elastase, and prostasin, has been shown to increase channel activity. Here, we investigate the ability of another serine protease, tissue kallikrein, to regulate ENaC. We show that excretion of tissue kallikrein, which is secreted into the lumen of the connecting tubule, is stimulated following 5 days of a high-K(+) or low-Na(+) diet in rats. Urinary proteins reconstituted in a low-Na buffer activated amiloride-sensitive currents (I(Na)) in ENaC-expressing oocytes, suggesting an endogenous urinary protease can activate ENaC. We next tested whether tissue kallikrein can directly cleave and activate ENaC. When rat ENaC-expressing oocytes were exposed to purified tissue kallikrein from rat urine (RTK), ENaC currents increased threefold in both the presence and absence of a soybean trypsin inhibitor (SBTI). RTK and trypsin both decreased the apparent molecular mass of cleaved cell-surface γ-ENaC, while immunodepleted RTK produced no shift in apparent molecular mass, demonstrating the specificity of the tissue kallikrein. A decreased effect of RTK on Xenopus ENaC, which has variations in the putative prostasin cleavage sites in γ-ENaC, suggests these sites are important in RTK activation of ENaC. Mutating the prostasin site in mouse γ-ENaC (γRKRK186QQQQ) abolished ENaC activation and cleavage by RTK while wild-type mouse ENaC was activated and cleaved similar to that of the rat. We conclude that tissue kallikrein can be a physiologically relevant regulator of ENaC activity.  相似文献   

9.
Regulation of transport by principal cells of the distal nephron contributes to maintenance of Na(+) and K(+) homeostasis. To assess which of these ions is given a higher priority by these cells, we investigated the upregulation of epithelial Na(+) channels (ENaC) in the rat cortical collecting duct (CCD) during Na depletion with and without simultaneous K depletion. ENaC activity, assessed as whole cell amiloride-sensitive current in split-open tubules, was 260 ± 40 pA/cell in K-repleted but virtually undetectable (3 ± 1 pA/cell) in K-depleted animals. This difference was confirmed biochemically by the reduced amounts of the cleaved forms of both the α-ENaC and γ-ENaC subunits measured in immunoblots. In contrast, in K-depleted rats, simultaneously reducing Na intake did not affect the activity of ROMK channels, assessed as tertiapin-Q-sensitive whole cell currents, in the CCDs. The lack of Na current in K-depleted animals was the result of reduced levels of aldosterone in plasma, rather than a reduced sensitivity to the hormone. However, rats on a low-Na, low-K diet for 1 wk did not excrete more Na than those on a low-Na, control-K diet for the same period of time. Immunoblot analysis indicated increased levels of the thiazide-sensitive NaCl cotransporter and the apical Na-H exchanger NHE3. This suggests that with reduced K intake, Na balance is maintained despite reduced aldosterone and Na(+) channel activity by upregulation of Na(+) transport in upstream segments. Under these conditions, Na(+) transport by the aldosterone-sensitive distal nephron is reduced, despite the low-Na intake to minimize K(+) secretion and urinary K losses.  相似文献   

10.
Active Na+ absorption by alveolar ENaC is the main driving force of liquid clearance at birth and lung edema resorption in adulthood. We have demonstrated previously that long-term modulation of KvLQT1 and KATP K+ channel activities exerts sustained control in Na+ transport through the regulation of ENaC expression in primary alveolar type II (ATII) cells. The goal of the present study was: 1) to investigate the role of the α-ENaC promoter, transfected in the A549 alveolar cell line, in the regulation of ENaC expression by K+ channels, and 2) to determine the physiological impact of K+ channels and ENaC modulation on fluid clearance in ATII cells. KvLQT1 and KATP channels were first identified in A549 cells by PCR and Western blotting. We showed, for the first time, that KvLQT1 activation by R-L3 (applied for 24 h) increased α-ENaC expression, similarly to KATP activation by pinacidil. Conversely, pharmacological KvLQT1 and KATP inhibition or silencing with siRNAs down-regulated α-ENaC expression. Furthermore, K+ channel blockers significantly decreased α-ENaC promoter activity. Our results indicated that this decrease in promoter activity could be mediated, at least in part, by the repressor activity of ERK1/2. Conversely, KvLQT1 and KATP activation dose-dependently enhanced α-ENaC promoter activity. Finally, we noted a physiological impact of changes in K+ channel functions on ERK activity, α-, β-, γ-ENaC subunit expression and fluid absorption through polarized ATII cells. In summary, our results disclose that K+ channels regulate α-ENaC expression by controlling its promoter activity and thus affect the alveolar function of fluid clearance.  相似文献   

