首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of membrane lipid biosynthesis is critical for cell function. We previously reported that disruption of PHOSPHATIDIC ACID PHOSPHOHYDROLASE1 (PAH1) and PAH2 stimulates net phosphatidylcholine (PC) biosynthesis and proliferation of the endoplasmic reticulum (ER) in Arabidopsis thaliana. Here, we show that this response is caused specifically by a reduction in the catalytic activity of the protein and positively correlates with an accumulation of its substrate, phosphatidic acid (PA). The accumulation of PC in pah1 pah2 is suppressed by disruption of CTP:PHOSPHOCHOLINE CYTIDYLYLTRANSFERASE1 (CCT1), which encodes a key enzyme in the nucleotide pathway for PC biosynthesis. The activity of recombinant CCT1 is stimulated by lipid vesicles containing PA. Truncation of CCT1, to remove the predicted C-terminal amphipathic lipid binding domain, produced a constitutively active enzyme. Overexpression of native CCT1 in Arabidopsis has no significant effect on PC biosynthesis or ER morphology, but overexpression of the truncated constitutively active version largely replicates the pah1 pah2 phenotype. Our data establish that membrane homeostasis is regulated by lipid composition in Arabidopsis and reveal a mechanism through which the abundance of PA, mediated by PAH activity, modulates CCT activity to govern PC content.  相似文献   

2.
In this article, we show that the endoplasmic reticulum (ER) in Arabidopsis thaliana undergoes morphological changes in structure during ER stress that can be attributed to autophagy. ER stress agents trigger autophagy as demonstrated by increased production of autophagosomes. In response to ER stress, a soluble ER marker localizes to autophagosomes and accumulates in the vacuole upon inhibition of vacuolar proteases. Membrane lamellae decorated with ribosomes were observed inside autophagic bodies, demonstrating that portions of the ER are delivered to the vacuole by autophagy during ER stress. In addition, an ER stress sensor, INOSITOL-REQUIRING ENZYME-1b (IRE1b), was found to be required for ER stress–induced autophagy. However, the IRE1b splicing target, bZIP60, did not seem to be involved, suggesting the existence of an undiscovered signaling pathway to regulate ER stress–induced autophagy in plants. Together, these results suggest that autophagy serves as a pathway for the turnover of ER membrane and its contents in response to ER stress in plants.  相似文献   

3.
The carrier Endoplasmic Reticulum Adenylate Transporter1 (ER-ANT1) resides in the endoplasmic reticulum (ER) membrane and acts as an ATP/ADP antiporter. Mutant plants lacking ER-ANT1 exhibit a dwarf phenotype and their seeds contain reduced protein and lipid contents. In this study, we describe a further surprising metabolic peculiarity of the er-ant1 mutants. Interestingly, Gly levels in leaves are immensely enhanced (26×) when compared with that of wild-type plants. Gly accumulation is caused by significantly decreased mitochondrial glycine decarboxylase (GDC) activity. Reduced GDC activity in mutant plants was attributed to oxidative posttranslational protein modification induced by elevated levels of reactive oxygen species (ROS). GDC activity is crucial for photorespiration; accordingly, morphological and physiological defects in er-ant1 plants were nearly completely abolished by application of high environmental CO2 concentrations. The latter observation demonstrates that the absence of ER-ANT1 activity mainly affects photorespiration (maybe solely GDC), whereas basic cellular metabolism remains largely unchanged. Since ER-ANT1 homologs are restricted to higher plants, it is tempting to speculate that this carrier fulfils a plant-specific function directly or indirectly controlling cellular ROS production. The observation that ER-ANT1 activity is associated with cellular ROS levels reveals an unexpected and critical physiological connection between the ER and other organelles in plants.  相似文献   

