首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Juan Soler  Manuel Soler 《Oecologia》2000,125(3):309-320
Brood parasitism is one of the systems where coevolutionary processes have received the most research. Here, we review experiments that suggest a coevolutionary process between the great spotted cuckoo (Clamator glandarius) and its magpie (Pica pica) host. We focus on different stages of establishment of the relationship, from cuckoos selecting individual hosts and hosts defending their nests from adult cuckoos, to the ability of magpies to detect cuckoo eggs in their nests. Novel coevolutionary insights emerge from our synthesis of the literature, including how the evolution of "Mafia" behaviour in cuckoos does not necessarily inhibit the evolution of host recognition and rejection of cuckoo offspring, and how different populations of black-billed magpies in Europe have evolved specific host traits (e.g. nest and clutch size) as a result of interactions with the great spotted cuckoo. Finally, the results of the synthesis reveal the importance of using a meta-population approach when studying coevolution. This is especially relevant in those cases where gene flow among populations with different degrees of brood parasitism explains patterns of coexistence between defensive and non-defensive host phenotypes. We propose the use of a meta-population approach to distinguish between the "evolutionary equilibrium" hypothesis and the "evolutionary lag" hypothesis.  相似文献   

2.
Reproductive success of brood parasites largely depends on appropriate host selection and, although the use of inadvertent social information emitted by hosts may be of selective advantage for cuckoos, this possibility has rarely been experimentally tested. Here, we manipulated nest size and clutch colouration of magpies (Pica pica), the main host of great spotted cuckoos (Clamator glandarius). These phenotypic traits may potentially reveal information about magpie territory and/or parental quality and could hence influence the cuckoo’s choice of host nests. Experimentally reduced magpie nests suffered higher predation rate, and prevalence of cuckoo parasitism was higher in magpie nests with the densest roofs, which suggests a direct advantage for great spotted cuckoos choosing this type of magpie nest. Colouration of magpie clutches was manipulated by adding one artificial egg (blue or cream colouration) at the beginning of the egg-laying period. We found that host nests holding an experimental cream egg experienced a higher prevalence of cuckoo parasitism than those holding a blue-coloured egg. Results from these two experiments suggest that great spotted cuckoos cue on magpie nest characteristics and the appearance of eggs to decide parasitism, and confirm, for the first time, the ability of cuckoos to distinguish between eggs of different colours within the nest of their hosts. Several hypothetical scenarios explaining these results are discussed.  相似文献   

3.
Passerine hosts of parasitic cuckoos usually vary in their abilityto discriminate and reject cuckoo eggs. Costs of discriminationand rejection errors have been invoked to explain the maintenanceof this within-population variability. Recently, enforcementof acceptance by parasites has been identified as a rejectioncost in the magpie (Pica pica) and its brood parasite, the greatspotted cuckoo (Clamator glandarius). Previous experimentalwork has shown that rejecter magpies suffer from increased nestpredation by the great spotted cuckoo. Cuckoo predatory behavioris supposed to confer a selective advantage to the parasitebecause magpies experiencing a reproductive failure may providea second opportunity for the cuckoo to parasitize a replacementclutch. This hypothesis implicitly assumes that magpies modulatetheir propensity to reject parasite eggs as a function of previousexperience. We tested this hypothesis in a magpie populationbreeding in study plots varying in parasitism rate. Magpie pairs thatwere experimentally parasitized and had their nests depredated,after their rejection behavior had been assessed, changed theirbehavior from rejection to acceptance. The change in host behaviorwas prominent in study plots with high levels of parasitism,but not in plots with rare or no cuckoo parasitism. We discussthree possible explanations for these differences, concludingthat in study plots with a high density of cuckoos, the probability fora rejecter magpie nest of being revisited and depredated bya cuckoo is high, particularly for replacement clutches, and,therefore, the cost for magpies of rejecting a cuckoo egg ina replacement clutch is increased. Moreover, in areas with highlevels of host defense (low parasitism rate), the probabilityof parasitism and predation of rejecter-magpie nests by thecuckoo is reduced in both first and replacement clutches. Therefore,rejecter magpies in such areas should not change their rejectionbehavior in replacement clutches.  相似文献   