11.
The epithelial Na(+) channel (ENaC) is a heteromultimeric ion channel that plays a key role in Na(+) reabsorption across tight epithelia. The canonical ENaC is formed by three analogous subunits, α, β, and γ. A fourth ENaC subunit, named δ, is expressed in the nervous system of primates, where its role is unknown. The human δ-ENaC gene generates at least two splice isoforms, δ(1) and δ(2) , differing in the N-terminal sequence. Neurons in diverse areas of the human and monkey brain differentially express either δ(1) or δ(2) , with few cells coexpressing both isoforms, which suggests that they may play specific physiological roles. Here we show that heterologous expression of δ(1) in Xenopus oocytes and HEK293 cells produces higher current levels than δ(2) . Patch-clamp experiments showed no differences in single channel current magnitude and open probability between isoforms. Steady-state plasma membrane abundance accounts for the dissimilarity in macroscopic current levels. Differential trafficking between isoforms is independent of β- and γ-subunits, PY-motif-mediated endocytosis, or the presence of additional lysine residues in δ(2)-N terminus. Analysis of δ(2)-N terminus identified two sequences that independently reduce channel abundance in the plasma membrane. The δ(1) higher abundance is consistent with an increased insertion rate into the membrane, since endocytosis rates of both isoforms are indistinguishable. Finally, we conclude that δ-ENaC undergoes dynamin-independent endocytosis as opposed to αβγ-channels.  相似文献   

12.
Amiloride-sensitive epithelial Na(+) channels (ENaCs) can be formed by different combinations of four homologous subunits, named α, β, γ, and δ. In addition to providing an apical entry pathway for transepithelial Na(+) reabsorption in tight epithelia such as the kidney distal tubule and collecting duct, ENaCs are also expressed in nonepithelial cells, where they may play different functional roles. The δ-subunit of ENaC was originally identified in humans and is able to form amiloride-sensitive Na(+) channels alone or in combination with β and γ, generally resembling the canonical kidney ENaC formed by α, β, and γ. However, δ differs from α in its tissue distribution and channel properties. Despite the low sequence conservation between α and δ (37% identity), their similar functional characteristics provide an excellent model for exploring structural correlates of specific ENaC biophysical and pharmacological properties. Moreover, the study of cellular mechanisms modulating the activity of different ENaC subunit combinations provides an opportunity to gain insight into the regulation of the channel. In this review, we examine the evolution of ENaC genes, channel subunit composition, the distinct functional and pharmacological features that δ confers to ENaC, and how this can be exploited to better understand this ion channel. Finally, we briefly consider possible functional roles of the ENaC δ-subunit.  相似文献   

13.
The epithelial Na? channels (ENaCs) are present in kidney and contribute to Na? and water homeostasis. All three ENaC subunits (α, β, and γ) were demonstrated in the cardiovascular regulatory centers of the rat brain, including the magnocellular neurons (MNCs) in the supraoptic nucleus (SON) and the paraventricular nucleus (PVN). However, the functional significance of ENaCs in vasopressin (VP) and oxytocin (OT) synthesizing MNCs is completely unknown. In this study, we show with immunocytochemical double-labeling that the α-ENaC is colocalized with either VP or OT in MNCs in the SON and PVN. In addition, parvocellular neurons in the dorsal, ventrolateral, and posterior subregions of the PVN (not immunoreactive to VP or OT) are also immunoreactive for α-ENaC. In contrast, immunoreactivity to β- and γ-ENaC is colocalized with VP alone within the MNCs. Furthermore, immunoreactivity for a known target for ENaC expression, the mineralcorticoid receptor (MR), is colocalized with both VP and OT in MNCs. Using single-cell RT-PCR, we detected mRNA for all three ENaC subunits and MR in cDNA libraries derived from single MNCs. In whole cell voltage clamp recordings, application of the ENaC blocker benzamil reversibly reduced a steady-state inward current and decreased cell membrane conductance approximately twofold. Finally, benzamil caused membrane hyperpolarization in a majority of VP and about one-half of OT neurons in both spontaneously firing and quiet cells. These results strongly suggest the presence of functional ENaCs that may affect the firing patterns of MNCs, which ultimately control the secretion of VP and OT.  相似文献   