4.
Endoplasmic reticulum aminopeptidase-1 (ERAP1) is a multifunctional, ubiquitously expressed enzyme whose peptide-trimming role during antigen processing for presentation by MHC I molecules is well established, however, a role for ERAP1 in modulating global innate immune responses has not been described to date. Here we demonstrate that, relative to wild type mice, mice lacking ERAP1 exhibit exaggerated innate immune responses early during pathogen recognition, as characterized by increased activation of splenic and hepatic NK and NKT cells and enhanced production of pro-inflammatory cytokines such as IL12 and MCP1. Our data also revealed that ERAP1 is playing a critical role in NK cell development and function. We observed higher frequencies of terminally matured NK cells, as well as higher frequencies of licensed NK cells (expressing the Ly49C and Ly49I receptors) in ERAP1-KO mice, results that positively correlated with an enhanced NK activation and IFNγ production by ERAP1-KO mice challenged with pro-inflammatory stimuli. Furthermore, during pathogen recognition, ERAP1 regulates IL12 production by CD11c+ DCs specifically, with increases in IL12 production positively correlated with an increased phagocytic activity of splenic DCs and macrophages. Collectively, our results demonstrate a previously unrecognized, more central role for the ERAP1 protein in modulating several aspects of both the development of the innate immune system, and its responses during the initial stages of pathogen recognition. Such a role may explain why ERAP1 has been implicated by GWAS in the pathogenesis of autoimmune diseases that may be precipitated by aberrant responses to pathogen encounters.  相似文献   

5.
6.
7.
To identify novel transmembrane and secretory molecules expressed in cardiac myocytes, signal sequence trap screening was performed in rat neonatal cardiac myocytes. One of the molecules identified was a transmembrane protein, prostatic androgen repressed message-1 (PARM-1). While PARM-1 has been identified as a gene induced in prostate in response to castration, its function is largely unknown. Our expression analysis revealed that PARM-1 was specifically expressed in hearts and skeletal muscles, and in the heart, cardiac myocytes, but not non-myocytes expressed PARM-1. Immunofluorescent staining showed that PARM-1 was predominantly localized in endoplasmic reticulum (ER). In Dahl salt-sensitive rats, high-salt diet resulted in hypertension, cardiac hypertrophy and subsequent heart failure, and significantly stimulated PARM-1 expression in the hearts, with a concomitant increase in ER stress markers such as GRP78 and CHOP. In cultured cardiac myocytes, PARM-1 expression was stimulated by proinflammatory cytokines, but not by hypertrophic stimuli. A marked increase in PARM-1 expression was observed in response to ER stress inducers such as thapsigargin and tunicamycin, which also induced apoptotic cell death. Silencing PARM-1 expression by siRNAs enhanced apoptotic response in cardiac myocytes to ER stresses. PARM-1 silencing also repressed expression of PERK and ATF6, and augmented expression of CHOP without affecting IRE-1 expression and JNK and Caspase-12 activation. Thus, PARM-1 expression is induced by ER stress, which plays a protective role in cardiac myocytes through regulating PERK, ATF6 and CHOP expression. These results suggested that PARM-1 is a novel ER transmembrane molecule involved in cardiac remodeling in hypertensive heart disease.  相似文献   

8.
Phosphoinositides represent important lipid signals in the plant development and stress response. However, multiple isoforms of the phosphoinositide biosynthetic genes hamper our understanding of the pivotal enzymes in each step of the pathway as well as their roles in plant growth and development. Here, we report that phosphoinositide-specific phospholipase C2 (AtPLC2) is the primary phospholipase in phosphoinositide metabolism and is involved in seedling growth and the endoplasmic reticulum (ER) stress responses in Arabidopsis thaliana. Lipidomic profiling of multiple plc mutants showed that the plc2-1 mutant increased levels of its substrates phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate, suggesting that the major phosphoinositide metabolic pathway is impaired. AtPLC2 displayed a distinct tissue expression pattern and localized at the plasma membrane in different cell types, where phosphoinositide signaling occurs. The seedlings of plc2-1 mutant showed growth defect that was complemented by heterologous expression of AtPLC2, suggesting that phosphoinositide-specific phospholipase C activity borne by AtPLC2 is required for seedling growth. Moreover, the plc2-1 mutant showed hypersensitive response to ER stress as evidenced by changes in relevant phenotypes and gene expression profiles. Our results revealed the primary enzyme in phosphoinositide metabolism, its involvement in seedling growth and an emerging link between phosphoinositide and the ER stress response.  相似文献   

