首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our understanding of the interaction of carbon (C) metabolism with nitrogen (N) metabolism and growth is based mainly on studies of responses to environmental treatments, and studies of mutants and transformants. Here, we investigate which metabolic parameters vary and which parameters change in a coordinated manner in 24 genetically diverse Arabidopsis (Arabidopsis thaliana) accessions, grown in C-limited conditions. The accessions were grown in short days, moderate light, and high nitrate, and analyzed for rosette biomass, levels of structural components (protein, chlorophyll), total phenols and major metabolic intermediates (sugars, starch, nitrate, amino acids), and the activities of seven representative enzymes from central C and N metabolism. The largest variation was found for plant weight, reducing sugars, starch at the end of the night, and several enzyme activities. High levels of one sugar correlated with high levels of other sugars and starch, and a trend to increased amino acids, slightly lower nitrate, and higher protein. The activities of enzymes at the interface of C and N metabolism correlated with each other, but were unrelated to carbohydrates, amino acid levels, and total protein. Rosette weight was unrelated or showed a weak negative trend to sugar and amino acid contents at the end of the day in most of the accessions, and was negatively correlated with starch at the end of the night. Rosette weight was positively correlated with several enzyme activities. We propose that growth is not related to the absolute levels of starch, sugars, and amino acids; instead, it is related to flux, which is indicated by the enzymatic capacity to use these central resources.  相似文献   

2.
Digestive enzyme responsiveness to feeding and associated adjustments of metabolism can be used to derive nutritionally effective diet formulations. Juvenile pintado (Pseudoplatystoma corruscans) were fed different diets. After feeding, fish were killed and blood, liver and white muscle were collected to evaluate metabolites. Stomach along with anterior, middle and posterior intestine were sampled for enzyme analysis. Non-specific protease, trypsin, chymotrypsin, amylase and lipase were assayed. Crude protein (CP) did not induce proteolytic activity; highest protease activities were observed in the stomach. Amylase was higher in the stomach in fish feeding on diets containing 13-25% starch. Lipase activity was observed along the gastrointestinal tract, with the highest activities observed in the middle section. The metabolic profile of white muscle was not affected by CP. In contrast, some plasma and liver metabolites were altered concomitant with changes in the digestive enzymes. Amino acid catabolism was increased. Digestion in pintado was responsive to cornstarch, reflected in intermediary metabolism; proteolytic activities of the digestive tract seem to be sufficient to deal with large amounts of dietary protein. As a result, we are able to recommend a balance between protein and energetic compounds, such as lipids and carbohydrates, in the diet to optimize fish growth.  相似文献   

3.
4.
5.
Understanding the genetic basis of nitrogen and carbon metabolism will accelerate the development of plant varieties with high yield and improved nitrogen use efficiency. A robotized platform was used to measure the activities of 10 enzymes from carbon and nitrogen metabolism in the maize (Zea mays) intermated B73 × Mo17 mapping population, which provides almost a 4-fold increase in genetic map distance compared with conventional mapping populations. Seedling/juvenile biomass was included to identify its genetic factors and relationships with enzyme activities. All 10 enzymes showed heritable variation in activity. There were strong positive correlations between activities of different enzymes, indicating that they are coregulated. Negative correlations were detected between biomass and the activity of six enzymes. In total, 73 significant quantitative trait loci (QTL) were found that influence the activity of these 10 enzymes and eight QTL that influence biomass. While some QTL were shared by different enzymes or biomass, we critically evaluated the probability that this may be fortuitous. All enzyme activity QTL were in trans to the known genomic locations of structural genes, except for single cis-QTL for nitrate reductase, Glu dehydrogenase, and shikimate dehydrogenase; the low frequency and low additive magnitude compared with trans-QTL indicate that cis-regulation is relatively unimportant versus trans-regulation. Two-gene epistatic interactions were identified for eight enzymes and for biomass, with three epistatic QTL being shared by two other traits; however, epistasis explained on average only 2.8% of the genetic variance. Overall, this study identifies more QTL at a higher resolution than previous studies of genetic variation in metabolism.  相似文献   