14.
The extracellular domain of the epithelial Na(+) channel (ENaC) is exposed to a wide range of anion concentrations in the kidney. We have previously demonstrated that extracellular Cl(-) inhibits ENaC activity. To identify sites involved in Cl(-) inhibition, we mutated residues in the extracellular domain of α-, β-, and γENaC that are homologous to the Cl(-) binding site in acid-sensing ion channel 1a and tested the effect of Cl(-) on the activity of ENaC expressed in Xenopus oocytes. We identified two Cl(-) inhibitory sites in ENaC. One is formed by residues in the thumb domain of αENaC and the palm domain of βENaC. Mutation of residues at this interface decreased Cl(-) inhibition and decreased Na(+) self-inhibition. The second site is formed by residues at the interface of the thumb domain of βENaC and the palm domain of γENaC. Mutation of these residues also decreased Cl(-) inhibition yet had no effect on Na(+) self-inhibition. In contrast, mutations in the thumb domain of γENaC and palm of αENaC had little or no effect on Cl(-) inhibition or Na(+) self-inhibition. The data demonstrate that Cl(-) inhibits ENaC activity by two distinct Na(+)-dependent and Na(+)-independent mechanisms that correspond to the two functional Cl(-) inhibitory sites. Furthermore, based on the effects of mutagenesis on Cl(-) inhibition, the additive nature of mutations, and on differences in the mechanisms of Cl(-) inhibition, the data support a model in which ENaC subunits assemble in an αγβ orientation (listed clockwise when viewed from the top).  相似文献   

15.
Inner medullary collecting duct (IMCD) cells from salt-sensitive (S) Dahl rats transport twice as much Na(+) as cells from salt-resistant (R) rats, possibly related to dysregulation of the renal epithelial sodium channel (ENaC). The effect of a high-salt diet on ENaC expression in the inner medulla of S versus R rats has not yet been studied. Young, male S and R rats were placed on a regular-salt (0.3%) or high-salt (8%) diet for 2 or 4 weeks. mRNA and protein expression of ENaC subunits were studied by real-time PCR and immunoblotting. Intracellular distribution of the subunits in the IMCD was evaluated by immunohistochemistry. On regular salt, the abundance of the mRNA of β and γENaC was higher in the medulla of S rats than R rats. This was associated with a greater protein abundance of 90 kDa γENaC and higher immunoreactivity for both α and γ ENaC. High salt did not affect mRNA abundance in either strain and decreased apical staining of βENaC in IMCD of R rats. In contrast, high salt did not affect the higher apical localization of αENaC and increased the apical membrane staining for β and γENaC in the IMCD of S rats. Expression of ENaC subunits is enhanced in the medulla of S vs. R rats on regular salt, and further increased on high salt. The persistent high expression of αENaC and increase in apical localization of β and γENaC may contribute to greater retention of sodium in S rats on a high-salt diet.  相似文献   

16.
Na(+) absorption and K(+) secretion in the distal segments of the nephron are modulated by the tubular flow rate. Epithelial Na(+) channels (ENaC), composed of α-, β-, and γ-subunits respond to laminar shear stress (LSS) with an increase in open probability. Higher vertebrates express a δ-ENaC subunit that is functionally related to the α-subunit, while sharing only 35% of sequence identity. We investigated the response of δβγ channels to LSS. Both the time course and magnitude of activation of δβγ channels by LSS were remarkably different from those of αβγ channels. ENaC subunits have similar topology, with an extracellular region connected by two transmembrane domains with intracellular N and C termini. To identify the specific domains that are responsible for the differences in the response to flow of αβγ and δβγ channels, we generated a series of α-δ chimeras and site-specific α-subunit mutants and examined parameters of activation by LSS. We found that specific sites in the region encompassing and just preceding the second transmembrane domain were responsible for the differences in the magnitude and time course of channel activation by LSS.  相似文献   

17.
Epithelial Na+ channels (ENaC) can be regulated by both mineralocorticoid and glucocorticoid hormones. In the mammalian kidney, effects of mineralocorticoids have been extensively studied, but those of glucocorticoids are complicated by metabolism of the hormones and cross-occupancy of mineralocorticoid receptors. Here, we report effects of dexamethasone, a synthetic glucocorticoid, on ENaC in the rat kidney. Infusion of dexamethasone (24 μg/day) for 1 wk increased the abundance of αENaC 2.26 ± 0.04-fold. This was not accompanied by an induction of Na+ currents (I(Na)) measured in isolated split-open collecting ducts. In addition, hormone treatment did not increase the abundance of the cleaved forms of either αENaC or γENaC or the expression of βENaC or γENaC protein at the cell surface. The absence of hypokalemia also indicated the lack of ENaC activation in vivo. Dexamethasone increased the abundance of the Na+ transporters Na+/H+ exchanger 3 (NHE3; 1.36 ± 0.07-fold), Na(+)-K(+)-2Cl(-) cotransporter 2 (NKCC2; 1.49 ± 0.07-fold), and Na-Cl cotransporter (NCC; 1.72 ± 0.08-fold). Surface expression of NHE3 and NCC also increased with dexamethasone treatment. To examine whether glucocorticoids could either augment or inhibit the effects of mineralocorticoids, we infused dexamethasone (60 μg/day) together with aldosterone (12 μg/day). Dexamethasone further increased the abundance of αENaC in the presence of aldosterone, suggesting independent effects of the two hormones on this subunit. However, I(Na) was similar in animals treated with dexamethasone+aldosterone and with aldosterone alone. We conclude that dexamethasone can occupy glucocorticoid receptors in cortical collecting duct and induce the synthesis of αENaC. However, this induction is not sufficient to produce an increase in functional Na+ channels in the apical membrane, implying that the abundance of αENaC is not rate limiting for channel formation in the kidney.  相似文献   

