首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eukaryotic translation initiation factor 2B (eIF2B) is the guanine-nucleotide exchange factor for eukaryotic initiation factor 2 (eIF2). eIF2B is a heteropentameric protein composed of alpha- subunits. The alpha, beta, and delta subunits form a regulatory subcomplex, while the gamma and form a catalytic subcomplex. Archaea possess homologues of alpha, beta, and delta subunits of eIF2B. Here, we report the three-dimensional structure of an archaeal regulatory subunit (aIF2Balpha) from the hyperthermophilic archaeon Pyrococcus horikoshii OT3 determined by X-ray crystallography at 2.2A resolution. aIF2Balpha consists of two subdomains, an N-domain (residues 1-95) and a C-domain (residues 96-276), connected by a long alpha-helix (alpha5: 78-106). The N-domain contains a five helix bundle structure, while the C-domain folds into the alpha/beta structure, thus showing similarity to D-ribose-5-phosphate isomerase structure. The presence of two molecules in the crystallographic asymmetric unit and the gel filtration analysis suggest a dimeric structure of aIF2Balpha in solution, interacting with each other by C-domains. Furthermore, the crystallographic 3-fold symmetry generates a homohexameric structure of aIF2Balpha; the interaction is primarily mediated by the long alpha-helix at the N-domains. This structure suggests an architecture of the three subunits, alpha, beta, and delta, in the regulatory subcomplex within eIF2B.  相似文献   

2.
Eukaryotic and archaeal initiation factors 2 (e/aIF2) are heterotrimeric proteins (alphabetagamma) carrying methionylated initiator tRNA to the small subunit of the ribosome. The three-dimensional structure of aIF2gamma from the Archaea Pyrococcus abyssi was previously solved. This subunit forms the core of the heterotrimer. The alpha and beta subunits bind the gamma, but do not interact together. aIF2gamma shows a high resemblance with elongation factor EF1-A. In this study, we characterize the role of each subunit in the binding of the methionylated initiator tRNA. Studying various aminoacyl-tRNA ligands shows that the methionyl group is a major determinant for recognition by aIF2. aIF2gamma alone is able to specifically bind Met-tRNAiMet, although with a reduced affinity as compared with the intact trimer. Site-directed mutagenesis confirms a binding mode of the tRNA molecule similar to that observed with the elongation factor. Under our assay conditions, aIF2beta is not involved in the docking of the tRNA molecule. In contrast, aIF2alpha provides the heterotrimer its full tRNA binding affinity. Furthermore, the isolated C-domain of aIF2alpha is responsible for binding of the alpha subunit to gamma. This binding involves an idiosyncratic loop of domain 2 of aIF2gamma. Association of the C-domain of aIF2alpha to aIF2gamma is enough to retrieve the binding affinity of tRNA for aIF2. The N-terminal and central domains of aIF2alpha do not interfere with tRNA binding. However, the N-domain of aIF2alpha interacts with RNA unspecifically. Based on this property, a possible contribution of aIF2alpha to formation of a productive complex between aIF2 and the small ribosomal subunit is envisaged.  相似文献   

3.
Translation initiation factor 2 (eIF2) is a heterotrimeric protein that transfers methionyl-initiator tRNA(Met) to the small ribosomal subunit in a ternary complex with GTP. The eIF2 phosphorylated on serine 51 of its alpha subunit [eIF2(alphaP)] acts as competitive inhibitor of its guanine nucleotide exchange factor, eIF2B, impairing formation of the ternary complex and thereby inhibiting translation initiation. eIF2B is comprised of catalytic and regulatory subcomplexes harboring independent eIF2 binding sites; however, it was unknown whether the alpha subunit of eIF2 directly contacts any eIF2B subunits or whether this interaction is modulated by phosphorylation. We found that recombinant eIF2alpha (glutathione S-transferase [GST]-SUI2) bound to the eIF2B regulatory subcomplex in vitro, in a manner stimulated by Ser-51 phosphorylation. Genetic data suggest that this direct interaction also occurred in vivo, allowing overexpressed SUI2 to compete with eIF2(alphaP) holoprotein for binding to the eIF2B regulatory subcomplex. Mutations in SUI2 and in the eIF2B regulatory subunit GCD7 that eliminated inhibition of eIF2B by eIF2(alphaP) also impaired binding of phosphorylated GST-SUI2 to the eIF2B regulatory subunits. These findings provide strong evidence that tight binding of phosphorylated SUI2 to the eIF2B regulatory subcomplex is crucial for the inhibition of eIF2B and attendant downregulation of protein synthesis exerted by eIF2(alphaP). We propose that this regulatory interaction prevents association of the eIF2B catalytic subcomplex with the beta and gamma subunits of eIF2 in the manner required for GDP-GTP exchange.  相似文献   

