首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The PsaF polypeptide of photosystem I (PSI) is located on the lumen side of the thylakoid membrane and its precise role is not yet fully understood. Here we describe the isolation of a psaF-deficient mutant of the green alga Chlamydomonas reinhardtii generated by co-transforming the nuclear genome of the cw15-arg7A strain with two plasmids: one harboring a mutated version of the psaF gene and the other containing the argininosuccinate lyase gene conferring arginine prototrophy. This psaF mutant still assembles a functional PSI complex and is capable of photoautotrophic growth. However, electron transfer from plastocyanin to P700+, the oxidized reaction center chlorophyll dimer, is dramatically reduced in the mutant, indicating that the PsaF subunit plays an important role in docking plastocyanin to the PSI complex. These results contrast with those obtained previously with a cyanobacterial psaF-, psaJ- double mutant where no phenotype was apparent.  相似文献   

2.
The plastocyanin binding domain of photosystem I.   总被引:2,自引:0,他引:2       下载免费PDF全文
The molecular recognition between plastocyanin and photosystem I was studied. Photosystem I and plastocyanin can be cross-linked to an active electron transfer complex. Immunoblots and mass spectrometric analysis of proteolytic peptides indicate that the two negative patches conserved in plant plastocyanins are cross-linked with lysine residues of a domain near the N-terminus of the PsaF subunit of photosystem I. Conversion of these negative to uncharged patches of plastocyanin by site-directed mutation D42N/E43Q/D44N/E45Q and E59Q/E60Q/D61N respectively, reveals the first patch to be essential for the electrostatic interaction in the electron transfer complex with photosystem I and the second one to lower the redox potential. The domain in PsaF, not found in cyanobacteria, is predicted to fold into two amphipathic alpha-helices. The interacting N-terminal helix lines up six lysines on one side which may guide a fast one-dimensional diffusion of plastocyanin and provide the electrostatic attraction at the attachment site, in addition to the hydrophobic interaction in the area where the electron is transferred to P700 in the reaction center of photosystem I. This two-step interaction is likely to increase the electron transfer rate by more than two orders of magnitude in plants as compared with cyanobacteria. Our data resolve the controversy about the function of PsaF.  相似文献   

3.
The photosystem 1 subunit PsaF is involved in the docking of the electron-donor proteins plastocyanin and cytochrome c? in eukaryotic photosynthetic organisms. Here we report the expression, purification and basic characterization of the luminal domain of spinach PsaF, encompassing amino-acid residues 1-79. The recombinant protein was expressed in Escherichia coli BL21 (DE3) using a pET32 Xa/LIC thioredoxin fusion system. The thioredoxin fusion protein contained a His? tag and was removed and separated from PsaF through proteolytic digestion by factor Xa followed by immobilized metal affinity chromatography. Further purification with size-exclusion chromatography resulted in a final yield of approximately 6 mg PsaF from one liter growth medium. The correct identity after the factor Xa treatment of PsaF was verified by FT-ICR mass spectrometry which also showed that the purified protein contains an intact disulfide bridge between Cys residues 6 and 38. Secondary structure and folding was further explored using far-UV CD spectroscopy indicating a α-helical content in agreement with the 3.3 ?-resolution crystal structure of photosystem I. and a helix-coil transition temperature of 29 °C. Thermofluorescence studies showed that the disulfide bridge is necessary to keep the overall fold of the protein and that hydrophobic regions become exposed at 50-65 °C depending on the ionic strength. The described expression and purification procedure can be used for isotopic labeling of the protein and 1?N-HSQC NMR studies indicated a slow or intermediate exchange between different conformations of the prepared protein and that it belongs to the molten-globule structural family. Finally, by using a carboxyl- and amine-reactive zero-length crosslinker, we have shown that the recombinant protein binds to plastocyanin by a specific, native-like, electrostatic interaction, hence, confirming its functionality.  相似文献   

