首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang Q  Zhang L  Weiner J  Tang J  Chen X 《Annals of botany》2011,107(3):407-413

Background and Aims

Plant biomass–density relationships during self-thinning are determined mainly by allometry. Both allometry and biomass–density relationship have been shown to vary with abiotic conditions, but the effects of biotic interactions have not been investigated. Arbuscular mycorrhizal fungi (AMF) can promote plant growth and affect plant form. Here experiments were carried out to test whether AMF affect plant allometry and the self-thinning trajectory.

Methods

Two experiments were conducted on Medicago sativa L., a leguminous species known to be highly dependent on mycorrhiza. Two mycorrhizal levels were obtained by applying benomyl (low AMF) or not (high AMF). Experiment 1 investigated the effects of AMF on plant growth in the absence of competition. Experiment 2 was a factorial design with two mycorrhizal levels and two plant densities (6000 and 17 500 seeds m−2). Shoot biomass, root biomass and canopy radius were measured 30, 60, 90 and 120 d after sowing. The allometric relationships among these aspects of size were estimated by standardized major axis regression on log-transformed data.

Key Results

Shoot biomass in the absence of competition was lower under low AMF treatment. In self-thinning populations, the slope of the log (mean shoot biomass) vs. log density relationship was significantly steeper for the high AMF treatment (slope = –1·480) than for the low AMF treatment (–1·133). The canopy radius–biomass allometric exponents were not significantly affected by AMF level, but the root–shoot allometric exponent was higher in the low AMF treatment. With a high level of AMF, the biomass–density exponent can be predicted from the above-ground allometric model of self-thinning, while this was not the case when AMF were reduced by fungicide.

Conclusions

AMF affected the importance of below-ground relative to above-ground interactions and changed root vs. shoot allocation. This changed allometric allocation of biomass and altered the self-thinning trajectory.  相似文献   

2.

Background and Aims

Plant genotypic mixtures have the potential to increase yield stability in variable, often unpredictable environments, yet knowledge of the specific mechanisms underlying enhanced yield stability remains limited. Field studies are constrained by environmental conditions which cannot be fully controlled and thus reproduced. A suitable model system would allow reproducible experiments on processes operating within crop genetic mixtures.

Methods

Phenotypically dissimilar genotypes of Arabidopsis thaliana were grown in monocultures and mixtures under high levels of competition for abiotic resources. Seed production, flowering time and rosette size were recorded.

Key Results

Mixtures achieved high yield stability across environments through compensatory interactions. Compensation was greatest when plants were under high levels of heat and nutrient stress. Competitive ability and mixture performance were predictable from above-ground phenotypic traits even though below-ground competition appeared to be more intense.

Conclusions

This study indicates that the mixing ability of plant genotypes can be predicted from their phenotypes expressed in a range of relevant environments, and implies that a phenotypic screen of genotypes could improve the selection of suitable components of genotypic mixtures in agriculture intended to be resilient to environmental stress.  相似文献   

3.
Dullinger S  Hülber K 《PloS one》2011,6(6):e21537

Background

The distribution and abundance of plants is controlled by the availability of seeds and of sites suitable for establishment. The relative importance of these two constraints is still contentious and possibly varies among species and ecosystems. In alpine landscapes, the role of seed limitation has traditionally been neglected, and the role of abiotic gradients emphasized.

Methodology/Principal Findings

We evaluated the importance of seed limitation for the incidence of four alpine snowbed species (Achillea atrata L., Achillea clusiana Tausch, Arabis caerulea L., Gnaphalium hoppeanum W. D. J. Koch) in local plant communities by comparing seedling emergence, seedling, juvenile and adult survival, juvenile and adult growth, flowering frequency as well as population growth rates λ of experimental plants transplanted into snowbed patches which were either occupied or unoccupied by the focal species. In addition, we accounted for possible effects of competition or facilitation on these rates by including a measure of neighbourhood biomass into the analysis. We found that only A. caerulea had significantly lower seedling and adult survival as well as a lower population growth rate in unoccupied sites whereas the vital rates of the other three species did not differ among occupied and unoccupied sites. By contrast, all species were sensitive to competitive effects of the surrounding vegetation in terms of at least one of the studied rates.

