首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
《Organogenesis》2013,9(3):189-194
While some reports in humans have shown that nephron number is positively correlated with height, body weight or kidney weight, other studies have not reproduced these findings. To understand the impact of genetic and environmental variation on these relationships, we examined whether nephron number correlates with body weight, kidney planar surface area, or kidney weight in two inbred mouse strains with contrasting kidney sizes but no overt renal pathology: C3H/HeJ and C57BL/6J. C3H/HeJ mice had smaller kidneys at birth and larger kidneys by adulthood, however there was no significant difference in nephron number between the two strains. We did observe a correlation between kidney size and body weight at birth and at adulthood for both strains. However, there was no relationship between nephron number and body weight or between nephron number and kidney size. From other studies, it appears that a greater than 2-fold variation is required in each of these parameters in order to demonstrate these relationships, suggesting they are highly dependent on scale. Our results are therefore not surprising since there was a less than 2-fold variation in each of the parameters examined. In summary, the relationship between nephron number and body or kidney size is most likely to be demonstrated when there is greater phenotypic variation either from genetic and/or environmental factors.  相似文献   

2.
William L. Daniel 《Genetics》1976,82(3):477-491
Mice from 12 inbred strains were surveyed for variation of kidney and liver arylsulfatase levels. Kidney variation was due to differences in the activity of arylsulfatase B. Twofold higher activities of arylsulfatase B in SWR/J kidney compared to A/HeJ kidney were determined by an autosomal gene which may be identical to the structural gene for arylsulfatase B since the SWR/J enzyme was more heat-stable than the A/HeJ enzyme. C57BL/6J mice possessed two-fold higher liver arylsulfatase levels than did A/HeJ mice. The major portion of this variation could be attributed to differences in arylsulfatase B, and appeared to be inherited in autosomal fashion. Although some evidence supports the existence of a major locus influencing liver arylsulfatase activity, this must be substantiated by further studies. Whatever the nature of the genetic factors involved, they do not appear to involve structural genes since no differences were discernible between the enzymes of the two strains relevant to Km, heat stability, electrophoretic mobility, pH optimum, activation energy, or response to several inhibitors. Furthermore, the rank ordering of strains on the basis of kidney arylsulfatase activity differed markedly from that which pertained to liver activity. Kidney arylsulfatase levels, but not brain or liver arylsulfatase activities, appear subject to androgenic influences.  相似文献   

3.
Objective: This study identified genetic and environmental influences on the tracking of body size from birth to 16 to 18.5 years of age. Research Methods and Procedures: Longitudinal information was collected from a nationally representative sample of Finnish twin adolescents (birth cohorts 1975 to 1979) and their parents through questionnaires mailed when the twins were ages 16 and 18.5 years old. The sample included 702 monozygotic, 724 same‐sex dizygotic, and 762 opposite‐sex dizygotic sets of twins. The measures used were length, weight, ponderal index (kilograms per cubic meters), and gestational age at birth, and height, weight, and body mass index (kilograms per square meters) at 16 to 18.5 years of age. The changes in genetic and environmental influences on body size from birth to early adulthood were analyzed by quantitative genetic modeling. Results: The twins who had a higher weight or ponderal index at birth were taller and heavier in early adulthood, whereas those who were longer at birth were taller, but not heavier, later in life. Adult height was affected more by the birth size than body mass index. In the genetic modeling analyses, the genetic factors accounting for the variation of body size became more apparent with age, and both genetic and environmental influences on stature had a sizable carry‐over effect from birth to late adolescence, whereas for relative weight, the influences were more age‐specific. Discussion: The genetic and environmental architecture of body size changes from birth to adulthood. Even in monozygotic twins who share their genetic background, the initially larger twin tended to remain larger, demonstrating the long‐lasting effects of fetal environment on final body size.  相似文献   