9.
The endoplasmic reticulum (ER) is composed of tubules, sheets, and three-way junctions, resulting in a highly conserved polygonal network in all eukaryotes. The molecular mechanisms responsible for the organization of these structures are obscure. To identify novel factors responsible for ER morphology, we employed a forward genetic approach using a transgenic Arabidopsis thaliana plant (GFP-h) with fluorescently labeled ER. We isolated two mutants with defects in ER morphology and designated them endoplasmic reticulum morphology1 (ermo1) and ermo2. The cells of both mutants developed a number of ER-derived spherical bodies, ∼1 μm in diameter, in addition to the typical polygonal network of ER. The spherical bodies were distributed throughout the ermo1 cells, while they formed a large aggregate in ermo2 cells. We identified the responsible gene for ermo1 to be GNOM-LIKE1 (GNL1) and the gene for ermo2 to be SEC24a. Homologs of both GNL1 and SEC24a are involved in membrane trafficking between the ER and Golgi in yeast and animal cells. Our findings, however, suggest that GNL1/ERMO1 and SEC24a/ERMO2 have a novel function in ER morphology in higher plants.  相似文献   

10.
Our understanding of eukaryotic protein folding in the endoplasmic reticulum has increased enormously over the last 5 years. In this review, we summarize some of the major research themes that have captivated researchers in this field during the last years of the 20th century. We follow the path of a typical protein as it emerges from the ribosome and enters the reticular environment. While many of these events are shared between different polypeptide chains, we highlight some of the numerous differences between proteins, between cell types, and between the chaperones utilized by different ER glycopro-teins. Finally, we consider the likely advances in this field as the new century unfolds and we address the prospect of a unified understanding of how protein folding, degradation, and translation are coordinated within a cell.  相似文献   

11.
Aminoalcoholphosphotransferase (AAPT) catalyzes the synthesis of phosphatidylcholine (PC) and phosphotidylethanolamine (PE), which are the most prevalent membrane phospholipids in all eukaryotic cells. Here, we show that suppression of AAPTs results in extensive membrane phospholipid remodeling in Arabidopsis thaliana. Double knockout (KO) mutants that are hemizygous for either aapt1 or aapt2 display impaired pollen and seed development, leading to embryotic lethality of the double KO plants, whereas aapt1 or aapt2 single KO plants show no overt phenotypic alterations. The growth rate and seed yield of AAPT RNA interference (RNAi) plants are greatly reduced. Lipid profiling shows decreased total galactolipid and phospholipid content in aapt1-containing mutants, including aapt1, aapt1/aapt1 aapt2/AAPT2, aapt1/AAPT1 aapt2/aapt2, and AAPT RNAi plants. The level of PC in leaves was unchanged, whereas that of PE was reduced in all AAPT-deficient plants, except aapt2 KO. However, the acyl species of PC was altered, with increased levels of C34 species and decreased C36 species. Conversely, the levels of PE and phosphatidylinositol were decreased in C34 species. In seeds, all AAPT-deficient plants, including aapt2 KO, displayed a decrease in PE. The data show that AAPT1 and AAPT2 are essential to plant vegetative growth and reproduction and have overlapping functions but that AAPT1 contributes more than AAPT2 to PC production in vegetative tissues. The opposite changes in molecular species between PC and PE and unchanged PC level indicate the existence of additional pathways that maintain homeostatic levels of PC, which are crucial for the survival and proper development of plants.  相似文献   

12.
Stresses increasing the load of unfolded proteins that enter the endoplasmic reticulum (ER) trigger a protective response termed the unfolded protein response (UPR). Stromal cell-derived factor2 (SDF2)-type proteins are highly conserved throughout the plant and animal kingdoms. In this study we have characterized AtSDF2 as crucial component of the UPR in Arabidopsis thaliana. Using a combination of biochemical and cell biological methods, we demonstrate that SDF2 is induced in response to ER stress conditions causing the accumulation of unfolded proteins. Transgenic reporter plants confirmed induction of SDF2 during ER stress. Under normal growth conditions SDF2 is highly expressed in fast growing, differentiating cells and meristematic tissues. The increased production of SDF2 due to ER stress and in tissues that require enhanced protein biosynthesis and secretion, and its association with the ER membrane qualifies SDF2 as a downstream target of the UPR. Determination of the SDF2 three-dimensional crystal structure at 1.95 Å resolution revealed the typical β-trefoil fold with potential carbohydrate binding sites. Hence, SDF2 might be involved in the quality control of glycoproteins. Arabidopsis sdf2 mutants display strong defects and morphological phenotypes during seedling development specifically under ER stress conditions, thus establishing that SDF2-type proteins play a key role in the UPR.  相似文献   