4.
Eukaryotic and archaeal initiation factor 2 (e- and aIF2, respectively) are heterotrimeric proteins (alphabetagamma) supplying the small subunit of the ribosome with methionylated initiator tRNA. The gamma subunit forms the core of the heterotrimer. It resembles elongation factor EF1-A and ensures interaction with Met-tRNA(i)(Met). In the presence of the alpha subunit, which is composed of three domains, the gamma subunit expresses full tRNA binding capacity. This study reports the crystallographic structure of the intact aIF2alpha subunit from the archaeon Pyrococcus abyssi and that of a derived C-terminal fragment containing domains 2 and 3. The obtained structures are compared with those of N-terminal domains 1 and 2 of yeast and human eIF2alpha and with the recently determined NMR structure of human eIF2alpha. We show that the three-domain organization in the alpha subunit is conserved in archaea and eukarya. Domains 1 and 2 form a rigid body linked to a mobile third domain. Sequence comparisons establish that the most conserved regions in the aIF2alpha polypeptide lie at opposite sides of the protein, within domain 1 and domain 3, respectively. These two domains are known to exhibit RNA binding capacities. We propose that domain 3, which is known to glue the alpha subunit onto the gamma subunit, participates in Met-tRNA(i)(Met) binding while domain 1 recognizes either rRNA or mRNA on the ribosome. Thereby, the observed structural mobility within the e- and aIF2alpha molecules would be an integral part of the biological function of this subunit in the heterotrimeric e- and aIF2alphabetagamma factors.  相似文献   

5.
Eukaryotic initiation factor 2 (eIF2) is a GDP-binding protein with three subunits: alpha, beta, and gamma. It delivers initiator tRNA (Met-tRNAi) to 40S ribosomes in a GTP-dependent manner. The factor regulates the translation of messenger RNAs through the phosphorylation of serine 51 residue in the small or alpha-subunit of eIF2 (eIF2alpha) and modulation of its interaction with a rate-limiting heteropentameric protein eIF2B. To understand the structural, functional, and regulatory roles of each of these subunits in the various activities of phosphorylated and unphosphorylated eIF2, such, as its ability to interact with GTP, Met-tRNAi, 40S ribosomes and with various proteins, we have for the first time over expressed all the three subunits of human eIF2 independently, and, also together in Sf9 cells using pFast Bac HT vector of baculovirus expression system. The expression of all subunits increased with increase in infection time up to 72 h. We have also over expressed three mutant forms of eIF2alpha viz, S51A, S51D, and S48A in which the serine at 51 or 48 position is replaced by an alanine or aspartic acid with 6x histidine tag at the N-terminus. Further, any of the two subunits or all the three subunits of eIF2 were coexpressed by multiple infection of cells with recombinant viruses. Purified alpha (wt and mutants) and beta subunits were found suitable to serve as substrates for different kinases. The recombinant subunits of eIF2alpha and beta-subunits were also phosphorylated in cultured insect cells. Phosphorylation of eIF2alpha in vitro was not significantly different in the presence and absence of the other subunits.  相似文献   

6.
The protein synthesis initiation factor 2 (eIF2) from Xenopus laevis oocytes has been extensively purified and characterized. Depending upon the purification scheme, eIF2 containing three subunits (alpha, beta and gamma) with Mr of 160,000, or two subunits (alpha and gamma) with Mr 90,000 can be obtained. The key step for obtaining the three subunit factor is the addition of 30 mM benzamidine to the initial homogenization, since this compound protects the highly sensitive beta subunit from proteolytic degradation. Subunit alpha of the oocyte eIF2 can be phosphorylated by the specific kinase from rabbit reticulocytes, whereas subunit beta is phosphorylated by oocyte casein kinase II. The oocyte eIF2 has a KD of 7.2 X 10(-8) M for GDP and 3.8 X 10(-6) M for GTP. The purified three subunit eIF2 has 0.4 mol of GDP bound/mol of factor. The crude preparations of eIF2 are not affected by Mg2+ in their exchange of guanine nucleotides or in the formation of ternary complexes with GTP and methionyl-tRNA, but these reactions are strongly inhibited by Mg2+ when the highly purified preparations are used.  相似文献   