4.
Birth weight has been shown to be associated with obesity and metabolic diseases in adulthood, however, the genetic contribution is still controversial. The objective of this analysis is to explore the genetic contribution to the relationship between birth weight and later risk for obesity and metabolic diseases in Hispanic children. Subjects were 1,030 Hispanic children in the Viva La Familia Study. Phenotypes included body size, body composition, blood pressure, fasting glucose, insulin, lipids, and liver enzymes. Birth weights were obtained from Texas birth certificates. Quantitative genetic analyses were conducted using SOLAR software. Birth weight was highly heritable, as were all other phenotypes. Phenotypically, birth weight was positively correlated to childhood body size parameters. Decomposition of these phenotypic correlations into genetic and environmental components revealed significant genetic correlations, ranging from 0.30 to 0.59. Negative genetic correlations were seen between birth weight and lipids. The genome scan of birth weight mapped to a region near marker D10S537 (LOD = 2.6). The bivariate genome-wide scan of birth weight and childhood weight or total cholesterol, improved the LOD score to 3.09 and 2.85, respectively. Chromosome 10q22 harbors genes influencing both birth weight and childhood body size and cardiovascular disease risk in Hispanic children.  相似文献   

5.
We measured the combined area of posterior medial barrel subfield (PMBSF) and anterior lateral barrel subfield (ALBSF) areas in four common inbred strains (C3H/HeJ, A /J, C57BL /6J, DBA/2J), B6D2F1, and ten recombinant inbred (RI) strains generated from C57BL/6J and DBA/2J progenitors (BXD) as an initial attempt to examine the genetic influences underlying natural variation in barrel field size in adult mice. These two subfields are associated with the representation of the whisker pad and sinus hairs on the contralateral face. Using cytochrome oxidase labeling to visualize the barrel field, we measured the size of the combined subfields in each mouse strain. We also measured body weight and brain weight in each strain. We report that DBA/2J mice have a larger combined PMBSF/ALBSF area (6.15 +/- 0.10 mm(2), n = 7) than C57BL /6J (5.48 +/- 0.13 mm(2), n = 10), C3H/HeJ (5.37 +/- 0.16 mm(2), n = 10), and A/J mice (5.04 +/- 0.09 mm(2), n = 15), despite the fact that DBA/2J mice have smaller average brain and body sizes. This finding may reflect dissociation between systems that control brain size with those that regulate barrel field area. In addition, BXD strains (average n = 4) and parental strains showed considerable and continuous variation in PMBSF/ALBSF area, suggesting that this trait is polygenic. Furthermore, brain, body, and cortex weights have heritable differences between inbred strains and among BXD strains. PMBSF/ALBSF pattern appears similar among inbred and BXD strains, suggesting that somatosensory patterning reflects a common plan of organization. This data is an important first step in the quantitative genetic analysis of the parcellation of neocortex into diverse cytoarchitectonic zones that vary widely within and between species, and in identifying the genetic factors underlying barrel field size using quantitative trait locus (QTL) analyses.  相似文献   

6.
We measured the combined area of posterior medial barrel subfield (PMBSF) and anterior lateral barrel subfield (ALBSF) areas in four common inbred strains (C3H/HeJ, A?/J, C57BL?/6J, DBA/2J), B6D2F1, and ten recombinant inbred (RI) strains generated from C57BL/6J and DBA/2J progenitors (BXD) as an initial attempt to examine the genetic influences underlying natural variation in barrel field size in adult mice. These two subfields are associated with the representation of the whisker pad and sinus hairs on the contralateral face. Using cytochrome oxidase labeling to visualize the barrel field, we measured the size of the combined subfields in each mouse strain. We also measured body weight and brain weight in each strain. We report that DBA/2J mice have a larger combined PMBSF/ALBSF area (6.15?±?0.10?mm2,?n?=?7) than C57BL?/6J (5.48?±?0.13?mm2,?n?=?10), C3H/HeJ (5.37?±?0.16?mm2,?n?=?10), and A/J mice (5.04?±?0.09?mm2,?n?=?15), despite the fact that DBA/2J mice have smaller average brain and body sizes. This finding may reflect dissociation between systems that control brain size with those that regulate barrel field area. In addition, BXD strains (average n?=?4) and parental strains showed considerable and continuous variation in PMBSF/ALBSF area, suggesting that this trait is polygenic. Furthermore, brain, body, and cortex weights have heritable differences between inbred strains and among BXD strains. PMBSF/ALBSF pattern appears similar among inbred and BXD strains, suggesting that somatosensory patterning reflects a common plan of organization. This data is an important first step in the quantitative genetic analysis of the parcellation of neocortex into diverse cytoarchitectonic zones that vary widely within and between species, and in identifying the genetic factors underlying barrel field size using quantitative trait locus (QTL) analyses.  相似文献   