4.
PsaF is a nuclear encoded gene for the subunit III of photosystem I. It is located at the lumenal side of the thylakoid membrane and interacts with plastocyanin. Starting from a low-level expression in the cotyledons of etiolated seedlings the gene is upregulated by light. Light can be replaced by Ca2+ or phosphoinositides like phorbol myristate acetate, an analogue of diacylglycerol. We tested the effects of these components on PsaF promoter-driven gene expression in roots and found that the PsaF promoter includes a positive regulatory region [-220/-179] activated by cytokinin and a negative regulatory region [-687/-221] activated by abscisic acid. In addition, the promoter is activated by Ca2+, mastoparan and phorbol myristate acetate which suggests a role for phospholipases and protein kinase C in PsaF gene expression.  相似文献   

5.
PsaJ is a small hydrophobic subunit of the photosystem I complex (PSI) whose function is not yet fully understood. Here we describe mutants of the green alga Chlamydomonas reinhardtii, in which the psaJ chloroplast gene has been inactivated either in a wild-type or in a PsaF-deficient nuclear background. Cells lacking one or both subunits grow photoautotrophically and contain normal levels of PSI. Flash-absorption spectroscopy performed with isolated PSI particles isolated from the PsaJ-deficient strain indicates that only 30% of the PSI complexes oxidize plastocyanin (Pc) or cytochrome c6 (Cyt c6) with kinetics identical to wild type, whereas the remaining 70% follow slow kinetics similar to those observed with PsaF-deficient PSI complexes. This feature is not due to partial loss of PsaF, as the PsaJ-less PSI complex contains normal levels of the PsaF subunit. The N-terminal domain of PsaF can be cross-linked to Pc and Cyt c6 indicating that in the absence of PsaJ, this domain is exposed in the lumenal space. Therefore, the decreased amount of functional PsaF revealed by the electron-transfer measurements is best explained by a displacement of the N-terminal domain of PsaF which is known to provide the docking site for Pc and Cyt c6. We propose that one function of PsaJ is to maintain PsaF in a proper orientation which allows fast electron transfer from soluble donor proteins to P700(+).  相似文献   

6.
The reduction of the photo-oxidized special chlorophyll pair P700 of photosystem I (PSI) in the photosynthetic electron transport chain of eukaryotic organisms is facilitated by the soluble copper-containing protein plastocyanin (pc). In the absence of copper, pc is functionally replaced by the heme-containing protein cytochrome c6 (cyt c6) in the green alga Chlamydomonas reinhardtii. Binding and electron transfer between both donors and PSI follows a two-step mechanism that depends on electrostatic and hydrophobic recognition between the partners. Although the electrostatic and hydrophobic recognition sites on pc and PSI are well known, the precise electrostatic recognition site on cyt c6 is unknown. To specify the interaction sites on a molecular level, we cross-linked cyt c6 and PSI using a zero-length cross-linker and obtained a cross-linked complex competent in fast and efficient electron transfer. As shown previously, cyt c6 cross-links specifically with the PsaF subunit of PSI. Mass spectrometric analysis of tryptic peptides from the cross-linked product revealed specific interaction sites between residues Lys27 of PsaF and Glu69 of cyt c6 and between Lys23 of PsaF and Glu69/Glu70 of cyt c6. Using these new data, we present a molecular model of the intermolecular electron transfer complex between eukaryotic cyt c6 and PSI.  相似文献   