18.
In the distal colon, the epithelial sodium channel (ENaC) is rate limiting for sodium absorption. Progress in the molecular characterization of ENaC expression and trafficking in response to the mineralocorticoid aldosterone has been hampered, since no epithelial colonic cell line existed expressing functional ENaC stimulated by nanomolar aldosterone via mineralocorticoid receptor (MR). Here, we present a human colonic epithelial cell line inducibly expressing the MR (HT-29/B6-Tet-On-MR) which exhibits aldosterone-dependent ENaC-mediated sodium transport in the presence of the short-chain fatty acid butyrate. Butyrate was necessary for high-level expression of MR which allowed for aldosterone-dependent upregulation of β- and γ-ENaC expression. As butyrate alone was not capable of promoting ENaC-mediated sodium transport, aldosterone-induced GILZ (glucocorticoid-induced leucine zipper protein) was identified as a candidate factor increasing apical ENaC levels.  相似文献   

19.
Dietary salt intake controls epithelial Na+ channel (ENaC)-mediated Na+ reabsorption in the distal nephron by affecting status of the renin-angiotensin-aldosterone system (RAAS). Whereas regulation of ENaC by aldosterone is generally accepted, little is known about whether other components of RAAS, such as angiotensin II (Ang II), have nonredundant to aldosterone-stimulatory actions on ENaC. We combined patch clamp electrophysiology and immunohistochemistry in freshly isolated split-opened distal nephrons of mice to determine the mechanism and molecular signaling pathway of Ang II regulation of ENaC. We found that Ang II acutely increases ENaC Po, whereas prolonged exposure to Ang II also induces translocation of α-ENaC toward the apical membrane in situ. Ang II actions on ENaC Po persist in the presence of saturated mineralocorticoid status. Moreover, aldosterone fails to stimulate ENaC acutely, suggesting that Ang II and aldosterone have different time frames of ENaC activation. AT1 but not AT2 receptors mediate Ang II actions on ENaC. Unlike its effect in vasculature, Ang II did not increase [Ca2+]i in split-opened distal nephrons as demonstrated using ratiometric Fura-2-based microscopy. However, application of Ang II to mpkCCDc14 cells resulted in generation of reactive oxygen species, as probed with fluorescent methods. Consistently, inhibiting NADPH oxidase with apocynin abolished Ang II-mediated increases in ENaC Po in murine distal nephron. Therefore, we concluded that Ang II directly regulates ENaC activity in the distal nephron, and this effect complements regulation of ENaC by aldosterone. We propose that stimulation of AT1 receptors with subsequent activation of NADPH oxidase signaling pathway mediates Ang II actions on ENaC.  相似文献   

20.
Cyclooxygenase-2 (COX-2) expression is increased by hypertonicity. Therefore we hypothesized that hypertonicity increased PGE(2) can modulate the sodium transporters (Na(+)/K(+)-ATPase: NKA, epithelial sodium channel: ENaC, and sodium hydrogen exchanger: NHE) in M1 cortical collecting duct (CCD) cells. We demonstrated by immunoblotting a 2-fold increase in NKA expression and activity following hypertonic treatment. α-ENaC was also increased, however sgk1, an ENaC activator, decreased in response to hypertonicity. Other CCD sodium transporters (β-ENaC, NHE) were unchanged. Hypertonicity also increased PGE(2) but EP(4) receptor mRNA was unaltered. PGE(2) increased intracellular Na(+) and cAMP production in M1 cells, but PGE(2)-stimulated cAMP response was attenuated by hypertonicity. Overall, PGE(2) had no effect on sodium transporter levels. Since neither COX inhibition nor EP(4) siRNA altered the induction of NKA, we propose that sodium transporter regulation by hypertonicity is independent of PGE(2). Altogether, these data indicate that despite a concomitant increase in PGE(2) production and sodium transporter expression in hypertonicity, both pathways are acting independently of each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号