Conclusions/Significance

We conclude that seed and site limitation jointly determine the species composition of these snowbed plant communities and that constraining site factors include both abiotic conditions and biotic interactions. The traditional focus on abiotic gradients for explaining alpine plant distribution hence appears lopsided. The influence of seed limitation on the current distribution of these plants casts doubt on their ability to readily track shifting habitats under climate change unless seed production is considerably enhanced under a warmer climate.  相似文献   

4.
5.
Kemal Kazan 《Annals of botany》2013,112(9):1655-1665
  相似文献   

6.

Background

Few data are available on the prevalence of erosive and severe esophagitis in Western countries.

Objective

To retrospectively determine the prevalence and the factors predicting erosive esophagitis and severe esophagitis in a large series of endoscopies in Spain.

Design

Retrospective observational study. A multivariate analysis was performed to determine variables predicting severe esophagitis.

Setting

Databases of 29 Spanish endoscopy units.

Patients

Patients submitted to a diagnostic endoscopy during the year 2005.

Interventions

Retrospective review of the databases.

Main Outcome Measurements

Esophagitis severity (graded according to the Los Angeles classification) and associated endoscopic findings.

Results

Esophagitis was observed in 8.7% of the 93,699 endoscopies reviewed. Severe esophagitis (LA grade C or D) accounted for 22.5% of cases of the disease and was found in 1.9% of all endoscopies. Incidences of esophagitis and those of severe esophagitis were 86.2 and 18.7 cases per 100,000 inhabitants per year respectively. Male sex (OR 1.89) and advanced age (OR 4.2 for patients in the fourth age quartile) were the only variables associated with severe esophagitis. Associated peptic ulcer was present in 8.8% of cases.

Limitations

Retrospective study, no data on individual proton pump inhibitors use.

Conclusions

Severe esophagitis is an infrequent finding in Spain. It occurs predominantly in males and in older individuals. Peptic ulcer disease is frequently associated with erosive esophagitis.  相似文献   

7.
8.

Background and Aims

Abiotic properties of soil are known to be major drivers of the microbial community within it. Our understanding of how soil microbial properties are related to the functional structure and diversity of plant communities, however, is limited and largely restricted to above-ground plant traits, with the role of below-ground traits being poorly understood. This study investigated the relative contributions of soil abiotic properties and plant traits, both above-ground and below-ground, to variations in microbial processes involved in grassland nitrogen turnover.

Methods

In mountain grasslands distributed across three European sites, a correlative approach was used to examine the role of a large range of plant functional traits and soil abiotic factors on microbial variables, including gene abundance of nitrifiers and denitrifiers and their potential activities.

Key Results

Direct effects of soil abiotic parameters were found to have the most significant influence on the microbial groups investigated. Indirect pathways via plant functional traits contributed substantially to explaining the relative abundance of fungi and bacteria and gene abundances of the investigated microbial communities, while they explained little of the variance in microbial activities. Gene abundances of nitrifiers and denitrifiers were most strongly related to below-ground plant traits, suggesting that they were the most relevant traits for explaining variation in community structure and abundances of soil microbes involved in nitrification and denitrification.

Conclusions

The results suggest that consideration of plant traits, and especially below-ground traits, increases our ability to describe variation in the abundances and the functional characteristics of microbial communities in grassland soils.  相似文献   

9.

Background and Aims

Analysis of cellular patterns in plant organs provides information about the orientation of cell divisions and predominant growth directions. Such an approach was employed in the present study in order to characterize growth of the asymmetrical wild-type dorsal petal and the symmetrical dorsalized petal of the backpetals mutant in Antirrhinum majus. The aims were to determine how growth in an initially symmetrical petal primordium leads to the development of mature petals differing in their symmetry, and to determine how specific cellular patterns in the petal epidermis are formed.