13.
The starch statolith hypothesis of gravity sensing in plants postulates that the sedimentation of statoliths in specialized statocytes (columella cells) provides the means for converting the gravitational potential energy into a biochemical signal. We have analyzed the sedimentation kinetics of statoliths in the central S2 columella cells of Arabidopsis thaliana. The statoliths can form compact aggregates with gap sizes between statoliths approaching <30 nm. Significant intra-aggregate sliding motions of individual statoliths suggest a contribution of hydrodynamic forces to the motion of statoliths. The reorientation of the columella cells accelerates the statoliths toward the central cytoplasm within <1 s of reorientation. During the subsequent sedimentation phase, the statoliths tend to move at a distance to the cortical endoplasmic reticulum (ER) boundary and interact only transiently with the ER. Statoliths moved by laser tweezers against the ER boundary experience an elastic lift force upon release from the optical trap. High-resolution electron tomography analysis of statolith-to-ER contact sites indicate that the weight of statoliths is sufficient to locally deform the ER membranes that can potentially activate mechanosensitive ion channels. We suggest that in root columella cells, the transduction of the kinetic energy of sedimenting statoliths into a biochemical signal involves a combination of statolith-driven motion of the cytosol, statolith-induced deformation of the ER membranes, and a rapid release of kinetic energy from the ER during reorientation to activate mechanosensitive sites within the central columella cells.  相似文献   

14.
15.
Plant cells face unique challenges to efficiently export cargo from the endoplasmic reticulum (ER) to mobile Golgi stacks. Coat protein complex II (COPII) components, which include two heterodimers of Secretory23/24 (Sec23/24) and Sec13/31, facilitate selective cargo export from the ER; however, little is known about the mechanisms that regulate their recruitment to the ER membrane, especially in plants. Here, we report a protein transport mutant of Arabidopsis thaliana, named maigo5 (mag5), which abnormally accumulates precursor forms of storage proteins in seeds. mag5-1 has a deletion in the putative ortholog of the Saccharomyces cerevisiae and Homo sapiens Sec16, which encodes a critical component of ER exit sites (ERESs). mag mutants developed abnormal structures (MAG bodies) within the ER and exhibited compromised ER export. A functional MAG5/SEC16A–green fluorescent protein fusion localized at Golgi-associated cup-shaped ERESs and cycled on and off these sites at a slower rate than the COPII coat. MAG5/SEC16A interacted with SEC13 and SEC31; however, in the absence of MAG5/SEC16A, recruitment of the COPII coat to ERESs was accelerated. Our results identify a key component of ER export in plants by demonstrating that MAG5/SEC16A is required for protein export at ERESs that are associated with mobile Golgi stacks, where it regulates COPII coat turnover.  相似文献   

16.
Misfolded proteins of the endoplasmic reticulum (ER) are retrotranslocated to the cytosol and degraded by the proteasome via a process termed ER-associated degradation (ERAD). The precise mechanism of retrotranslocation is unclear. Here, we use several lumenal ERAD substrates targeted for degradation by the ubiquitin ligase HRD1 including SHH (sonic hedgehog) and NHK (null Hong Kong α1-antitrypsin) to study the geometry, organization, and regulation of the HRD1-containing ERAD machinery. We report a new HRD1-associated membrane protein named HERP2, which is homologous to the previously identified HRD1 partner HERP1. Despite sequence homology, HERP2 is constitutively expressed in cells, whereas HERP1 is highly induced by ER stress. We find that these proteins are required for efficient degradation of both glycosylated and nonglycosylated SHH proteins as well as NHK. In cells depleted of HERPs, SHH proteins are largely trapped inside the ER with a fraction of the stabilized SHH protein bound to the HRD1-SEL1L ligase complex. Ubiquitination of SHH is significantly attenuated in the absence of HERPs, suggesting a defect in retrotranslocation. Both HERP proteins interact with HRD1 through a region located in the cytosol. However, unlike its homolog in Saccharomyces cerevisiae, HERPs do not regulate HRD1 stability or oligomerization status. Instead, they help recruit DERL2 to the HRD1-SEL1L complex. Additionally, the UBL domain of HERP1 also seems to have a function independent of DERL2 recruitment in ERAD. Our studies have revealed a critical scaffolding function for mammalian HERP proteins that is required for forming an active retrotranslocation complex containing HRD1, SEL1L, and DERL2.  相似文献   