7.
Phosphorylation of the serine 51 residue in the alpha-subunit of translational initiation factor 2 in eukaryotes (eIF2 alpha) impairs protein synthesis presumably by sequestering eIF2B, a rate-limiting pentameric guanine nucleotide exchange protein which catalyzes the exchange of GTP for GDP in the eIF2-GDP binary complex. To further understand the importance of eIF2 alpha phosphorylation in the interaction between eIF2 alpha(P) and eIF2B proteins and thereby the regulation of eIF2B activity, we expressed the wild type (wt) and a mutant eIF2 alpha in which the serine 48 residue was replaced with alanine (48A mutant) in the baculovirus system. The findings reveal that the expression of both of these recombinant subunits was very efficient (15-20% of the total protein) and both proteins were recognized by an eIF2 alpha monoclonal antibody and were phosphorylated to the same extent by reticulocyte eIF2 alpha kinases. However, partially purified recombinant subunits (wt or 48A mutant) were not phosphorylated as efficiently as the eIF2 alpha subunit present in the purified reticulocyte trimeric eIF2 complex and were also found to inhibit the phosphorylation of eIF2 alpha of the trimeric complex. Furthermore, the extents of inhibition of eIF2B activity and formation of the eIF2 alpha(P)-eIF2B complex that occurs due to eIF2 alpha phosphorylation in poly(IC)-treated rabbit reticulocyte lysates were decreased significantly in the presence of insect cell extracts expressing the 48A mutant eIF2 alpha compared to those for wt. These findings support the hypothesis that the serine 48 residue is required for high-affinity interaction between eIF2 alpha(P) and eIF2B.  相似文献   

8.
Heterotrimeric a/eIF2alphabetagamma (archaeal homologue of the eukaryotic translation initiation factor 2 with alpha, beta and gamma subunits) delivers charged initiator tRNA (tRNAi) to the small ribosomal subunit. In this work, we determined the structures of aIF2gamma from the archaeon Sulfolobus solfataricus in the nucleotide-free and GDP-bound forms. Comparison of the free, GDP and Gpp(NH)p-Mg2+ forms of aIF2gamma revealed a sequence of conformational changes upon GDP and GTP binding. Our results show that the affinity of GDP to the G domain of the gamma subunit is higher than that of Gpp(NH)p. In analyzing a pyrophosphate molecule binding to domain II of the gamma subunit, we found a cleft that is very suitable for the acceptor stem of tRNA accommodation. It allows the suggestion of an alternative position for Met-tRNA i Met on the alphagamma intersubunit dimer, at variance with a recently published one. In the model reported here, the acceptor stem of the tRNAi is approximately perpendicular to that of tRNA in the ternary complex elongation factor Tu-Gpp(NH)p-tRNA. According to our analysis, the elbow and T stem of Met-tRNA i Met in this position should make extensive contact with the alpha subunit of aIF2. Thus, this model is in good agreement with experimental data showing that the alpha subunit of aIF2 is necessary for the stable interaction of aIF2gamma with Met-tRNA i Met.  相似文献   

9.
This study determined whether all protein kinase A (PKA) and protein kinase C (PKC) phosphorylation sites on the alpha4 subunit of rat alpha4beta2 neuronal nicotinic receptors could be localized to the M3/M4 cytoplasmic domain of the protein, and investigated specific amino acid substrates for the kinases through two-dimensional phosphopeptide mapping and site-directed mutagenesis. Experiments were conducted using alpha4beta2 receptors expressed in Xenopus oocytes and a fusion protein corresponding to the M3/M4 cytoplasmic domain of alpha4 (alpha4(333-594) ). When oocytes expressing alpha4beta2 receptors were incubated with [(32) P]orthophosphate in order to label endogenous ATP stores, phosphorylation of alpha4 subunits was evident. Incubation of either immunoprecipitated receptors or the fusion protein with [(32) P]ATP and either PKA or PKC followed by trypsinization of the samples demonstrated that the kinases phosphorylated alpha4 subunits on multiple phosphopeptides, and that the phosphorylated full-length alpha4 protein and fusion protein produced identical phosphopeptide maps. Site-directed mutagenesis of Ser365, Ser472 and Ser491 to alanines in the fusion protein eliminated phosphopeptides phosphorylated by PKA, but not by PKC. Other mutations investigated, Ser470, Ser493, Ser517 and Ser590, did not alter the phosphopeptide maps. Results indicate that Ser365, Ser472 and Ser491 on neuronal nicotinic receptor alpha4 subunits are phosphorylated by PKA and are likely to represent post-translational regulatory sites on the receptor.  相似文献   