7.
Two embryo transfer experiments were carried out in order to estimate the magnitude of prenatal maternal effects, independent of postnatal maternal factors, on the growth of internal organs and fat pads in mice. Reciprocal embryo transfers between the inbred mouse strains C3HeB/FeJ and SWR/J yielded three significant findings. First, all traits were not equally influenced by prenatal maternal factors. Genetic prenatal maternal factors, stemming from the genotype of the uterine mother, had a significant effect on testis weight, subcutaneous fat pad weight and epididymal fat pad weight in 21 day old progeny, but they had no effect on cranial capacity, an index of brain size, kidney weight, or liver weight. Prenatal litter size, defined as the sum of live and dead pups at birth, had a significant negative relationship with 21 day testis weight and kidney weight, and a significant positive association with subcutaneous and epididymal fat pad weights. Cranial capacity and liver weight at 21 days postnatally were not influenced by prenatal litter size. Second, the experiments demonstrated that there was ontogenetic variability in the strength of prenatal maternal effects. At 70 days of age, only subcutaneous fat pad weight was significantly influenced by genetic prenatal effects, and prenatal litter size had a significant negative relationship only with subcutaneous fat pad weight and body weight. Third, genetic prenatal effects had a significant influence on the among-trait covariances at 21 days postnatally, but not at 70 days. Because multivariate evolution involves covariances among characters, the latter results suggest that prenatal effects due to the mother's genotype can affect phenotypic evolution of mammals, especially for selection imposed early in life.  相似文献   

8.
Su Z  Li Y  James JC  McDuffie M  Matsumoto AH  Helm GA  Weber JL  Lusis AJ  Shi W 《Genetics》2006,172(3):1799-1807
Inbred mouse strains C57BL/6J (B6) and C3H/HeJ (C3H) differ significantly in atherosclerosis susceptibility and plasma lipid levels on the apolipoprotein E-deficient (apoE-/-) background when fed a Western diet. To determine genetic factors contributing to the variations in these phenotypes, we performed quantitative trait locus (QTL) analysis using an intercross between the two strains carrying the apoE-/- gene. Atherosclerotic lesions at the aortic root and plasma lipid levels of 234 female F2 mice were analyzed after being fed a Western diet for 12 weeks. QTL analysis revealed one significant QTL, named Ath22 (42 cM, LOD 4.1), on chromosome 9 and a suggestive QTL near D11mit236 (20 cM, LOD 2.4) on chromosome 11 that influenced atherosclerotic lesion size. One significant QTL on distal chromosome 1, which accounted for major variations in plasma LDL/VLDL cholesterol and triglyceride levels, coincided with a QTL having strong effects on body weight. Plasma LDL/VLDL cholesterol or triglyceride levels of F2 mice were significantly correlated with body weight, but they were not correlated with atherosclerotic lesion sizes. These data indicate that atherosclerosis susceptibility and plasma cholesterol levels are controlled by separate genetic factors in the B6 and C3H mouse model and that genetic linkages exist between body weight and lipoprotein metabolism.  相似文献   