17.
Sphingolipids are a diverse group of lipids that have essential cellular roles as structural components of membranes and as potent signaling molecules. In recent years, a detailed picture has emerged of the basic biochemistry of sphingolipids—from their initial synthesis in the endoplasmic reticulum (ER), to their elaboration into complex glycosphingolipids, to their turnover and degradation. However, our understanding of how sphingolipid metabolism is regulated in response to metabolic demand and physiologic cues remains incomplete. Here I discuss new insights into the mechanisms that ensure sphingolipid homeostasis, with an emphasis on the ER as a critical regulatory site in sphingolipid metabolism. In particular, Orm family proteins have recently emerged as key ER-localized mediators of sphingolipid homeostasis. A detailed understanding of how cells sense and control sphingolipid production promises to provide key insights into membrane function in health and disease.Eukaryotic cell membranes maintain a complex and tightly regulated complement of lipids and proteins that are essential for their function. These lipids can be divided into three broad classes—sterols, glycerolipids, and sphingolipids—on the basis of their distinct chemical structures and dedicated enzymatic machineries (Fig. 1A–C). Sphingolipids typically represent ∼10%–20% of cellular lipids and have essential functions arising both from their effects on the physical properties of membranes and from their roles as signaling molecules (van Meer et al. 2008). Additionally, the activities of many transmembrane and peripheral membrane proteins are dependent on their close association with sphingolipids (Lingwood and Simons 2010). Over recent years, sphingolipids have been shown to participate in an increasingly wide range of biological processes that includes secretion, endocytosis, chemotaxis, neurotransmission, angiogenesis, and inflammation (Hannun and Obeid 2008; Lingwood and Simons 2010; Lippincott-Schwartz and Phair 2010; Blaho and Hla 2011; Lingwood 2011).Open in a separate windowFigure 1.Structures of sphingolipids and other cellular lipids. (AC) Representative structures of (A) sphingolipids, (B) glycerolipids, and (C) sterols. (D) Formation of sphingolipids from key building blocks, long chain bases (LCBs), and coenzyme A-linked fatty acids (FA-CoAs) that often have a very long acyl chain (VLCFA-CoA). Serine palmitoyltransferase (SPT) produces the LCB intermediate 3-keto-dihydrosphingosine, which is then reduced to yield LCBs that are used by ceramide synthase (CerS) to form ceramides. Sphingolipid structural diversity arises from (a) headgroup modifications including phosphorylation, glycosylation, or phosphocholine addition, (b) LCB hydroxylation, (c) LCB desaturation, (d) variability in the length of the N-linked acyl chain, and (e) desaturation of the N-linked acyl chain.The focus of this article is the variety of regulatory mechanisms that cells use to ensure sphingolipid homeostasis. This task requires balancing sphingolipid levels in conjunction with sterols and glycerolipids and adapting sphingolipid metabolism in response to physiological cues and external stresses. A need for tight regulatory control is further highlighted by the potent signaling activities of many sphingolipid biosynthetic intermediates such as sphingosines and ceramides (Hannun and Obeid 2008; Fyrst and Saba 2010; Blaho and Hla 2011). Additionally, because most sphingolipids cannot move freely between different organelles, cells must regulate multiple intracellular pools of sphingolipids as well as lipid transport between these sites.It is noteworthy that, despite great progress in defining the enzymes that carry out sphingolipid synthesis and degradation, how cells achieve sphingolipid homeostasis remains poorly understood. In this article, I will describe recent progress in the field and highlight outstanding questions. In particular, I will discuss the emergence of the endoplasmic reticulum (ER) as a key site for sphingolipid homeostasis. Several critical enzymes in sphingolipid metabolism are found in the ER, and recent studies have identified a mechanism for matching sphingolipid production to metabolic demand that depends on the ER-localized Orm family of proteins (Breslow et al. 2010). Although many details of Orm protein function remain to be discovered, Orm proteins provide a valuable model for understanding how cells sense sphingolipids and dynamically regulate sphingolipid metabolism.  相似文献   