10.
Eukaryotic and archaeal initiation factors 2 (e/aIF2) are heterotrimeric proteins (alphabetagamma) supplying the small subunit of the ribosome with methionylated initiator tRNA. This study reports the crystallographic structure of an aIF2alphagamma heterodimer from Sulfolobus solfataricus bound to Gpp(NH)p-Mg(2+). aIF2gamma is in a closed conformation with the G domain packed on domains II and III. The C-terminal domain of aIF2alpha interacts with domain II of aIF2gamma. Conformations of the two switch regions involved in GTP binding are similar to those encountered in an EF1A:GTP:Phe-tRNA(Phe) complex. Comparison with the EF1A structure suggests that only the gamma subunit of the aIF2alphagamma heterodimer contacts tRNA. Because the alpha subunit markedly reinforces the affinity of tRNA for the gamma subunit, a contribution of the alpha subunit to the switch movements observed in the gamma structure is considered.  相似文献   

11.
Stress imposed on the endoplasmic reticulum (ER) induces the phosphorylation of the alpha-subunit of the eukaryotic initiation factor 2 (eIF2) on Ser51. This results in transient inhibition of general translation initiation while concomitantly activating a signaling pathway that promotes the expression of genes whose products improve ER function. Conversely, dephosphorylation of eIF2alphaSer51 is accomplished by protein phosphatase 1 (PP1c) complexes containing either the protein CReP or GADD34, which target PP1c to eIF2. Here, we demonstrate that the Src homology (SH) domain-containing adaptor Nck is a key component of a molecular complex that controls eIF2alpha phosphorylation and signaling in response to ER stress. We show that overexpression of Nck decreases basal and ER stress-induced eIF2alpha phosphorylation and the attendant induction of ATF4 and CHOP. In contrast, we demonstrate that the mouse embryonic fibroblasts lacking both isoforms of Nck (Nck1-/-Nck2-/-) show higher levels of eIF2alpha phosphorylation and premature induction of ATF4, CHOP, and GADD34 in response to ER stress and finally, are more resistant to cell death induced by prolonged ER stress conditions. We establish that a significant amount of Nck protein localizes at the ER and is in a complex with eIF2 subunits. Further analysis of this complex revealed that it also contains the Ser/Thr phosphatase PP1c, its regulatory subunit CReP, and dephosphorylates eIF2alpha on Ser51 in vitro. Overall, we demonstrate that Nck as a component of the CReP/PP1c holophosphatase complex contributes to maintain eIF2alpha in a hypophosphorylated state. In this manner, Nck modulates translation and eIF2alpha signaling in response to ER stress.  相似文献   

12.
The subunits of phosphorylase kinase are separated and isolated in high yield by gel filtration chromatography in pH 3.3 phosphate buffer containing 8 M urea. Three protein peaks are obtained: the alpha and beta subunits coelute in the first, whereas the gamma and delta subunits are separate peaks. Upon dilution of the denaturant, catalytic activity reappears, associated only with the gamma subunit. As has been previously observed (Kee, S.M., and Graves, D.J. (1986) J. Biol. Chem. 261, 4732-4737), addition of calmodulin dramatically stimulates the reactivation of gamma. Inclusion of increasing amounts of the alpha/beta subunit mixture in the renaturation progressively decreases the activity of the renatured gamma or gamma-calmodulin. This inhibition by alpha/beta is likely due to specific interactions with the gamma subunit because the inhibition is less at pH 8.2 than at pH 6.8 and less when equivalent amounts of phosphorylated alpha/beta subunits are used (both alkaline pH and phosphorylation are known to stimulate the activity of the holoenzyme). These results suggest that the role of either the alpha or beta subunits, or perhaps both, in the nonactivated (alpha 2 beta 2 gamma 2 delta 2)2 complex of phosphorylase kinase is to suppress the activity of the gamma subunit and that activation of the enzyme, by phosphorylation for instance, is due to deinhibition caused by release of this quaternary constraint by alpha and/or beta upon gamma.  相似文献   