9.
Epidemiologic studies have demonstrated a positive correlation between concentration of acid aerosol and increased morbidity and mortality in many urban environments. To determine whether genetic background is an important risk factor for susceptibility to the toxic effects of inhaled particles, we studied the interstrain (genetic) and intrastrain (environmental) variance of lung responses to acid-coated particle (ACP) aerosol in nine strains of inbred mice. A flow-past nose-only inhalation system was used to expose mice to ACPs produced by the cogeneration of a carbon black aerosol-sulfur dioxide (SO(2)) mixture at high humidity. Three days after a single 4-h exposure to ACPs or filtered air, mice underwent bronchoalveolar lavage, and cell differentials and total protein were determined as indexes of inflammation and epithelial permeability, respectively. To determine the effect of ACPs on alveolar macrophage (AM) function, lavaged AMs were isolated from exposed animals and Fc receptor-mediated phagocytosis was evaluated. Compared with air-exposed animals, there was a slight but significant exposure effect of ACPs on the mean number of lavageable polymorphonuclear leukocytes in C3H/HeJ and C3H/HeOuJ mice. ACP exposure also caused a significant decrease in AM phagocytosis. Relative to respective air-exposed animals, Fc receptor-mediated phagocytosis was suppressed in eight of nine strains. The order of strain-specific effect of ACPs on phagocytosis was C57BL/6J > 129/J > SJL/J > BALB/cJ > C3H/HeOuJ > A/J > SWR/J > AKR/J. There was no effect of ACP exposure on AM phagocytosis in C3H/HeJ mice. The significant interstrain variation in AM response to particle challenge indicates that genetic background has an important role in susceptibility. The effects of ACPs on AM function, inflammation, and epithelial hyperpermeability were not correlated (i.e., no cosegregation). This model may have important implications concerning interindividual variation in particle-induced compromise of host defense.  相似文献   

10.
Maternal effects on offspring phenotypes occur because mothers in many species provide an environment for their developing young. Although these factors are correctly "environmental" with respect to the offspring genome, their variance may have both a genetic and an environmental basis in the maternal generation. Here, reciprocal crosses between C57BL/6J and 10 LGXSM recombinant inbred (RI) strains were performed, and litters were divided at weaning into high-fat and low-fat dietary treatments. Differences between reciprocal litters were used to measure genetic maternal effects on offspring phenotypes. Nearly all traits, including weekly body weights and adult blood serum traits, show effects indicative of genetic variation in maternal effects across RI strains, allowing the quantitative trait loci involved to be mapped. Although much of the literature on maternal effects relates to early life traits, we detect strong and significant maternal effects on traits measured at adulthood (as much as 10% of the trait variance at 17 or more weeks after weaning). We also found an interaction affecting adult phenotype between the effects of maternal care between RI strain mothers and C57BL/6J mothers and a later environmental factor (dietary fat intake) for some age-specific weights.  相似文献   

11.
Low glomerular (nephron) endowment has been associated with an increased risk of cardiovascular and renal disease in adulthood. Nephron endowment in humans is determined by 36 wk of gestation, while in rats and mice nephrogenesis ends several days after birth. Specific genes and environmental perturbations have been shown to regulate nephron endowment. Until now, design-based method for estimating nephron number in developing kidneys was unavailable. This was due in part to the difficulty associated with unambiguously identifying developing glomeruli in histological sections. Here, we describe a method that uses lectin histochemistry to identify developing glomeruli and the physical disector/fractionator principle to provide unbiased estimates of total glomerular number (N(glom)). We have characterized N(glom) throughout development in kidneys from 76 rats and model this development with a 5-parameter logistic equation to predict N(glom) from embryonic day 17.25 to adulthood (r(2) = 0.98). This approach represents the first design-based method with which to estimate N(glom) in the developing kidney.  相似文献   