Methods

Cellular patterns in the epidermis in both petal types over consecutive developmental stages were visualized and characterized quantitatively in terms of cell wall orientation and predominant types of four-cell packets. The data obtained were interpreted in terms of principal directions of growth (PDGs).

Key Results

Both petal types grew predominantly along the proximo-distal axis. Anticlinal cell walls in the epidermis exhibited a characteristic fountain-like pattern that was only slightly modified in time. New cell walls were mostly perpendicular to PDG trajectories, but this alignment could change with wall age.

Conclusions

The results indicate that the predominant orientation of cell division planes and the fountain-like cellular pattern observed in both petal types may be related to PDGs. The difference in symmetry between the two petal types arises because PDG trajectories in the field of growth rates (growth field) controlling petal growth undergo gradual redefinition. This redefinition probably takes place in both petal types but only in the wild-type does it eventually lead to asymmetry in the growth field. Two scenarios of how redefinition of PDGs may contribute to this asymmetry are considered.  相似文献   

10.
Ncaca LN  Kranzer K  Orrell C 《PloS one》2011,6(8):e23088

Background

Understanding of the impact of non-structured treatment interruption (TI) and variation in tablet-taking on failure of first-line antiretroviral therapy (ART) is limited in a resource-poor setting.

Methods

A retrospective matched case-control analysis. Individuals failing ART were matched by time on ART with 4 controls. Viral load (VL) and CD4 count were completed 4-monthly. Adherence percentages, from tablet returns, were calculated 4-monthly (interval) and from ART start (cumulative). Variation between intervals and TI (>27 days off ART) were recorded. Conditional multivariate logistic regression analysis was performed to estimate the effect of cumulative adherence <90%, at least one episode of adherence variation >10% and TI on virological failure. Age, gender, baseline log VL and CD4 were included as possible confounders in the multivariate model.

Results

244 patients (44 cases, 200 controls) were included. Median age was 32 years (IQR28–37), baseline CD4 108 cells/mm3 (IQR56–151), VL 4.82 log (IQR4.48–5.23). 94% (96% controls, 86% failures) had cumulative adherence >90%. The odds of failure increased 3 times (aOR 3.01, 95%CI 0.81–11.21) in individuals with cumulative adherence <90%, 2.2 times (aOR 2.20, 95%CI 1.04–4.64) in individuals with at least one episode of fluctuating adherence of >10% and 4.01 times (aOR 4.01, 95%CI 1.45–11.10) in individuals with TIs. For individuals with TI and cumulative adherence >95%, the odds of failing were 5.65 (CI 1.40–22.85).

Conclusion

It is well known that poor cumulative adherence increases risk of virological failure, but less well understood that TI and variations in tablet-taking also play a key role, despite otherwise excellent adherence.  相似文献   

11.

Background

The western tarnished plant bug Lygus hesperus is an economically important pest that belongs to a complex of morphologically similar species that makes identification problematic. The present study provides evidence for the use of DNA barcodes from populations of L. hesperus from the western United States of America for accurate identification.

Methodology/Principal Findings

This study reports DNA barcodes for 134 individuals of the western tarnished plant bug from alfalfa and strawberry agricultural fields in the western United States of America. Sequence divergence estimates of <3% reveal that morphologically variable individuals presumed to be L. hesperus were accurately identified. Paired estimates of Fst and subsequent estimates of gene flow show that geographically distinct populations of L. hesperus are genetically similar. Therefore, our results support and reinforce the relatively recent (<100 years) migration of the western tarnished plant bug into agricultural habitats across the western United States.

Conclusions/Significance

This study reveals that despite wide host plant usage and phenotypically plastic morphological traits, the commonly recognized western tarnished plant bug belongs to a single species, Lygus hesperus. In addition, no significant genetic structure was found for the geographically diverse populations of western tarnished plant bug used in this study.  相似文献   

12.