6.
7.
BackgroundMost of the enzymes involved in the central carbon metabolism are acetylated in Lys residues. It has been claimed that this covalent modification represents a novel regulatory mechanism by which both enzyme/transporter activities and pathway fluxes can be modulated.MethodsTo establish which enzymes are regulated by acetylation, a systematic experimental analysis of activities and acetylation profile for several energy metabolism enzymes and pathway fluxes was undertaken in cells and mitochondria.ResultsThe majority of the glycolytic and neighbor enzymes as well as mitochondrial enzymes indeed showed Lys-acetylation, with GLUT1, HPI, CS, ATP synthase displaying comparatively lower acetylation patterns. The incubation of cytosolic and mitochondrial fractions with recombinant Sirt-3 produced lower acetylation signals, whereas incubation with acetyl-CoA promoted protein acetylation. Significant changes in acetylation levels of MDH and IDH-2 from rat liver mitochondria revealed no change in their activities. Similar observations were attained for the cytosolic enzymes from AS-30D and HeLa cells. A minor but significant (23%) increase in the AAT-MDH complex activity induced by acetylation was observed. To examine this question further, AS-30D and HeLa cells were treated with nicotinamide and valproic acid. These compounds promoted changes in the acetylation patterns of glycolytic proteins, although their activities and the glycolytic flux (as well as the OxPhos flux) revealed no clear correlation with acetylation.ConclusionAcetylation seems to play no predominant role in the control of energy metabolism enzyme activities and pathway fluxes.General significanceThe physiological function of protein acetylation on energy metabolism pathways remains to be elucidated.  相似文献   

8.
In this paper circadian changes in the liver enzyme activities of rat housed under highly standardized conditions with 12:12 hour light-dark cycle are shown. Activities of acid phosphatase, arylsulphatase, β-galactosidase and β-N-acetyl-d-glucosaminidase in microsomal and lysosomal fractions and crude homogenate were estimated every 4 hr during one 24-hr period. The enzyme activities were related to 1 mg of protein, 1 mg of DNA and 1 g fresh tissue. Daily changes of enzyme activities were found. In case of activity calculated per 1 mg DNA two maxima at 0500 and at 2100 hr were observed, while activity calculated per 1 mg protein showed one maximum at 0500 hr. Activity calculated per 1 g fresh tissue showed the maximum at 0500 hr for each enzyme only in microsomal fraction. As far as acrophase table is concerned for all enzymes and fractions the acrophase occurred during the night. The obtained results are discussed in relation to lysosomal enzymes synthesis process as well as different reference values.  相似文献   

9.
本研究以绒毛栓孔菌为材料,采用液体培养的方法分析其在发酵过程中胞外酶的活性变化,并对其菌丝体生物量和发酵液pH值进行了测定。结果表明:胞外酶活性与菌丝体生长状况密切相关。菌丝体生物量增长呈"S"型,6~8d增长最快,第12天达到最大值,在此过程中漆酶、锰过氧化物酶、淀粉酶、羧甲基纤维素酶、果胶酶和蛋白酶活性均出现高峰。酶活性的变化表明,在液体培养过程中绒毛栓孔菌首先分解木质素,其次利用淀粉和纤维素作为碳源,蛋白质作为氮源。若要获得最大菌丝体生物量,缩短培养时间,就必须在培养过程中保证碳氮源的均衡供给。本试验说明不同的酶其分泌高峰期可以作为判断菌丝体营养利用情况和培养周期的依据,以此获取最大菌丝体生物量,为工业生产利用奠定基础。  相似文献   