7.
8.
Photosystem I catalyzes the light-driven oxidation of plastocyanin or cytochrome c 6 and the reduction of ferredoxin or flavodoxin. PsaJ is a 4.4 kDa hydrophobic subunit of photosystem I from cyanobacteria and chloroplasts. To investigate the function of PsaJ, we generated a mutant strain of the cyanobacterium Synechocystis sp. PCC 6803 in which the psaJ gene is replaced by a gene for chloramphenicol resistance. Deletion of psaJ led to a reduction in the steady state RNA level from psaF which is located upstream from psaJ. Immunoquantification using an anti-PsaF antibody revealed a significant decrease in the amount of PsaF in membranes of the mutant strain. Trimeric photosystem I complexes isolated from the mutant strain using n-dodecyl -D-maltoside lacked PsaJ, contained ca. 80% less PsaF, but maintained wild-type levels of other photosystem I subunits. In contrast, the photosystem I purified using Triton X-100 contained less than 2% PsaF when compared to the wild type, showing the more extractable nature of PsaF in PsaJ-less photosystem I in the presence of Triton X-100. PsaE was more accessible to removal by NaI in a mutant strain lacking PsaF and PsaJ than in the wild type. The presence of PsaF in photosystem I from the PsaJ-less strain did not alter the increased susceptibility of PsaE to removal by NaI. These results indicate an interaction between PsaJ and PsaF in the organization of the complex.  相似文献   

9.
In this work we address the question whether light-induced changes in the Mg(II) content in the chloroplast lumen can modulate the electron donation to photosystem I, in particular the electrostatic interaction between plastocyanin (Pc) and the photosystem 1 subunit PsaF. For this, we have used 2D NMR spectroscopy to study the binding of Mg(II) ions and the isolated luminal domain of PsaF to (15)N-labelled Pc. From the chemical-shift perturbations in the (1)H-(15)N HSQC spectra, dissociation constants of (4.9 ± 1.7) mM and (1.4 ± 0.2) mM were determined for the Pc-Mg(II) and Pc-PsaF complexes, respectively. In both cases, significant chemical-shift changes were observed for Pc backbone amide groups belonging to the two acidic patches, residues 42-45 and 59-61. In addition, competitive effects were observed upon the addition of Mg(II) ions to the Pc-PsaF complex, further strengthening that Mg(II) and PsaF bind to the same region on Pc. To structurally elucidate the Mg(II) binding site we have utilized Mn(II) as a paramagnetic analogue of Mg(II). The paramagnetic relaxation enhancement induced by Mn(II) results in line broadening in the Pc HSQC spectra which can be used to estimate distances between the bound ion and the affected nuclear spins. The calculations suggest a location of the bound Mn(II) ion close to Glu43 in the lower acidic patch, and most likely in the form of a hexaquo complex embedded within the hydration shell of Pc. The results presented here suggest a specific binding site for Mg(II) that may regulate the binding of Pc to photosystem 1 in vivo.  相似文献   

10.
The review covers the theory and practice of the determination of kinetic constants for the electron transfer reactions in chloroplast thylakoid membranes between plastocyanin and cytochrome f in cytochrome bf complexes, and between plastocyanin and the reaction centre of photosystem I. Effects of ionic strength and pH are featured. The contribution of mutant studies is included. It is concluded that nearly all data from in vitro experiments can be interpreted with a reaction scheme in which an encounter complex between donor and acceptor is formed by long-range electrostatic attraction, followed by rearrangement during which metal centres become close enough for rapid intra-complex electron transfer. In vivo experiments so far cast doubt on this particular sequence, but their interpretation is not straightforward. Means of modelling the bimolecular complex between cytochrome f and plastocyanin are outlined, and two likely structures are illustrated. The complex formed by plastocyanin and photosystem I in higher plants involves the PsaF subunit, but its structure has not been fully determined.  相似文献   