13.
14.
Heterotrimeric translation initiation factor (IF) a/eIF2 (archaeal/eukaryotic IF 2) is present in both Eukarya and Archaea. Despite strong structural similarity between a/eIF2 orthologs from the two domains of life, their functional relationship is obscure. Here, we show that aIF2 from Sulfolobus solfataricus can substitute for its mammalian counterpart in the reconstitution of eukaryotic 48S initiation complexes from purified components. aIF2 is able to correctly place the initiator Met-tRNAi into the P-site of the 40S ribosomal subunit and accompany the entire set of eukaryotic translation IFs in the process of cap-dependent scanning and AUG codon selection. However, it seems to be unable to participate in the following step of ribosomal subunit joining. In accordance with this, aIF2 inhibits rather than stimulates protein synthesis in mammalian cell-free system. The ability of recombinant aIF2 protein to direct ribosomal scanning suggests that some archaeal mRNAs may utilize this mechanism during translation initiation.  相似文献   

15.
Gamma-aminobutyric acid Type A (GABAA) receptors are the major sites of synaptic inhibition in the central nervous system. These receptors are thought to be pentameric complexes of homologous transmembrane glycoproteins. Molecular cloning has revealed a multiplicity of different GABAA receptor subunits divided into five classes, alpha, beta, gamma, delta, and rho, based on sequence homology. Within the proposed major intracellular domain of these subunits, there are numerous potential consensus sites for protein phosphorylation by a variety of protein kinases. We have used purified fusion proteins of the major intracellular domain of GABAA receptor subunits produced in Escherichia coli to examine the phosphorylation of these subunits by cAMP-dependent protein kinase (PKA) and protein kinase C (PKC). The purified fusion protein of the intracellular domain of the beta 1 subunit was an excellent substrate for both PKA and PKC. PKA and PKC phosphorylated the beta 1 subunit fusion protein on serine residues on a single tryptic phosphopeptide. Site-directed mutagenesis of serine 409 in the intracellular domain of the beta 1 subunit to an alanine residue eliminated the phosphorylation of the beta 1 subunit fusion protein by both protein kinases. The purified fusion proteins of the major intracellular domain of the gamma 2S and gamma 2L subunits of the GABAA receptor were rapidly and stoichiometrically phosphorylated by PKC but not by PKA. The phosphorylation of the gamma 2S subunit occurred on serine residues on a single tryptic phosphopeptide. Site-directed mutagenesis of serine 327 of the gamma 2S subunit fusion protein to an alanine residue eliminated the phosphorylation of the gamma 2S fusion protein by PKC. The gamma 2L subunit is an alternatively spliced form of the gamma 2S subunit that differs by the insertion of 8 amino acids (LLRMFSFK) within the major intracellular domain of the gamma 2S subunit. The PKC phosphorylation of the gamma 2L subunit occurred on serine residues on two tryptic phosphopeptides. Site-specific mutagenesis of serine 343 within the 8-amino acid insert to an alanine residue eliminated the PKC phosphorylation of the novel site in the gamma 2L subunit. No phosphorylation of a purified fusion protein of the major intracellular loop of the alpha 1 subunit was observed with either PKA or PKC. These results identify the specific amino acid residues within GABAA receptor subunits that are phosphorylated by PKA and PKC and suggest that protein phosphorylation of these sites may be important in regulating GABAA receptor function.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
aIF2 beta is the archaeal homolog of eIF2 beta, a member of the eIF2 heterotrimeric complex, implicated in the delivery of Met-tRNA(i)(Met) to the 40S ribosomal subunit. We have determined the solution structure of the intact beta-subunit of aIF2 from Methanobacterium thermoautotrophicum. aIF2 beta is composed of an unfolded N terminus, a mixed alpha/beta core domain and a C-terminal zinc finger. NMR data shows the two folded domains display restricted mobility with respect to each other. Analysis of the aIF2 gamma structure docked to tRNA allowed the identification of a putative binding site for the beta-subunit in the ternary translation complex. Based on structural similarity and biochemical data, a role for the different secondary structure elements is suggested.  相似文献   