10.
Abstract: It has been reported in several recent studies that the manipulation of cerebral 4-aminobutyric acid (GABA) level results in unexpected changes in the cerebral polyamine metabolism in vivo . The mechanisms behind these interactions have remained unknown. The present results show that the changes in polyamine metabolism are not limited to the brain, but are observable also in the liver, which served as a peripheral reference tissue. Different types of responses in the activities of the poiyamine-synthesizing enzymes, ornithine decarboxylase and adenosylmethionine decarboxylase, were observed after increasing the cerebral GABA concentration of mice with varying doses of two GABA transaminase inhibitors, gabaculine and ethanolamine- O- sulphate. The time course of the significant changes in the enzyme activities showed significant correlation between the brain and liver. The possibility of direct effects of the drugs on liver was excluded by injecting them intracerebroventricularly, and by performing control experiments with equal doses given peripherally. It is concluded that the observed changes in the polyamine metabolism of liver are produced through centrally mediated humoral regulation, and that the corresponding changes in the brain are obviously due to the same factor or factors, since they are significantly correlated to the changes in liver.  相似文献   

11.
土壤酶主要由植物根系和微生物分泌产生, 参与有机质降解和元素循环等重要过程。研究降水量变化和氮(N)添加下土壤酶活性及其与植物群落组成以及微生物活动间的联系, 可为深入理解全球变化背景下植被-土壤系统中元素的循环与转化机制提供科学依据。该研究基于2017年在宁夏荒漠草原设立的降水量变化(减少50%、减少30%、对照、增加30%以及增加50%)和N添加(0和5 g·m-2·a-1)的野外试验, 研究了2018-2019年土壤蔗糖酶、脲酶和磷酸酶活性的变化, 分析了其与植物群落组成、微生物生态化学计量特征的关系。结果表明: 与减少降水量相比, 增加降水量对3种酶活性的影响较大, 但其效应与N添加以及年份存在交互作用。2018年增加降水量对3种酶活性的影响缺乏明显的规律性。2019年增加降水量不同程度地提高了3种酶活性。N添加对3种酶活性影响较小(尤其2019年); 草木樨状黄耆(Astragalus melilotoides)生物量与脲酶和磷酸酶活性负相关。糙隐子草(Cleistogenes squarrosa)生物量与3种酶活性正相关。除Patrick丰富度指数外, 植物群落多样性指数普遍与3种酶活性负相关; 对酶活性影响较大的因子包括土壤pH、土壤全磷(P)含量和微生物生物量碳(C):N:P。因此, 短期内降水量变化及N添加对荒漠草原土壤酶的影响较小(尤其在减少降水量条件下); 降水量增加及N添加通过提高植物生物量、改变植物多样性、调节微生物生物量元素平衡以及增强土壤P有效性, 直接影响着土壤酶活性。鉴于土壤酶种类的多样化和功能的复杂性, 今后还需结合多种酶活性的长期变化规律, 深入分析全球变化对酶活性的影响机制。  相似文献   

12.
The Syrian hamster Harderian gland (HG) is an organ continually exposed to oxidative stress caused by high concentrations of porphyric metabolites. According to previous studies, melatonin, which is rhythmically secreted by the pineal gland and tonically produced by the HG, antagonizes the oxidative damage. HGs exhibit a strong gender-dependent correlation between porphyrins, melatonin, and histological appearance. In HGs of both sexes, we have investigated effects of a single gene defect in the circadian clock system (tau mutation) causing a shortened free-running period and an advanced maximum of circulating melatonin. Comparisons were made with wild-type animals, one group of which received daily pharmacological injections of melatonin in late photophase. Changes were observed in histological characteristics, porphyrin content, antioxidant enzyme activities, and damage of proteins and lipids. HGs of tau hamsters showed morphological changes which can be partially interpreted in terms of increased damage. Additionally, tau females exhibited a many-fold augmentation in the percentage of so-called type II cells, which are otherwise typical for the male glands. In tau hamsters of both sexes, major antioxidative enzyme activities (superoxide dismutase, glutathione reductase, and catalase) were markedly enhanced, a presumably compensatory response to increased oxidative stress. Higher oxidative damage in tau HGs was directly demonstrable by a many-fold increase in protein carbonyl. Rises in antioxidative enzymes were also observed upon injections of melatonin; this was, however, not accompanied by changes in protein carbonyl, so that enzyme inductions by the hormone should be understood as protective actions. Our data are not only in accordance with findings on protective effects by melatonin, but also with our earlier observation made in Drosophila that perturbations in the circadian system lead to increased oxidative stress.  相似文献   