Background and Aims

Recent biodiversity research has focused on ecosystem processes, but less is known about responses of populations of individual plant species to changing community diversity and implications of genetic variation within species. To address these issues, effects of plant community diversity on the performance of different cultivars of Lolium perenne were analysed.

Methods

Populations of 15 genetic cultivars of Lolium perenne were established in experimental grasslands varying in richness of species (from 1 to 60) and functional groups (from 1 to 4). Population sizes, mean size of individual plants, biomass of individual shoots and seed production were measured in the first and second growing season after establishment.

Key Results

Population sizes of all cultivars decreased with increasing community species richness. Plant individuals formed fewer shoots with a lower shoot mass in more species-rich plant communities. A large proportion of variation in plant size and relative population growth was attributable to effects of community species and functional group richness, but the inclusion of cultivar identity explained additional 4–7 % of variation. Cultivar identity explained most variation (28–51 %) at the shoot level (biomass of individual tillers and reproductive shoots, seed production, heading stage). Coefficients of variation of the measured variables across plant communities were larger in cultivars with a lower average performance, indicating that this variation was predominantly due to passive growth reductions and not a consequence of larger adaptive plastic responses. No single cultivar performed best in all communities.

Conclusions

The decreasing performance of Lolium perenne in plant communities of increasing species richness suggests a regulation of competitive interactions by species diversity. Genetic variation within species provides a base for larger phenotypic variation and may affect competitive ability. However, heterogeneous biotic environments (= plant communities of different species composition) are important for the maintenance of intra-specific genetic variation.Key words: Biodiversity, competition, genetic variation, growth reduction, Lolium perenne, phenotypic plasticity, species richness  相似文献   

13.

Background and Aims

Research on the ability of plants to recognize kin and modify plant development to ameliorate competition with coexisting relatives is an area of very active current exploration. Empirical evidence, however, is insufficient to provide a sound picture of this phenomenon.

Methods

An experiment was designed to assess multi-trait phenotypic expression in response to competition with conspecifics of varied degrees of genealogical relatedness. Groups of siblings, cousins and strangers of Lupinus angustifolius were set in competition in a pots assay. Several whole-plant and organ-level traits, directly related to competition for above- and below-ground resources, were measured. In addition, group-level root proliferation was measured as a key response trait to relatedness to neighbours, as identified in previous work.

Key Results

No major significant phenotypic differences were found between individuals and groups that could be assigned to the gradient of relatedness used here. This occurred in univariate models, and also when multi-trait interactions were evaluated through multi-group comparisons of Structural Equation Models. Root proliferation was higher in phenotypically more heterogeneous groups, but phenotypic heterogeneity was independent of the relatedness treatments of the experiment, and root proliferation was alike in the neighbourhoods of siblings, cousins and strangers.

Conclusions

In contrast to recent findings in other species, genealogical relatedness to competing neighbours has a negligible impact on the phenotypic expression of individuals and groups of L. angustifolius. This suggests that kin recognition needs further exploration to assess its generality, the ecological scenarios where it might have been favoured or penalized by natural selection, and its preponderance in different plant lineages.  相似文献   

14.
15.

Background and Aims

Consistent abiotic factors can affect directional selection; cyclones are abiotic phenomena with near-discrete geographic limits. The current study investigates selective pressure of cyclones on plants at the species level, testing for possible natural selection.

Methods

New World Arecaceae (palms) are used as a model system, as plants with monopodial, unbranched arborescent form are most directly affected by the selective pressure of wind load. Living specimens of known provenance grown at a common site were affected by the same cyclone. Data on percentage mortality were compiled and analysed in biogeographic and phylogenetic contexts.