18.
The attachment of glycans to asparagine residues of proteins is an abundant and highly conserved essential modification in eukaryotes. The N-glycosylation process includes two principal phases: the assembly of a lipid-linked oligosaccharide (LLO) and the transfer of the oligosaccharide to selected asparagine residues of polypeptide chains. Biosynthesis of the LLO takes place at both sides of the endoplasmic reticulum (ER) membrane and it involves a series of specific glycosyltransferases that catalyze the assembly of the branched oligosaccharide in a highly defined way. Oligosaccharyltransferase (OST) selects the Asn-X-Ser/Thr consensus sequence on polypeptide chains and generates the N-glycosidic linkage between the side-chain amide of asparagine and the oligosaccharide. This ER-localized pathway results in a systemic modification of the proteome, the basis for the Golgi-catalyzed modification of the N-linked glycans, generating the large diversity of N-glycoproteome in eukaryotic cells. This article focuses on the processes in the ER. Based on the highly conserved nature of this pathway we concentrate on the mechanisms in the eukaryotic model organism Saccharomyces cerevisiae.The presence of glycans on proteins is known to influence their stability and solubility and the glycan core can contribute to folding processes (Shental-Bechor and Levy 2008; Hanson et al. 2009; Culyba et al. 2011). N-glycans also influence the function and activity of proteins (Skropeta 2009). The terminal residues of N-glycans play a key role in the quality control of protein folding in the ER. Ultimately the glycan signals whether a protein is correctly folded and can leave the ER to continue its maturation in the Golgi or whether the protein is not correctly folded and is degraded (Helenius and Aebi 2004; Aebi et al. 2010). It is therefore of great importance that the oligosaccharide to be transferred to proteins is complete. This “quality control” of the oligosaccharide is mediated by the substrate specificity of oligosaccharyltransferase.  相似文献   

19.
Vacuoles are multifunctional organelles essential for the sessile lifestyle of plants. Despite their central functions in cell growth, storage, and detoxification, knowledge about mechanisms underlying their biogenesis and associated protein trafficking pathways remains limited. Here, we show that in meristematic cells of the Arabidopsis thaliana root, biogenesis of vacuoles as well as the trafficking of sterols and of two major tonoplast proteins, the vacuolar H+-pyrophosphatase and the vacuolar H+-adenosinetriphosphatase, occurs independently of endoplasmic reticulum (ER)–Golgi and post-Golgi trafficking. Instead, both pumps are found in provacuoles that structurally resemble autophagosomes but are not formed by the core autophagy machinery. Taken together, our results suggest that vacuole biogenesis and trafficking of tonoplast proteins and lipids can occur directly from the ER independent of Golgi function.  相似文献   