13.
14.
15.
Metabolites generated from fuel metabolism in pancreatic beta-cells control exocytosis of insulin, a process which fails in type 2 diabetes. To identify and quantify these metabolites, global and unbiased analysis of cellular metabolism is required. To this end, polar metabolites, extracted from the clonal 832/13 beta-cell line cultured at 2.8 and 16.7 mM glucose for 48 h, were derivatized followed by identification and quantification, using gas chromatography (GC) and mass spectrometry (MS). After culture at 16.7 mM glucose for 48 h, 832/13 beta-cells exhibited a phenotype reminiscent of glucotoxicity with decreased content and secretion of insulin. The metabolomic analysis revealed alterations in the levels of 7 metabolites derived from glycolysis, the TCA cycle and pentose phosphate shunt, and 4 amino acids. Principal component analysis of the metabolite data showed two clusters, corresponding to the cells cultured at 2.8 and 16.7 mM glucose, respectively. Concurrent changes in protein expression were analyzed by 2-D gel electrophoresis followed by LC-MS/MS. The identities of 86 spots corresponding to 75 unique proteins that were significantly different in 832/13 beta-cells cultured at 16.7 mM glucose were established. Only 5 of these were found to be metabolic enzymes that could be involved in the metabolomic alterations observed. Anticipated changes in metabolite levels in cells exposed to increased glucose were observed, while changes in enzyme levels were much less profound. This suggests that substrate availability, allosteric regulation, and/or post-translational modifications are more important determinants of metabolite levels than enzyme expression at the protein level.  相似文献   

16.
Activities of enzymes in glycolysis, the pentose phosphate pathway, the tricarboxylic acid cycle, and glutaminolysis have been determined in the mouse myeloma SP2/0.Ag14. Cells were grown on IMDM medium with 5% serum in steady-state chemostat culture at a fixed dilution rate of 0.03 h-1. Three culture conditions, which differed in supply of glucose and oxygen, were chosen so as to change catabolic fluxes in the central metabolism, while keeping anabolic fluxes constant. In the three steady-state situations, the ratio between specific rates of glucose and glutamine consumption differed by more than twentyfold. The specific rates of glucose consumption and lactate production were highest at low oxygen supply, whereas the specific rate of glutamine consumption was highest in the culture fed with low amounts of glucose. Under low oxygen conditions, the specific production of ammonia increased and the consumption pattern of amino acids showed large changes compared with the other two cultures. For the three steady states, activities of key enzymes in glycolysis, the pentose phosphate pathway, glutaminolysis, and the TCA cycle were measured. The differences in the in vivo fluxes were only partially reflected in changes in enzyme levels. The largest differences were observed in the levels of glycolytic enzymes, which were elevated under conditions of low oxygen supply. High activities of phosphoenolpyruvate carboxykinase (E.C. 4.1.1.32) in all cultures suggest an important role for this enzyme as a link between glutaminolysis and glycolysis. For all enzymes, in vitro activities were found that could accommodate the estimated maximum in vivo fluxes. These results show that the regulation of fluxes in central metabolism of mammalian cells occurs mainly through modulation of enzyme activity and, to a much lesser extent, by enzyme synthesis.  相似文献   