Key Results

Palms of cyclone-prone provenance exhibited a much lower (one order of magnitude) range in cyclone tolerance, and significantly lower (P < 0·001) mean percentage mortality than collections from cyclone-free areas. Palms of cyclone-free provenance had much greater variation in tolerance, and significantly greater mean percentage mortality. A test for serial independence recovered no significant phylogenetic autocorrelation of percentage mortality.

Conclusions

Variation in cyclone tolerance in New World Arecaceae correlates with biogeography, and is not confounded with phylogeny. These results suggest natural selection of cyclone tolerance in cyclone-prone areas.Key words: Abiotic selection, Arecaceae, biogeography, cyclone, hurricane, phylogenetic independence  相似文献   

16.
Zhou J  Dong BC  Alpert P  Li HL  Zhang MX  Lei GC  Yu FH 《Annals of botany》2012,109(4):813-818

Background and Aims

Fine-scale, spatial heterogeneity in soil nutrient availability can increase the growth of individual plants, the productivity of plant communities and interspecific competition. If this is due to the ability of plants to concentrate their roots where nutrient levels are high, then nutrient heterogeneity should have little effect on intraspecific competition, especially when there are no genotypic differences between individuals in root plasticity. We tested this hypothesis in a widespread, clonal species in which individual plants are known to respond to nutrient heterogeneity.

Methods

Plants derived from a single clone of Alternanthera philoxeroides were grown in the greenhouse at low or high density (four or 16 plants per 27·5 × 27·5-cm container) with homogeneous or heterogeneous availability of soil nutrients, keeping total nutrient availability per container constant. After 9 weeks, measurements of size, dry mass and morphology were taken.

Key Results

Plants grew more in the heterogeneous than in the homogeneous treatment, showing that heterogeneity promoted performance; they grew less in the high- than in the low-density treatment, showing that plants competed. There was no interactive effect of nutrient heterogeneity and plant density, supporting the hypothesis that heterogeneity does not affect intraspecific competition in the absence of genotypic differences in plasticity. Treatments did not affect morphological characteristics such as specific leaf area or root/shoot ratio.

Conclusions

Results indicate that fine-scale, spatial heterogeneity in the availability of soil nutrients does not increase competition when plants are genetically identical, consistent with the suggestion that effects of heterogeneity on competition depend upon differences in plasticity between individuals. Heterogeneity is only likely to increase the spread of monoclonal, invasive populations such as that of A. philoxeroides in China.  相似文献   

17.

Background

Cushion plants are commonly considered as keystone nurse species that ameliorate the harsh conditions they inhabit in alpine ecosystems, thus facilitating other species and increasing alpine plant biodiversity. A literature search resulted in 25 key studies showing overwhelming facilitative effects of different cushion plants and hypothesizing greater facilitation with increased environmental severity (i.e. higher altitude and/or lower rainfall). At the same time, emerging ecological theory alongside the cushion-specific literature suggests that facilitation might not always occur under extreme environmental conditions, and especially under high altitude and dryness.

Methods

To assess these hypotheses, possible nursing effects of Thylacospermum caespitosum (Caryophyllaceae) were examined at extremely high altitude (5900 m a.s.l.) and in dry conditions (precipitation <100 mm year−1) in Eastern Ladakh, Trans-Himalaya. This is, by far, the highest site, and the second driest, at which the effects of cushions have been studied so far.

Key Results

In accordance with the theoretical predictions, no nursing effects of T. caespitosum on other alpine plants were detected. The number and abundance of species were greater outside cushions than within and on the edge of cushions. None of the 13 species detected was positively associated with cushions, while nine of them were negatively associated. Plant diversity increased with the size of the area sampled outside cushions, but no species–area relationship was found within cushions.

Conclusions

The results support the emerging theoretical prediction of restricted facilitative effects under extreme combinations of cold and dryness, integrating these ideas in the context of the ecology of cushion plants. This evidence suggests that cases of missing strong facilitation are likely to be found in other extreme alpine conditions.  相似文献   

18.