20.
Transmembrane proteins are synthesized and folded in the endoplasmic reticulum (ER), an interconnected network of flattened sacs or tubes. Up to now, this organelle has eluded a detailed analysis of the dynamics of its constituents, mainly due to the complex three-dimensional morphology within the cellular cytosol, which precluded high-resolution, single-molecule microscopy approaches. Recent evidences, however, pointed out that there are multiple interaction sites between ER and the plasma membrane, rendering total internal reflection microscopy of plasma membrane proximal ER regions feasible. Here we used single-molecule fluorescence microscopy to study the diffusion of the human serotonin transporter at the ER and the plasma membrane. We exploited the single-molecule trajectories to map out the structure of the ER close to the plasma membrane at subdiffractive resolution. Furthermore, our study provides a comparative picture of the diffusional behavior in both environments. Under unperturbed conditions, the majority of proteins showed similar mobility in the two compartments; at the ER, however, we found an additional 15% fraction of molecules moving with 25-fold faster mobility. Upon degradation of the actin skeleton, the diffusional behavior in the plasma membrane was strongly influenced, whereas it remained unchanged in the ER.Live-cell microscopy and three-dimensional electron tomography has boosted our understanding of endoplasmic reticulum (ER) dynamics and morphology. Proteins have been identified which regulate the formation of cisternae versus tubelike membranes, and the contacts between ER and the various cellular organelles have been studied in detail (1). Little information, however, is available when it comes to protein dynamics and organization within the ER membrane. Its complex three-dimensional topology hampers standard diffraction-limited fluorescence microscopy approaches: in fluorescence recovery after photobleaching, for example, the obtained diffusion coefficients can be several-folds off, if the ER morphology is not correctly taken into account (2). A method is therefore needed which allows for resolving molecular movements on length scales below the typical dimensions of the ER structures.In principle, single-molecule tracking would provide the required spatial resolution due to the high precision in localizing the moving point emitters: localization errors of <40 nm can be easily achieved (3). This technique has given rise to multiple studies, in which the paths of the diffusing objects were used to make conclusions on the properties of the environment; particularly, the plasma membrane has become a favorite target for such investigations, yielding precise determinations of the diffusion coefficients of a variety of membrane proteins or lipids (4).Here, we report what is, to our knowledge, the first application of single-molecule tracking for a comparative study of the diffusion dynamics of a membrane protein at the ER versus the plasma membrane. As the protein of interest, we chose the human serotonin transporter (SERT): it is a polytopic membrane protein containing 12 transmembrane domains, with both C- and N-termini residing in the cytoplasm. Stable SERT oligomers of various degrees were observed to coexist in the plasma membrane (5). Functionally, SERT (6) is a pivotal element in shaping serotonergic neurotransmission: SERT-mediated high-affinity uptake of released serotonin clears the synaptic cleft and supports refilling of vesicular stores (7). Wild-type SERT (SERT-wt) is efficiently targeted to the presynaptic plasma membrane, whereas the truncation of its C-terminus (SERT-ΔC30) retains the mutant protein in the ER (8). The N-terminal mGFP- and eYFP-fusion constructs of the two versions of SERT thus allowed us to specifically address SERT located at the ER (eYFP-SERT-ΔC30) or at the plasma membrane (mGFP-SERT-wt (7)).Our experiments were performed at 37°C on proteins heterologously expressed in CHO cells. Total internal reflection (TIR) illumination afforded a reduction in background fluorescence and allowed for selective imaging of single mGFP-SERT-wt molecules at the cells’ plasma membrane or single eYFP-SERT-ΔC30 molecules at plasma membrane-proximal ER (Fig. 1 and see the Supporting Material). TIR was particularly crucial for single-molecule imaging of the ER-retained mutant, where out-of-focus background would surpass the weak single-molecule signals in epi-illumination.Open in a separate windowFigure 1Schematics of the plasma membrane (PM) and a part of the ER containing mGFP-SERT-wt or the ER-retained eYFP-SERT-ΔC30 mutant, respectively. Both can be excited by total internal reflection fluorescence (TIRF) excitation. Experiments were carried out either on cells expressing mGFP-SERT-wt or eYFP-SERT-ΔC30.For both mutants, the majority of molecules were mobile: in fluorescence-recovery-after-photobleaching experiments we observed a mobile fraction of 82 ± 8% for mGFP-SERT-wt and 91 ± 4% for eYFP-SERT-ΔC30. For single-molecule tracking, the high surface density of signals was reduced by completely photobleaching a rectangular part of the cell in epi-illumination; after a brief recovery period, a few single-molecule signals had entered the bleached area and could be monitored and tracked at high signal/noise using TIR excitation. Samples were illuminated stroboscopically for till = 2 ms, and movies of 500 frames were recorded with a delay of tdel = 6 ms; the short delay times ensured that even rapidly diffusing molecules hardly reached the borders of the ER tubes between two consecutive frames. This illumination protocol was run for 20 times per cell, yielding ∼2500 trajectories per cell.The single-molecule localizations were first used to map those areas that are accessible to the diffusing proteins. eYFP-SERT-ΔC30 showed distinct hotspots, representing plasma