12.
The rotorod is commonly used to assess motor ability in mice. We examined a number of inbred strains to determine whether there is genetic variability in rotorod performance and motor learning. Mice received three trials per day for three days in a modified accelerating rotorod paradigm, and active rotation performance was calculated for each day. Male and female 129S1/SvImJ, A/J, BALB/cByJ, C3H/HeJ, C57BL/6J, CBA/J, DBA/2J and FVB/NJ mice were tested. Strain and sex differences were observed in motor performance. Motor learning also differed across strains, as some strains showed an improvement in performance over the three days while other strains did not. In certain strains the weight and body length of the mouse correlated with rotorod performance. The role of vision in motor performance on the rotorod was assessed by a comparison of C3H/HeJ mice (with retinal degeneration) and congenic C3A.BLiA- Pde6b + (Pdeb+) mice (without retinal degeneration). The sight-impaired C3H mice stayed on the rotorod longer than did their sighted Pdeb+ partners, although both strains improved across days. Thus, we have demonstrated a genetic component in rotorod performance, and we have shown that factors other than inherent motor ability can contribute to rotorod performance in mice.  相似文献   

13.
Chorioamnionitis is an antecedent of preterm birth. We aimed to determine the effect of experimental chorioamnionitis in fetal sheep during late gestation on 1) nephron number, 2) renal corpuscle volume, and 3) renal inflammation. We hypothesized that exposure to chorioamnionitis would lead to inflammation in fetal kidneys and adversely impact on the development of nephrons, leading to a reduction in nephron number. At ~121 days of gestation (term ~147 days), pregnant ewes bearing twin or singleton fetuses received a single intra-amniotic injection of lipopolysaccharide (n = 6; 3 singletons, 3 twins); controls were either untreated or received an intra-amniotic injection of saline (n = 8; 4 singletons, 4 twins). One twin was used from each twin-bearing ewe. At ~128 days of gestation, fetuses were delivered via Caesarean section. Kidneys were collected and stereologically analyzed to determine nephron number and renal corpuscle volume. Renal inflammation was assessed using immunohistochemistry. Experimental chorioamnionitis did not affect body weight or relative kidney weight. There was a significant reduction in nephron number but no change in renal corpuscle volume in LPS-exposed fetuses relative to controls. On average, nephron number was significantly reduced by 23 and 18% in singleton and twin LPS-exposed fetuses, respectively. The degree of renal inflammation did not differ between groups. Importantly, this study demonstrates that exposure to experimental chorioamnionitis adversely impacts on nephron number in the developing fetus.  相似文献   

14.
The purpose of the present study was to determine the strain-specific phenotype variance of lung function parameters among common inbred laboratory mouse strains. In accordance with the "Mouse Phenome Project" run by The Jackson Laboratory (http://www.jax.org/phenome), lung volumes, lung mechanics, and diffusing capacity of 16 males and 16 females of the strains C3H/HeJ, BALB/cByJ, C57B1/6J, A/J, FVB/J, 129SV/ImJ, and SWR/J were determined in a standardized manner. The defined respiratory maneuvers for lung function testing were performed with a custom-made, computer-controlled servo-ventilator in anesthetized animals. Sex differences within the strains were found in most (83%) of the absolute lung function parameters. Usually, normalization to body or lung size completely compensates for the observed gender differences. There was great diversity between strains for all of the lung function parameters studied; for example, the total lung capacity as well as the pulmonary diffusing capacity for carbon monoxide varied by 50% and the static lung compliance by a factor of almost two among the strains. Little, but statistically significant variability was detectable for the dead space volume and the respiratory system resistance. There was no clear-cut evidence for any strain exhibiting either the smallest or the largest values for all parameters studied, suggesting that there were no simple allometric relationships of lung size between the strains. Well-established genealogical relationships among strains were not constantly reflected in phenotype similarities of pulmonary function. Therefore, these data strongly support heritable genetic traits for pulmonary function. Moreover, it constitutes a basis for further genetic lung function-related studies.  相似文献   