17.
Multiple herpes simplex virus type 1 functions control translation by regulating phosphorylation of the initiation factor eIF2 on its alpha subunit. Both of the two known regulators, the gamma(1)34.5 and Us11 gene products, are produced late in the viral life cycle, although the gamma(1)34.5 gene is expressed prior to the gamma(2) Us11 gene, as gamma(2) genes require viral DNA replication for their expression while gamma(1) genes do not. The gamma(1)34.5 protein, through a GADD34-related domain, binds a cellular phosphatase (PP1alpha), maintaining pools of active, unphosphorylated eIF2. Infection of a variety of cultured cells with a gamma(1)34.5 mutant virus results in the accumulation of phosphorylated eIF2alpha and the inhibition of translation prior to the completion of the viral lytic program. Ectopic, immediate-early Us11 expression prevents eIF2alpha phosphorylation and the inhibition of translation observed in cells infected with a gamma(1)34.5 mutant by inhibiting activation of the cellular kinase PKR and the subsequent phosphorylation of eIF2alpha; however, a requirement for the Us11 protein, produced in its natural context as a gamma(2) polypeptide, remains to be demonstrated. To determine if Us11 regulates late translation, we generated two Us11 null viruses. In cells infected with a Us11 mutant, elevated levels of activated PKR and phosphorylated eIF2alpha were detected, viral translation rates were reduced 6- to 7-fold, and viral replication was reduced 13-fold compared to replication in cells infected with either wild-type virus or a virus in which the Us11 mutation was repaired. This establishes that the Us11 protein is critical for proper late translation rates. Moreover, it demonstrates that the shutoff of protein synthesis observed in cells infected with a gamma(1)34.5 mutant virus, previously ascribed solely to the gamma(1)34.5 mutation, actually results from the combined loss of gamma(1)34.5 and Us11 functions, as the gamma(2) Us11 mRNA is not translated in cells infected with a gamma(1)34.5 mutant.  相似文献   

18.
Studies have suggested that the expression, translocation, and function of alpha4beta2 nicotinic receptors may be modulated by alpha4 subunit phosphorylation, but little direct evidence exists to support this idea. The objective of these experiments was to identify specific serine/threonine residues on alpha4 subunits that are phosphorylated in vivo by cAMP-dependent protein kinase and protein kinase C (PKC). To accomplish this, DNAs coding for human alpha4 subunits containing alanines in place of serines/threonines predicted to represent phosphorylation sites were constructed, and transiently transfected with the DNA coding for wild-type beta2 subunits into SH-EP1 cells. Cells were pre-incubated with (32)Pi and incubated in the absence or presence of forskolin or phorbol 12,13-dibutyrate. Immunoprecipitated alpha4 subunits were subjected to immunoblot, autoradiographic and phosphoamino acid analyses, and two-dimensional phosphopeptide mapping. Results confirmed the presence of two alpha4 protein bands, a major band of 71/75 kDa and a minor band of 80/85 kDa. Phosphoamino acid analysis of the major band indicated that only serine residues were phosphorylated. Phosphopeptide maps demonstrated that Ser362 and 467 on the M3/M4 cytoplasmic domain of the alpha4 subunit represent major cAMP-dependent protein kinase phosphorylation sites, while Ser550 also contained within this major intracellular loop is a major site for protein kinase C phosphorylation.  相似文献   

19.
20.
Rabbit reticulocyte eukaryotic initiation factor 2 was phosphorylated with the heme-regulated alpha subunit of eukaryotic initiation factor 2 kinase, and then the individual subunits were resolved by reversed-phase high performance liquid chromatography. Phosphorylated and unphosphorylated forms of the alpha subunit also were well resolved. The NH2-terminal sequences of intact alpha and gamma subunits were determined. No sequence was obtained from the beta subunit, suggesting that it may have a blocked NH2-terminus. Overlapping tryptic and chymotryptic phosphopeptides from the NH2-terminal sequence of the alpha subunit of eukaryotic initiation factor 2 were used to establish the order of amino acids 1-52 and localized the phosphorylation site within the sequence: -Leu-Leu-Ser48-Glu-Leu-Ser51-. Subdigestion of a tryptic fragment with chymotrypsin generated only phosphopeptides that appeared to terminate at leucine 50, indicating phosphorylation at serine 48.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号