4.
Interactions between parasitic cuckoos and their hosts represent a classic example of coevolution, where adaptations in the parasite to exploit the host select for defences, which in turn select for new parasite adaptations. Current interactions between the two parties may be at an evolutionary equilibrium or, alternatively, a coevolutionary arms race may be taking place. By taking into account the effect of gene flow in 15 European magpie ( Pica pica ) populations, we studied the coevolutionary interactions with its brood parasite, the great spotted cuckoo ( Clamator glandarius ). Our results suggest that, in Europe, magpies and cuckoos are engaged in an ongoing coevolutionary process because, despite controlling for the large amounts of gene flow among different magpie populations, we still found a positive relationship between host defence (i.e. foreign egg recognition and rejection) and parasite selection pressure.  相似文献   

5.
The amount of gene flow is an important determinant of population structure and therefore of central importance for understanding coevolutionary processes. We used microsatellite markers to estimate population structure and gene flow rates of the great spotted cuckoo (Clamator glandarius) and its main host in Europe, the magpie (Pica pica), in a number of populations (seven and 15, respectively) across their distribution range in Europe. The genetic analysis shows that there exists a pattern of isolation by distance in both species, although the cuckoo data are only indicative due to a small sample size. Gene flow seems to be extensive between nearby populations, higher for magpies than cuckoos, and especially high for magpie populations within the area of distribution of the great spotted cuckoo. There is no correlation between genetic distances between magpie populations and genetic distances between cuckoo populations. We discuss the implications of extensive gene flow between magpie populations in sympatry with cuckoos for the population dynamics of hosts, in particular for the occurrence of egg rejection behavior in host populations and how the different rates of migration for both species can affect the dynamics of coevolutionary processes.  相似文献   

6.
A long-term study of the interactions between a brood parasite, the great spotted cuckoo Clamator glandarius, and its primary host the magpie Pica pica, demonstrated local changes in the distribution of both magpies and cuckoos and a rapid increase of rejection of both mimetic and non-mimetic model eggs by the host. In rich areas, magpies improved three of their defensive mechanisms: nest density and breeding synchrony increased dramatically and rejection rate of cuckoo eggs increased more slowly. A stepwise multiple regression analysis showed that parasitism rate decreased as host density increased and cuckoo density decreased. A logistic regression analysis indicated that the probability of changes in magpie nest density in the study plots was significantly affected by the density of magpie nests during the previous year (positively) and the rejection rate of mimetic model eggs (negatively). These results are consistent with a hypothesis (the intermittent arms race hypothesis) of spatially structured cyclic changes in parasitism. During periods of parasitism, host defences continuously improve, and as a consequence, the fitness gains for parasites decrease. When host defences against parasites reach a high level, dispersing parasites have a selective advantage if they are able to emigrate to areas of low resistance. Once parasites have left an area hosts will lose their defensive adaptations due to their cost in the absence of parasitism. The scene is then set for re-colonization by great spotted cuckoos. Received: 7 May 1998 / Accepted: 24 August 1998  相似文献   

7.
The Iberian azure-winged magpie Cyanopica cyanus shows a remarkable ability to discriminate against great spotted cuckoo Clamator glandarius eggs. Here, I studied whether egg recognition in this species could be a derived feature resulting from intra-specific brood parasitism. Azure-winged magpies showed a very high level of discrimination and rejection of great spotted cuckoo models (73.7%), and of conspecific eggs (42.8%), even when no evidence of great spotted cuckoo or conspecific brood parasitism has been found in the population. Azure-winged magpie discriminated more readily than magpies, the current favourite host of the great spotted cuckoo. The high rejection rate of conspecific eggs by the azure-winged magpie suggests that it is quite possible that egg discrimination in this species evolved in response to conspecific brood parasitism rather than to cuckoo parasitism.  相似文献   