15.
Genetic influences on the timing of puberty in mice   总被引:4,自引:0,他引:4  
Genetic influences on the timing of three pubertal events--vaginal opening, first vaginal cornification, and onset of cyclicity--were studied in C57BL/6J, DBA/2J, and C3H/HeJ mice and in two F1 hybrid strains (B6D2F1 and B6C3HF1). Marked genotypic differences were found. Among inbred strains, differences in the onset of vaginal opening and first vaginal cornification (C3H less than DBA less than C57) did not parallel those for the onset of cyclicity (C3H much greater than DBA = C57). Compared to parental strains, F1 hybrid strains were intermediate for times of vaginal opening and first vaginal cornification, consistent with the model in which the genetic effects on the timing of these events are additive. By contrast, onset of cyclicity occurred significantly earlier in the F1 hybrids than in their parent strains, indicating heterosis for one or more genes specifying this event. Body weights also differed among the genotypes from weaning onward, but these differences were only partially correlated with the differences in the timing of the pubertal events. Thus, genetic influences other than those affecting body weight contribute to the differential timing of pubertal events in these mouse strains. These results reveal marked genetic variation in the timing of puberty, and indicate that the set of genes specifying the timing of vaginal opening and first vaginal cornification differs from those specifying the onset of cyclicity.  相似文献   

16.
In rats, maternal protein restriction reduces nephron endowment and often leads to adult hypertension. Sex differences in these responses have been identified. The molecular and genetic bases of these phenomena can best be identified in a mouse model, but effects of maternal protein restriction on kidney development have not been examined in mice. Therefore, we determined how combined prenatal and postnatal protein restriction in mice affects organ weight, glomerular number and dimensions, and renal expression of angiotensin receptor mRNA, in both male and female offspring. C57/BL6/129sv mice received either a normal (20% wt/wt; NP) or low (9% wt/wt; LP) protein diet during gestation and postnatal life. Offspring were examined at postnatal day 30. Protein restriction retarded growth of the kidney, liver, spleen, heart, and brain. All organs except the brain weighed less in female than male offspring. Protein restriction increased normalized (to body weight) brain weight, with females having relatively heavier brains than males. The effects of protein restriction were not sex dependent, except that normalized liver weight was reduced in males but increased in females. Glomerular volume, but not number, was greater in female than in male mice. Maternal protein restriction reduced nephron endowment similarly in male and female mice. Renal expression of AT(1A) receptor mRNA was approximately sixfold greater in female than male NP mice, but similar in male LP and female LP mice. We conclude that maternal protein restriction reduces nephron endowment in mice. This effect provides a basis for future studies of developmental programming in the mouse.  相似文献   

17.
Alho JS  Leinonen T  Merilä J 《PloS one》2011,6(5):e19579
Intraspecific variation in the number of vertebrae is taxonomically widespread, and both genetic and environmental factors are known to contribute to this variation. However, the relative importance of genetic versus environmental influences on variation in vertebral number has seldom been investigated with study designs that minimize bias due to non-additive genetic and maternal influences. We used a paternal half-sib design and animal model analysis to estimate heritability and causal components of variance in vertebral number in three-spined sticklebacks (Gasterosteus aculeatus). We found that both the number of vertebrae (h2 = 0.36) and body size (h2 = 0.42) were moderately heritable, whereas the influence of maternal effects was estimated to be negligible. While the number of vertebrae had a positive effect on body size, no evidence for a genetic correlation between body size and vertebral number was detected. However, there was a significant positive environmental correlation between these two traits. Our results support the generalization-in accordance with results from a review of heritability estimates for vertebral number in fish, reptiles and mammals-that the number of vertebrae appears to be moderately to highly heritable in a wide array of species. In the case of the three-spined stickleback, independent evolution of body size and number of vertebrae should be possible given the low genetic correlation between the two traits.  相似文献   