11.
Q Xu  J A Guikema    P R Chitnis 《Plant physiology》1994,106(2):617-624
Photosystem I (PSI) is a multisubunit enzyme that catalyzes the light-driven oxidation of plastocyanin or cytochrome c6 and the concomitant photoreduction of ferredoxin or flavodoxin. To identify the surface-exposed domains in PSI of the cyanobacterium Synechocystis sp. PCC 6803, we mapped the regions in PsaE, PsaD, and PsaF that are accessible to proteases and N-hydroxysuccinimidobiotin (NHS-biotin). Upon exposure of PSI complexes to a low concentration of endoproteinase glutamic acid (Glu)-C, PsaE was cleaved to 7.1- and 6.6-kD N-terminal fragments without significant cleavage of other subunits. Glu63 and Glu67, located near the C terminus of PsaE, were the most likely cleavage sites. At higher protease concentrations, the PsaE fragments were further cleaved and an N-terminal 9.8-kD PsaD fragment accumulated, demonstrating the accessibility of Glu residue(s) in the C-terminal domain of PsaD to the protease. Besides these major, primary cleavage products, several secondary cleavage sites on PsaD, PsaE, and PsaF were also identified. PsaF resisted proteolysis when PsaD and PsaE were intact. Glu88 and Glu124 of PsaF became susceptible to endoproteinase Glu-C upon extensive cleavage of PsaD and PsaE. Modification of PSI proteins with NHS-biotin and subsequent cleavage by endoproteinase Glu-C or thermolysin showed that the intact PsaE and PsaD, but not their major degradation products lacking C-terminal domains, were heavily biotinylated. Therefore, lysine-74 at the C terminus of PsaE was accessible for biotinylation. Similarly, lysine-107, or lysine-118, or both in PsaD could be modified by NHS-biotin.  相似文献   

12.
Strains of Chlamydomonas reinhardtii lacking the PsaF gene or containing the mutation K23Q within the N-terminal part of PsaF are sensitive to high light (>400 microE m(-2) s(-1)) under aerobic conditions. In vitro experiments indicate that the sensitivity to high light of the isolated photosystem I (PSI) complex from wild type and from PsaF mutants is similar. In vivo measurements of photochemical quenching and oxygen evolution show that impairment of the donor side of PSI in the PsaF mutants leads to a diminished linear electron transfer and/or a decrease of photosystem II (PSII) activity in high light. Thermoluminescence measurements indicate that the PSII reaction center is directly affected under photo-oxidative stress when the rate of electron transfer becomes limiting in the PsaF-deficient strain and in the PsaF mutant K23Q. We have isolated a high light-resistant PsaF-deficient suppressor strain that has a high chlorophyll a/b ratio and is affected in the assembly of light-harvesting complex. These results indicate that under high light a functionally intact donor side of PSI is essential for protection of C. reinhardtii against photo-oxidative damage when the photosystems are properly connected to their light-harvesting antennae.  相似文献   

13.
Spectroscopic properties, amino acid sequence, electron transfer kinetics, and crystal structures of the oxidized (at 1.7 A resolution) and reduced form (at 1.8 A resolution) of a novel plastocyanin from the fern Dryopteris crassirhizoma are presented. Kinetic studies show that the reduced form of Dryopteris plastocyanin remains redox-active at low pH, under conditions where the oxidation of the reduced form of other plastocyanins is inhibited by the protonation of a solvent-exposed active site residue, His87 (equivalent to His90 in Dryopteris plastocyanin). The x-ray crystal structure analysis of Dryopteris plastocyanin reveals pi-pi stacking between Phe12 and His90, suggesting that the active site is uniquely protected against inactivation. Like higher plant plastocyanins, Dryopteris plastocyanin has an acidic patch, but this patch is located closer to the solvent-exposed active site His residue, and the total number of acidic residues is smaller. In the reactions of Dryopteris plastocyanin with inorganic redox reagents, the acidic patch (the "remote" site) and the hydrophobic patch surrounding His90 (the "adjacent" site) are equally efficient for electron transfer. These results indicate the significance of the lack of protonation at the active site of Dryopteris plastocyanin, the equivalence of the two electron transfer sites in this protein, and a possibility of obtaining a novel insight into the photosynthetic electron transfer system of the first vascular plant fern, including its molecular evolutionary aspects. This is the first report on the characterization of plastocyanin and the first three-dimensional protein structure from fern plant.  相似文献   