8.
Brood parasites dramatically reduce the reproductive successof their hosts, which therefore have developed defenses againstbrood parasites. The first line of defense is protecting thenest against adult parasites. When the parasite has successfullyparasitized a host nest, some hosts are able to recognize andreject the eggs of the brood parasite, which constitutes the secondline of defense. Both defense tactics are costly and would be counteractedby brood parasites. While a failure in nest defense implies successfulparasitism and therefore great reduction of reproductive successof hosts, a host that recognizes parasitic eggs has the opportunityto reduce the effect of parasitism by removing the parasiticegg. We hypothesized that, when nest defense is counteractedby the brood parasite, hosts that recognize cuckoo eggs shoulddefend their nests at a lower level than nonrecognizers becausethe former also recognize adult cuckoos. Magpie (Pica pica) hoststhat rejected model eggs of the brood parasitic great spottedcuckoo (Clamator glandarius) showed lower levels of nest defensewhen exposed to a great spotted cuckoo than when exposed toa nest predator (a carrion crow Corvus corone). Moreover, magpiesrejecting cuckoo eggs showed lower levels of nest defense againstgreat spotted cuckoos than nonrecognizer magpies, whereas differencesin levels of defense disappeared when exposed to a carrion crow.These results suggest that hosts specialize in antiparasitedefense and that different kinds of defense are antagonistically expressed.We suggest that nest-defense mechanisms are ancestral, whereasegg recognition and rejection is a subsequent stage in the coevolutionaryprocess. However, host recognition ability will not be expressedwhen brood parasites break this second line of defense.  相似文献   

9.
Why should the hosts of brood parasites accept and raise parasitic offspring that differ dramatically in appearance from their own? There are two solutions to this evolutionary enigma. (1) Hosts may not yet have evolved the capability to discriminate against the parasite, or (2) parasite-host systems have reached an evolutionary equilibrium. Avian brood parasites may either gain renesting opportunities or force their hosts to raise parasitic offspring by destroying or preying upon host eggs or nestlings following host ejection of parasite offspring. These hypotheses may explain why hosts do not remove parasite offspring because only then will hosts avoid clutch destruction by the cuckoo. Here we show experimentally that if the egg of the parasitic great spotted cuckoo Clamator glandarius is removed from nests of its magpie Pica pica host, nests suffer significantly higher predation rates than control nests in which parasite eggs have not been removed. Using plasticine model eggs resembling those of magpies and observations of parasites, we also confirm that great spotted cuckoos that have laid an ejected egg are indeed responsible for destruction of magpie nests with experimentally ejected parasite eggs. Cuckoos benefit from destroying host offspring because they thereby induce some magpies to renest and subsequently accept a cuckoo egg.  相似文献   

10.
Factors related to bacterial environment of nests are of primary interest for understanding the causes of embryo infection and the evolution of antimicrobial defensive traits in birds. Nest visitors such as parasites could act as vectors for bacteria and/or affect the hygienic conditions of nests and hence influence the nest bacterial environment. In the present study, we explored some predictions of this hypothetical scenario in the great spotted cuckoo (Clamator glandarius)–magpie (Pica pica) system of brood parasitism. Great spotted cuckoos visit the nests of their magpie hosts and frequently damage some of the host eggs when laying eggs or on subsequent visits. Therefore, it represents a good system for testing the effect of nest visitors on the bacterial environment of nests. In accordance with this hypothesis, we found that the bacterial load of magpie eggshells was greater in parasitized nests, which may suggest that brood parasitism increases the probability of bacterial infection of magpie eggs. Moreover, comparisons of bacterial loads of cuckoo and magpie eggs revealed that: (1) cuckoo eggshells harboured lower bacterial densities than those of their magpie hosts in the same nests and (2) the prevalence of bacteria inside unhatched eggs was higher for magpies than for great spotted cuckoos. These interspecific differences were predicted because brood parasitic eggs (but not host eggs) always experience the bacterial environments of parasitized nests. Therefore, the results obtained in the present study suggest that parasitic eggs are better adapted to environments with a high risk of bacterial contamination than those of their magpie hosts. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 836–848.  相似文献   