membrane-proximal ER, excitable by the evanescent field (Fig. 2 A). These hotspots hardly moved within the timescale of an experiment (tens of minutes, see Fig. S1 in the Supporting Material); indeed, remarkable ER stability was previously observed using superresolution microscopy (9). In contrast, a rather homogeneous distribution was observed for mGFP-SERT-wt in the plasma membrane (Fig. 2 B).Open in a separate windowFigure 2Superresolution and tracking data at the ER and the plasma membrane. Superresolution images are shown for the ER-retained SERT mutant eYFP-SERT-ΔC30 (A) and for mGFP-SERT-wt in the plasma membrane (B). (C and D) Diffusion coefficients of eYFP-SERT-ΔC30 (C) and mGFP-SERT-wt (D) are shown as normalized histograms before (blue) and after (red) Cytochalasin D treatment. Data were fitted by Gaussian mobility distributions (see Table S1 in the Supporting Material for the fit results).Next, we compared the mobility of the observed proteins. Single-molecule localizations were linked to trajectories as described in Gao and Kilfoil (10), and the apparent diffusion coefficient, D, of each molecule was estimated from the first two points of the mean-square displacement membrane. The distribution of log10 D showed a pronounced single peak (Fig. 2 D). It could be well fitted by a linear combination of two Gaussian functions, with the major fraction (85%) characterized by Dwt = 0.30 μm2/s; a broad shoulder to the left indicates the presence of proteins that are immobilized during the observation period. In contrast, the mobility of the ER-retained mutant showed a substantially different distribution, containing two clearly visible peaks (Fig. 2 C). We fitted the data with a three-component Gaussian model: the main fraction (82%) behaved similar to SERT at the plasma membrane, with DΔC30 = 0.32 μm2/s. In addition, a large fraction (15%) with high mobility of DΔC30 = 7.8 μm2/s and a minor fraction (3%) with low mobility was observed. The proteins responded as expected to degradation of the actin membrane skeleton (red bars in Fig. 2, C and D): at the plasma membrane, the mobility of mGFP-SERT-wt increased 4.6-fold (mean values), whereas at the ER membrane there was only a minor change for eYFP-SERT-ΔC30 mobility (1.06-fold increase; note that the ER is not connected to actin filaments (11)).The observation of a high mobility subfraction at the ER membrane is surprising. In general, the presence of obstacles—irrespective of whether randomly distributed or clustered, mobile or immobile—reduces the diffusivity of mobile tracers in a membrane (12). It is generally assumed that the high protein density in cell membranes is responsible for the rather low fluidity when compared to synthetic membranes (compare, e.g., Saxton and Jacobson (13) with Weiss et al. (14)). Interestingly, the observed diffusion constant of 7.8 μm2/s is of similar order as the mobility determined for various proteins in synthetic lipid membranes (14). It is thus tempting to hypothesize the presence of extended protein-depleted regions of higher fluidity within the ER membrane; such membrane domains were indeed observed already at the plasma membrane (15). We were also concerned, however, that protein degradation fragments could have contributed to our data: the three-dimensional mobility of an 85-kDa protein is ∼10 μm2/s (16), similar to the high mobility diffusion constant of eYFP-SERT-ΔC30.We tested the two explanations by analyzing the spatial distribution of fast (DΔC30 > 1 μm2/s) versus slow trajectories (DΔC30 < 1 μm2/s) of eYFP-SERT-ΔC30 (Fig. 3). Both types of trajectories clustered in the same regions, and no segregation into ER subdomains was observable at the resolved length scales. This finding—on the one hand—disfavors freely diffusing protein fragments as the origin of the high mobility fraction. On the other hand, it calls for further experiments to identify the origin of the fast and the slow mobility subfraction. Interestingly, when analyzing all eYFP-SERT-ΔC30 trajectories we found that 80% of the molecules showed diffusion confined to domains of 230-nm radius (see Fig. S2). This size is clearly smaller than the lateral extensions of the visible ER regions observed in Fig. 3. The finding indicates domain formation at the ER membrane; domains are averaged out in Fig. 3 due to the long recording times. Note that free diffusion was observed for mGFP-SERT-wt at the plasma membrane (5).Open in a separate windowFigure 3Ripley’s K function analysis of the different mobility fractions in the ER. For the cell presented in Fig. 2, the first position of every slow (D < 1 μm2/s; red) and fast (D > 1 μm2/s; blue) trajectory was plotted in panel A. Contour lines indicate regions of ER attachment to the plasma membrane. In panel B, the point-correlation function L(r)−r is plotted for the slow (red) and fast (blue) fraction. Furthermore, the correlation between fast versus slow is plotted (green). All three curves show a peak at ∼450 nm, which agrees with the extensions of the ER attachment zones.In conclusion, we have shown that single-molecule tracking is feasible for constituents of the ER membrane. We found a surprising diffusion behavior of SERT resulting in the following:
  • 1.A slow fraction showing mobility reminiscent of protein diffusion in the plasma membrane, likely reflecting SERT diffusing in protein-crowded regions of the ER membrane; and
  • 2.A fast fraction showing 25-fold faster diffusion kinetics.
This likely represents diffusion in altered ER membrane environments, possibly of different lipid or protein composition. Given the fact that synthesis of virtually all membrane proteins and most lipids proceeds at the ER membrane, ER heterogeneity at the nanoscale due to the continuous synthesis activity and selection for correct folding appears highly plausible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号