14.
It has previously been shown that presequences of nuclear-encoded chloroplast proteins from the green alga Chlamydomonas reinhardtii contain a region that may form an amphiphilic -helix, a structure characteristic of mitochondrial presequences. We have tested two precursors of chloroplast proteins (the PsaF and PsaK photosystem I subunits) from C. reinhardtii for the ability to be imported into spinach leaf mitochondria in vitro. Both precursors bound to spinach mitochondria. The PsaF protein was converted into a protease-protected form with high efficiency in a membrane potential-dependent manner, indicating that the protein had been imported, whereas the PsaK protein was not protease protected. The protease protection of PsaF was not inhibited by a synthetic peptide derived from the presequence of the N. plumbaginifolia mitochondrial F1 subunit. Furthermore, if the presequence of PsaF was truncated or deleted by in vitro mutagenesis, the protein was still protease-protected with approximately the same efficiency as the full-length precursor. These results indicate that PsaF can be imported by spinach mitochondria in a presequence-independent manner. However, even in the absence of the presequence, this process was membrane potential-dependent. Interestingly, the presequence-truncated PsaF proteins were also protease-protected upon incubation with C. reinhardtii chloroplasts. Our results indicate that the C. reinhardtii chloroplast PsaF protein has peculiar properties and may be imported not only into chloroplasts but also into higher-plant mitochondria. This finding indicates that additional control mechanisms in the cytosol that are independent of the presequence are required to achieve sorting between chloroplasts and mitochondria in vivo.Abbreviations cTP chloroplast transit peptide - mTP mitochondrial targeting peptide - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - pF1(1,25) a synthetic peptide derived from the first 25 residues of the Nicotiana plumbaginifolia mitochondrial ATP synthase F1 subunit - PsaF(2–30) and PsaF(2–61) mutant proteins lacking regions corresponding to residues 2–30 and 2–61 in the PsaF precursor protein, respectively  相似文献   

15.
A new simple three-day procedure for preparative isolation and purification of plastocyanin from spinach stored in the frozen state is described. This procedure is based on batch adsorption on ion-exchange resin, ammonium sulphate precipitation, and purification on a Phenyl-Sepharose hydrophobic interaction column and a single Q Sepharose High Performance ion-exchange column. Approximately 100 mg of plastocyanin with an absorbance ratio A278/A597 of 1.10±0.02 in the oxidized state was typically obtained from 12 kg of spinach leaves. The purified spinach plastocyanin is shown to be homogeneous to the resolution of free solution capillary electrophoresis.Abbreviations MES 2(N-morpholino)ethanesulfonic acid - Tris Tris(hydroxymethyl)aminomethane - FSCE free solution capillary electrophoresis  相似文献   

16.
In certain cyanobacteria and algae, cytochrome c553 or plastocyanin can serve to carry electrons from the cytochrome bf complex to photosystem I. The availability of copper in the growth medium regulates which protein is present. To investigate copper induced control of gene expression we isolated these proteins from the cyanobacterium Synechocystis 6803. Using immunodetection and optical spectroscopy, the steady state levels of cytochrome c553 and plastocyanin were measured in cells grown at different copper concentrations. The results show that in cells grown in 20-30 nM copper, cytochrome c553 was present, whereas plastocyanin was not detected. The opposite behavior was observed in cells grown in the presence of 1 microM copper; plastocyanin was present, whereas cytochrome c553 could not be detected. Both proteins were present in cells grown in 0.3 microM copper. Northern analysis of total RNA, probed with a gene fragment for cytochrome c553 or the plastocyanin gene, showed that cells grown in the presence of 20-30 nM copper have message for cytochrome c553, but not for plastocyanin, whereas cells grown in 1 microM copper have message for plastocyanin, but not for cytochrome c553. These results demonstrate that copper regulates expression of both of the genes encoding cytochrome c553 and plastocyanin prior to translation in Synechocystis 6803.  相似文献   