18.
Body size at birth has implications for the quality of individuals throughout their life. Although large body size is generally considered an advantage, the relationship between body size at birth and long-term fitness is often complicated. Under spatial or temporal variation in environmental conditions, such as the seasonally changing densities of Fennoscandian vole populations, selection should favor variation in offspring phenotypes, as different qualities may be beneficial in different conditions. We performed an experiment in which a novel hormonal manipulation method was used to increase phenotypic variance in body size at birth in the bank vole (Myodes glareolus). The effects of body size on the future fitness of young males and females were then studied at varying population densities in outdoor enclosures. Our results show that small body size at birth and high breeding density increase the survival costs of reproduction. However, there was no interaction between the effects of body size and density on survival, which suggests that the fitness effects of body size were strong enough to persist under environmental variation. Moreover, litter size and the probability of breeding were more sensitive to variation in breeding density than offspring size. Therefore, it is unlikely that individual fitness could be optimized by adjusting offspring body size to the prevailing population density through adaptive maternal effects. Our results highlight the significance of the costs of reproduction in the evolution of life-history traits, and give strong experimental support for the long-term fitness effects of body size at birth.  相似文献   

19.
Tooth size is determined by genetic and environmental factors like other quantitative characters such as body weight and body height. However, the degree of the relative contribution of both factors to the determination of tooth size has not been well clarified. In order to study the genetic and environmental factors affecting tooth size, we carried out a diallel cross mating by the cohabitation of pairs of males and females among 10 strains of rats. The bucco-lingual widths of the first, second, and third molars of the right mandible were measured in each offspring of F1 population. The body weight was also measured as a parameter that might indicate systemic growth factor in connection with tooth development. The quantitative genetic analysis was performed based on Wearden's model (Heredity 19:669-680, 1964). As a result, the size of the first and the second molars was more significantly controlled by genetic effect than maternal effect, while maternal effect could not be ignored for the size of the third molar in addition to genetic effect. The genetic effect on body weight became greater with age, while the maternal effect showed its maximum influence upon the body weight around the weaning. It is concluded that the size of the molar teeth beginning to develop in the uterus and to be calcified just after birth was mainly controlled by genetic factor, and that the size of the molar teeth beginning to develop approximately after birth was mainly controlled by maternal effect affecting body weight at the same period.  相似文献   

20.
The present study characterizes the relations among maternal condition, litter size, birth condition, and growth in body weight for a population of common marmosets. The subjects of the study were marmosets born into a single colony between 1994 and 2001. Three sets of analyses were conducted to answer the following questions: 1) Is there a relationship between litter size, maternal condition, and birth condition? In the study population, maternal body weight, maternal age, litter size, and birth condition were related in a complex fashion. Birth weight and prenatal long‐bone growth, as reflected in knee–heel length, were both related to maternal age, with older mothers supporting higher prenatal growth. Age and maternal condition appeared to interact as determinants of long‐bone growth, as the combination of older and larger mothers resulted in significantly longer knee–heel lengths in their offspring. 2) Is there a relationship between birth condition or maternal condition and subsequent growth or final adult size? The early growth rate in this population was similar to early growth rates reported for three different marmoset colonies, suggesting that early growth may be relatively inflexible in this species. However, within this population, the variation that did occur in early growth rate was related to birth weight and maternal weight. Later growth and adult weight were related to birth weight and litter size: small twin infants displayed slower later growth rates and were smaller as adults than twins that began life at a higher birth weight, while the birth weight of triplets was not related to adult size. In these marmosets, small infants that were the result of increased litter size differed from small infants whose small birth size resulted from other factors. This reinforces the proposal that the causes of low birth weight will be relevant to the development of the marmoset as a model of prenatal environmental effects. Am. J. Primatol. 62:83–94, 2004. © 2004 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号