Background and Aims

Plants are naturally exposed to multiple, frequently interactive stress factors, most of which are becoming more severe due to global change. Established plants have been reported to facilitate the establishment of juvenile plants, but net effects of plant–plant interactions are difficult to assess due to complex interactions among environmental factors. An investigation was carried out in order to determine how two dominant evergreen shrubs (Quercus ilex and Arctostaphylos uva-ursi) co-occurring in continental, Mediterranean habitats respond to multiple abiotic stresses and whether the shaded understorey conditions ameliorate the negative effects of drought and winter frosts on the physiology of leaves.

Methods

Microclimate and ecophysiology of sun and shade plants were studied at a continental plateau in central Spain during 2004–2005, with 2005 being one of the driest and hottest years on record; several late-winter frosts also occurred in 2005.

Key Results

Daytime air temperature and vapour pressure deficit were lower in the shade than in the sun, but soil moisture was also lower in the shade during the spring and summer of 2005, and night-time temperatures were higher in the shade. Water potential, photochemical efficiency, light-saturated photosynthesis, stomatal conductance and leaf 13C composition differed between sun and shade individuals throughout the seasons, but differences were species specific. Shade was beneficial for leaf-level physiology in Q. ilex during winter, detrimental during spring for both species, and of little consequence in summer.

Conclusions

The results suggest that beneficial effects of shade can be eclipsed by reduced soil moisture during dry years, which are expected to be more frequent in the most likely climate change scenarios for the Mediterranean region.Key words: Frost, climate change, shade, drought, plant–plant interactions, Quercus ilex, Arctostaphylos uva-ursi, soil moisture, facilitation  相似文献   

19.
Mahler SV  de Wit H 《PloS one》2010,5(11):e15475

Background

Pavlovian conditioning plays a critical role in both drug addiction and binge eating. Recent animal research suggests that certain individuals are highly sensitive to conditioned cues, whether they signal food or drugs. Are certain humans also more reactive to both food and drug cues?

Methods

We examined cue-induced craving for both cigarettes and food, in the same individuals (n = 15 adult smokers). Subjects viewed smoking-related or food-related images after abstaining from either smoking or eating.

Results

Certain individuals reported strong cue-induced craving after both smoking and food cues. That is, subjects who reported strong cue-induced craving for cigarettes also rated stronger cue-induced food craving.

Conclusions

In humans, like in nonhumans, there may be a “cue-reactive” phenotype, consisting of individuals who are highly sensitive to conditioned stimuli. This finding extends recent reports from nonhuman studies. Further understanding this subgroup of smokers may allow clinicians to individually tailor therapies for smoking cessation.  相似文献   

20.

Objective

Infancy is a critical period during which rapid growth potentially programs future disease risk. Identifying the modifiable determinants of growth is therefore important. To capture the complexity of infant growth, we modeled growth trajectories from birth to six months in order to compare the genetic and environmental influences on growth trajectory parameters with single time-point measures at birth, three and six months of age.

Methods

Data were from Gemini, a population sample of 2402 UK families with twins. An average 10 weight measurements per child made by health professionals were available over the first six months. Weights at birth, three and six months were identified. Longitudinal growth trajectories were modeled using SITAR utilizing all available weight measures for each child. SITAR generates three parameters: size (characterizing mean weight throughout infancy), tempo (indicating age at peak weight velocity (PWV)), and velocity (reflecting the size of PWV). Genetic and environmental influences were estimated using quantitative genetic analysis.

Results

In line with previous studies, heritability of weight at birth and three months was low (38%), but it was higher at six months (62%). Heritability of the growth trajectory parameters was high for size (69%) and velocity (57%), but low (35%) for tempo. Common environmental influences predominated for tempo (42%).

Conclusion

Modeled growth parameters using SITAR indicated that size and velocity were primarily under genetic influence but tempo was predominantly environmentally determined. These results emphasize the importance of identifying specific modifiable environmental determinants of the timing of peak infant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号