17.
Cyanide and mercury treatment of chloroplast membranes inactivates plastocyanin as shown by the inability of the extracted plastocyanin to restore electron transport in a bioassay on chloroplasts depleted of their endogenous plastocyanin by digitonin treatment. The extraction procedure did remore the enzyme from cyanide and mercury treated chloroplasts as shown by sodium dodecyl sulfate polyacrylamide electrophoresis of the extracts. This procedure normally shows a plastocyanin band at 11,000 dalton molecular weight and the band was present in extracts from control and cyanide or mercury treated membranes.  相似文献   

18.
R M Wynn  R Malkin 《Biochemistry》1988,27(16):5863-5869
Plastocyanin has been covalently cross-linked to photosystem I (PSI) by using a water-soluble cross-linker, N-ethyl-3-[3-(dimethylamino)propyl]carbodiimide. The cross-linking reaction is light stimulated and results in the disappearance of a single 19-kDa subunit of PSI with the formation of a new protein-staining component of 31 kDa. The new product at 31 kDa reacts with both plastocyanin and 19-kDa subunit antibodies. Carboxyl group modified plastocyanin does not form a cross-linked product with PSI, implying that the negatively charged surface-exposed groups on plastocyanin are necessary to stabilize binding. These results demonstrate a specific interaction of plastocyanin with PSI and further implicate a specific protein to which plastocyanin binds to facilitate electron transfer to the P700 reaction center.  相似文献   

19.
Electron input from plastocyanin into photosystem I (PSI) is slowed down in the Chlamydomonas reinhardtii mutants affected at the donor side (PsaF or PsaB, lumenal loop j) of PSI. In contrast, electron exit from PSI to ferredoxin is diminished in the PSI acceptor side PsaC mutants K35E and FB1. Although, the electron transfer reactions are diminished to a similar extent in both type of mutants, the PsaC mutants K35E and FB1 are more light‐sensitive than the PsaF‐deficient strain 3bF or the PsaB mutants E613N and W627F. To assess the differential photosensitivity of donor and acceptor side mutants fluorescence transients, gross oxygen evolution and uptake, PSII photo‐inhibition and rate of recovery were measured as well as NADP+ photoreduction. The NADP+ photoreduction measurements indicated that the donor side is limiting the reduction rate. In contrast, measurements of gross oxygen evolution and uptake showed that the reducing side limits linear electron transfer. However, under high light, donor and acceptor side mutations lead to PSII photo‐inhibition and to a diminished rate of PSII recovery, cause lipid peroxidation and result in a decrease in the levels of PSI and PSII. The wild type is not affected under the same conditions. These responses are most pronounced in the PsaC‐K35E and PsaB‐W627F mutants, and they correlate with the light sensitivity of these strains. The correlation between limitation of electron transfer through PSI and the formation of reactive oxygen species as a cause for the light‐sensitivity is discussed.  相似文献   

20.
Photosystem I (PSI) is the most efficient bioenergetic nanomachine in nature and one of the largest membrane protein complexes known. It is composed of 18 protein subunits that bind more than 200 co‐factors and prosthetic groups. While the structure and function of PSI have been studied in great detail, very little is known about the PSI assembly process. In this work, we have characterized a PSI assembly intermediate in tobacco plants, which we named PSI*. We found PSI* to contain only a specific subset of the core subunits of PSI. PSI* is particularly abundant in young leaves where active thylakoid biogenesis takes place. Moreover, PSI* was found to overaccumulate in PsaF‐deficient mutant plants, and we show that re‐initiation of PsaF synthesis promotes the maturation of PSI* into PSI. The attachment of antenna proteins to PSI also requires the transition from PSI* to mature PSI. Our data could provide a biochemical entry point into the challenging investigation of PSI biogenesis and allow us to improve the model for the assembly pathway of PSI in thylakoid membranes of vascular plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号