11.
Magpies (Pica pica) build large nests that are the target of sexual selection, since males of early breeding pairs provide many sticks for nests and females mated to such males enjoy a material fitness benefit in terms of better quality territory and parental care of superior quality. Great spotted cuckoos (Clamator glandarius) preferentially parasitize large magpie nests and sexual selection for large nests is thus opposed by natural selection due to brood parasitism. Consistent with the hypothesized opposing selection pressures, in a comparative analysis of 14 magpie populations in Europe we found that nest volume was consistently smaller in sympatry than in allopatry with the great spotted cuckoo, in particular in areas with a high parasitism rate and high rates of rejection of mimetic model cuckoo eggs. These observations are consistent with the suggestion that magpies have evolved a smaller nest size in areas where cuckoos have exerted strong selection pressures on them in the recent past.  相似文献   

12.
了解杜鹃(Cuculus spp.)对不同宿主鸟类的巢寄生,是研究杜鹃与其宿主之间协同进化的重要基础资料。大杜鹃(Cuculus canorus)和家燕(Hirundo rustica)分布遍及全国,且为同域分布,但两者之间的寄生现象尚未有过系统调查。2012年和2014年4~8月,对繁殖于吉林市昌邑区桦皮厂镇(34°58′44.18″N,126°13′26.83″E,海拔184 m)和海南岛的家燕种群进行调查,结果表明,吉林市昌邑区桦皮厂镇家燕种群的寄生率为2.4%(1/42),而在海南岛所调查的1 719个家燕巢未发现杜鹃寄生现象。同时在网络上搜集家燕巢寄生的报道案例,共记录到13巢家燕被大杜鹃寄生繁殖,均发生在北方的家燕种群。  相似文献   

13.
Brood parasites rely entirely on the parental care of host species to raise the parasitic nestlings until independence. The reproductive success of avian brood parasites depends on finding host nests at a suitable stage (i.e. during egg laying) for parasitism and weakly defensive (i.e. non‐ejector) hosts. Finding appropriate nests for parasitism may, however, vary depending on ecological conditions, including parasite abundance in the area, which also varies from one year to another and therefore may influence coevolutionary relationships between brood parasites and their hosts. In this scenario, we explored: 1) the degree of laying synchronization between great spotted cuckoos Clamator glandarius and magpies Pica pica during two breeding seasons, which varied in the level of selection pressure due to brood parasitism (i.e. parasitism rate); 2) magpie responses to natural parasitism in the pre‐laying period and successfulness of parasitic eggs laid at this stage; and 3) magpie responses to experimental parasitism performed at different breeding stages. We found that, during the year of higher parasitism rate, there was an increase in the percentage of parasitic eggs laid before magpies started laying. However, the synchronization of laying was poor both years regardless of the differences in the parasitism rate. The ejection rate was significantly higher during the pre‐egg‐laying and the post‐hatching stages than during the laying stage, and hatching success of parasitic eggs laid during the pre‐egg‐laying stage was zero. Thus, non‐synchronized parasitic eggs are wasted and therefore poor synchronization should be penalized by natural selection. We discuss four different hypotheses explaining poor synchronization.  相似文献   