17.
Hydroponic culture was used to comparatively investigate the copper (Cu)-induced alteration to sucrose metabolism and biomass allocation in two Elsholtzia haichowensis Sun populations with one from a Cu-contaminated site (CS) and the other from a non-contaminated site (NCS). Experimental results revealed that biomass allocation preferred roots over shoots in CS population, and shoots over roots in NCS population under Cu exposure. The difference in biomass allocation was correlated with the difference in sucrose partitioning between the two populations. Cu treatment (45 μM) significantly decreased leaf sucrose content and increased root sucrose content in CS population as a result of the increased activities of leaf sucrose synthesis enzymes (sucrose phosphate synthetase and sucrose synthase) and root sucrose cleavage enzyme (vacuolar invertase), which led to increased sucrose transport from leaves to roots. In contrast, higher Cu treatment increased sucrose content in leaves and decreased sucrose content in roots in NCS population as a result of the decreased activities of root sucrose cleavage enzymes (vacuolar and cell wall invertases) that led to less sucrose transport from leaves to roots. These results provide important insights into carbon resource partitioning and biomass allocation strategies in metallophytes and are beneficial for the implementation of phytoremediation techniques.  相似文献   

18.
19.
Picrosides, the terpenoids synthesized by Picrorhiza kurroa, have ample usage in medicine. Identification of the regulatory enzymes involved in picroside biosynthesis needs to be explored for improving the level of these secondary metabolites. Current efforts are based on the analysis of secondary metabolism in picroside biosynthesis but its interpretation is limited by the lack of information on the involvement of primary metabolic pathways. The present study investigated the connection of primary metabolic enzymes with the picrosides levels in P. kurroa. The results showed changes in the catalytic activities as well as in the gene expression profiles of hexokinase, pyruvate kinase, isocitrate dehydrogenase, malate dehydrogenase, and NADP+-malic enzyme in congruence with picroside-I content under different conditions of P. kurroa growth, which indicates the role of these enzymes in the accumulation of picrosides. The significant correlation coefficients (p?<?0.05) observed between gene expression and enzyme activity underline the role of integrative studies for a better understanding of connecting links between metabolic pathways leading to picroside biosynthesis. This is apparently the first report on the involvement of glycolytic and TCA cycle enzymes in the accumulation of picrosides in P. kurroa.  相似文献   

20.
Cysteine conjugate beta-lyase is a name applied to enzymes which cleave the S-cysteine conjugates of some xenobiotics to pyruvate, ammonia, and a thiol. Recently, several laboratories have characterized these enzymes from kidney, liver, and bacterial sources in an effort to understand their role in the genesis of novel sulfur-containing metabolites of xenobiotics and in the toxicity of some S-cysteine conjugates. Kynureninase is an enzyme which plays a key role in the biosynthesis of nicotinamide ribonucleotides. This investigation demonstrates that rat hepatic cysteine conjugate beta-lyase is the same enzyme as kynureninase. Both activities copurify on ion exchange, hydroxylapatite, and molecular exclusion chromatography. The subunit composition of enzyme prepared by two different methods is identical, Mr = 55,000. The Km values for 3-OH-kynurenine and kynurenine are 13 and 400 microM, respectively. Kynurenine and 3-hydroxykynurenine inhibit cysteine conjugate beta-lyase activity. Inactivation of the enzyme by substrates which undergo beta-elimination results in loss of kynureninase activity, but kynurenine does not inactivate the enzyme. Both enzyme activities react with anti-cysteine conjugate beta-lyase antibody. Product inhibitors of kynureninase, anthranilate, and 3-hydroxyanthranilate are also inhibitors of cysteine conjugate beta-lyase. Heat inactivation at 70 degrees C produced coincident loss of both activities. The enzyme has an absorption maximum at 432 nm suggesting a bound pyridoxal phosphate. These data show that at least one cysteine conjugate beta-lyase is a pyridoxal phosphate enzyme with a biological function other than xenobiotic metabolism. The enzyme can catalyze two distinct types of reactions, i.e. beta-elimination and the kynureninase reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号