14.
Why some lineages have diversified into larger numbers of species than others is a fundamental but still relatively poorly understood aspect of the evolutionary process. Coevolution has been recognized as a potentially important engine of speciation, but has rarely been tested in a comparative framework. We use a comparative approach based on a complete phylogeny of all living cuckoos to test whether parasite–host coevolution is associated with patterns of cuckoo species richness. There are no clear differences between parental and parasitic cuckoos in the number of species per genus. However, a cladogenesis test shows that brood parasitism is associated with both significantly higher speciation and extinction rates. Furthermore, subspecies diversification rate estimates were over twice as high in parasitic cuckoos as in parental cuckoos. Among parasitic cuckoos, there is marked variation in the severity of the detrimental effects on host fitness; chicks of some cuckoo species are raised alongside the young of the host and others are more virulent, with the cuckoo chick ejecting or killing the eggs/young of the host. We show that cuckoos with a more virulent parasitic strategy have more recognized subspecies. In addition, cuckoo species with more recognized subspecies have more hosts. These results hold after controlling for confounding geographical effects such as range size and isolation in archipelagos. Although the power of our analyses is limited by the fact that brood parasitism evolved independently only three times in cuckoos, our results suggest that coevolutionary arms races with hosts have contributed to higher speciation and extinction rates in parasitic cuckoos.  相似文献   

15.
Avian brood parasites reduce the reproductive output of their hosts and thereby select for defence mechanisms such as ejection of parasitic eggs. Such defence mechanisms simultaneously select for counter-defences in brood parasites, causing a coevolutionary arms race. Although coevolutionary models assume that defences and counter-defences are genetically influenced, this has never been demonstrated for brood parasites. Here, we give strong evidence for genetic differences between ejector and nonejectors, which could allow the study of such host defence at the genetic level, as well as studies of maintenance of genetic variation in defences. Briefly, we found that magpies, that are the main host of the great spotted cuckoo in Europe, have alleles of one microsatellite locus (Ase64) that segregate between accepters and rejecters of experimental parasitic eggs. Furthermore, differences in ejection rate among host populations exploited by the brood parasite covaried significantly with the genetic distance for this locus.  相似文献   

16.
Although little is known on the impact of environment on telomere length dynamics, it has been suggested to be affected by stress, lifestyle and/or life‐history strategies of animals. We here compared telomere dynamics in erythrocytes of hatchlings and fledglings of the brood parasite great spotted cuckoos (Clamator glandarius) and of magpies (Pica pica), their main host in Europe. In magpie chicks, telomere length decreased from hatching to fledging, whereas no significant change in telomere length of great spotted cuckoo chicks was found. Moreover, we found interspecific differences in the association between laying date and telomere shortening. Interspecific differences in telomere shortening were interpreted as a consequence of differences in lifestyle and life‐history characteristics of magpies and great spotted cuckoos. In comparison with magpies, cuckoos experience reduced sibling competition and higher access to resources and, consequently, lower stressful environmental conditions during the nestling phase. These characteristics also explain the associations between telomere attrition and environmental conditions (i.e. laying date) for magpies and the absence of association for great spotted cuckoos. These results therefore fit expectations on telomere dynamics derived from interspecific differences in lifestyle and life history of brood parasites and their bird hosts.  相似文献   

17.
Tests using magpie's eggs (which are very similar to those of the great spotted cuckoo) on azure-winged magpies (Cyanopica cyanea) showed that the latter accept strange eggs, rejecting only 25% of them. We therefore suggest that they are an accepter species, and as such a substitute host species for the great spotted cuckoo (Clamator glandarius). We suggest a theory for the transition from ‘Accepter Species’ to ‘Non-mimetic-egg Rejecter Species’ by hosts of specialist brood parasites. We have obtained evidence of host recognition by great spotted cuckoo chicks of typical or atypical host species characteristics. Basing our theory on the calls of parasitic chicks reared in the nests of the azure-winged magpies and magpies (Pica pica), we suggest that the foregoing is the mating mechanism necessary for the parasitization of a new host species.  相似文献   

18.
The level of defense against great spotted cuckoo (Clamator glandarius) parasitism in different European populations of magpie (Pica pica) depends on selection pressures due to parasitism and gene flow between populations, which suggests the existence of coevolutionary hot spots within a European metapopulation. A mosaic of coevolution is theoretically possible at small geographical scales and with strong gene flow, because, among other reasons, plots may differ in productivity (i.e., reproductive success of hosts in the absence of parasitism) and defensive genotypes theoretically should be more common in plots of high productivity. Here, we tested this prediction by exploring the relationship between parasitism rate, level of defense against parasitism (estimated as both rejection rate and the frequency of the 457bp microsatellite allele associated with foreign egg rejection in magpies), and some variables related to the productivity (average laying date, clutch size, and number of hatchlings per nest) of magpies breeding in different subpopulations. We found that both estimates of defensive ability (egg rejection rate and frequency of the 457bp allele) covaried significantly with between-plot differences in probability of parasitism, laying date, and number of hatchlings per nest. Moreover, the parasitism rate was larger in more productive plots. These results confirm the existence of a mosaic of coevolution at a very local geographical scale, and the association between laying date and number of hatchlings with variables related to defensive ability and the selection pressure arising from parasitism supports the prediction of coevolutionary gradients in relation to host productivity.  相似文献   

19.
Climatic effects on breeding phenology vary across organisms and therefore might promote a phenological mismatch in ecologically interacting species, including those engaged in coevolutionary interactions such as brood parasites and their hosts. Recent studies suggest that climatic induced changes in migration phenology may have mismatched cuckoos and their hosts in Europe. However, it is currently unknown whether cuckoo–host phenological mismatch results from different degrees of phenotypic plasticity or to different speeds of microevolutionary processes affecting hosts and parasites. Here we performed 1) cross‐sectional correlations between climate conditions and population level of phenological mismatch between the migratory brood parasite great spotted cuckoo Clamator glandarius and its main resident host in Europe, the magpie Pica pica; and 2) a longitudinal analysis to study within‐individual variation in breeding phenology for individual hosts experiencing different climate conditions over a period of nine years (2005–2013). Cross‐sectional analyses revealed independent and contrary effects of winter and spring temperature on magpie phenology: magpie hosts tend to breed earlier those years with lower February temperatures, however, high temperature in the first half of April spur individuals to lay eggs. Breeding phenology of cuckoos was tuned to that of their magpie host in time and duration. However, annual phenological mismatch between cuckoos and magpie hosts increased with NAO index and January temperature. Longitudinal analyses revealed high individual consistency in magpie host phenology, but a low influence of climate, suggesting that the climatic‐driven phenological mismatch between cuckoos and magpies at the population‐level cannot be explained by a host plastic response to climatic conditions.  相似文献   

20.
Selection due to cuckoo parasitism is responsible for the evolution of anti-parasitism defenses in hosts. Different host species breeding sympatrically with a single parasitic cuckoo may evolve different strategies to reduce the risk of counter cuckoo parasitism, resulting in different interactions between cuckoos and hosts in areas of sympatry. Here, we studied the coevolutionary interactions between Himalayan cuckoos Cuculus saturatus and 2 sympatric and closely related potential hosts belonging to the family Pycnonotidae, the brown-breasted bulbul Pycnonotus xanthorrhous and the collared finchbill Spizixos semitorques. We investigated parasitism rates and nest-site selection (nest height, nest cover, human disturbance, perch height, forest distance, and degree of concealment) related to parasitism risk, nest defense against a cuckoo dummy, and egg rejection against cuckoo model eggs. Bulbuls used specific nest sites that were further away from forests than those of finchbills, and they behaved more aggressively toward cuckoos than finchbills. In contrast, bulbuls possessed moderate egg rejection ability, whereas the finchbill rejected 100% of cuckoo model eggs. We suggest that selection of a nest site away from forests by the bulbul explains the absence of parasitism by Himalayan cuckoos. We suggest that these interspecific differences in nest-site selection and nest defense indicate alternative responses to selection due to cuckoos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号