首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The uptake of 3,3',5-[3'-125I]triiodo-L-thyronine ([125I]L-T3) and of L-[3',5'-125I]thyroxine ([125I]L-T4) by cultured rat glial cells was studied under initial velocity (Vi) conditions. Uptake of both hormones was carrier mediated and obeyed simple Michaelis-Menten kinetics. The following respective values of Km (microM) and Vmax (fmol/min/microgram of DNA) were obtained at 25 degrees C: 0.52 +/- 0.09 and 727 +/- 55 for L-T3 and 1.02 +/- 0.21 and 690 +/- 85 for L-T4. Ki values (microM) for the inhibition of [125I]L-T3 uptake by unlabeled analogues were as follows: L-T4, 0.88; 3,3',5'-triiodo-L-thyronine, 1.4; 3,3'-diiodo-L-thyronine, 2.9; 3,3',5-triiodo-D-thyronine, 4.8; and triiodothyroacetic acid, 5.3. These values indicate that the uptake system is stereospecific. Unlabeled L-T3 was a better competitor than unlabeled L-T4 for the uptake of [125I]L-T4, an observation suggesting that both hormones were taken up by a common carrier system. L-T3, and L-T4 uptake was pH dependent, a finding suggesting that the phenolic unionized form of the hormones was preferentially taken up. L-T3 uptake was studied in the presence of various inhibitors; the results suggest that uptake was independent of the transmembrane Na+ gradient and of the cellular energy. Compounds that inhibited cellular uptake but were without effect on L-T3 binding to isolated nuclei also inhibited L-T3 nuclear binding in intact cells, an observation suggesting that uptake could be rate limiting for the access of L-T3 to nuclear receptors when transport is severely inhibited.  相似文献   

2.
We have previously cloned rat MRP3 as an inducible transporter in the liver (Hirohashi, T., Suzuki, H., Ito, K., Ogawa, K., Kume, K., Shimizu, T., and Sugiyama, Y. (1998) Mol. Pharmacol. 53, 1068-1075). In the present study, the function of rat MRP3 was investigated using membrane vesicles isolated from LLC-PK1 and HeLa cell population transfected with corresponding cDNA. The ATP-dependent uptake of both 17beta estradiol 17-beta-D-glucuronide ([3H]E217betaG) and glucuronide of [14C] 6-hydroxy-5, 7-dimethyl-2-methylamino-4-(3-pyridylmethyl) benzothiazole (E3040), but not that of [3H]leukotriene C4 and [3H]2, 4-dinitrophenyl-S-glutathione, was markedly stimulated by MRP3 transfection in both cell lines. The Km and Vmax values for the uptake of [3H]E217betaG were 67 +/- 14 microM and 415 +/- 73 pmol/min/mg of protein, respectively, for MRP3-expressing membrane vesicles and 3.0 +/- 0.7 microM and 3.4 +/- 0.4 pmol/min/mg of protein, respectively, for the endogenous transporter expressed on HeLa cells. [3H]E217betaG had also a similar Km value for MRP3 when LLC-PK1 cells were used as the host. All glucuronide conjugates examined (E3040 glucuronide, 4-methylumbelliferone glucuronide, and naphthyl glucuronide) and methotrexate inhibited MRP3-mediated [3H]E217betaG transport in LLC-PK1 cells. Moreover, [3H]methotrexate was transported via MRP3. The inhibitory effect of estrone sulfate, [3H]2,4-dinitrophenyl-S-glutathione, and [3H]leukotriene C4 was moderate or minimal, whereas N-acetyl-2,4-dinitrophenylcysteine had no effect on the uptake of [3H]E217betaG. The uptake of [3H]E217betaG was enhanced by E3040 sulfate and 4-methylumbelliferone sulfate. Thus we were able to demonstrate that several kinds of organic anions are transported via MRP3, although the substrate specificity of MRP3 differs from that of MRP1 and cMOAT/MRP2 in that glutathione conjugates are poor substrates for MRP3.  相似文献   

3.
The transport of glutamine and alanine into rat colonocytes.   总被引:1,自引:1,他引:0       下载免费PDF全文
The transport of glutamine and alanine into isolated rat colonocytes was studied. The transport of both amino acids appears to be dependent on a Na+ gradient. The apparent Km values for the transport of glutamine and alanine were 2.56 +/- 0.84 and 5.35 +/- 1.20 mM respectively, but with similar Vmax. values. Glutamine and alanine transport were mutually competitive, and the transport of both amino acids was competitively inhibited by 2-methylaminoisobutyrate. In contrast, histidine inhibited the transport of both glutamine and alanine non-competitively. It is concluded that glutamine and alanine are transported into rat colonocytes by a common carrier system similar to System A of other cells. It is suggested that the metabolic function of this transport system in rat colonocytes might be the partial exchange of extracellular glutamine for intracellular alanine.  相似文献   

4.
The human erythrocyte membrane carriers for hexoses and nucleosides have several structural features in common. In order to assess functional similarities, the effects of adenosine derivatives on hexose transport and cytochalasin B binding sites were studied. Adenosine inhibited zero-trans uptake of 3-O-methylglucose half-maximally at 5 mM, while more hydrophobic adenosine deaminase-resistant derivatives were ten- to 20-fold more potent transport inhibitors. However, degradation of adenosine accounted for very little of this difference in potency. Hexose transport was rapidly inhibited by N6-(L-2-phenylisopropyl)adenosine at 5 degrees C in a dose-dependent fashion (EC50 = 240 microM), to lower the transport Vmax without affecting the Km. A direct interaction with the carrier protein was further indicated by the finding that N6-(L-2-phenylisopropyl)adenosine competitively inhibited [3H]cytochalasin B binding to erythrocytes (Ki = 143 microM) and decreased [3H]cytochalasin B photolabeling of hexose carriers in erythrocyte ghosts. The cross-reactivity of adenosine and several of its derivatives with the hexose carrier suggests further homologies between the carriers for hexoses and nucleosides, possibly related to their ability to transport hydrophilic molecules through the lipid core of the plasma membrane.  相似文献   

5.
Evidence is presented outlining basic properties of a previously undescribed facilitative transport system mediating transfer of methotrexate (MTX) polyglutamates from the cytoplasmic to the lysosomal compartment of the cell. These experiments were conducted using purified lysosomes prepared from murine S180 cells, and a model substrate ([3H]MTX + G1; methotrexate with 1 additional glutamyl residue) to examine biological aspects as well as pharmacological significance of this process in a tumor cell model. The data, expressed as a function of latent beta-hexosaminidase activity, a measure of lysosomal integrity, show that [3H]MTX + G1 uptake in lysosomes is temperature-dependent, is stimulated specifically by magnesium chloride and potassium chloride with maximal enhancement observed in the presence of both agents together, exhibits Michaelis-Menten saturation kinetics with Km and Vmax values of 346 +/- 39 microM and 2.8 +/- 0.3 pmol/min/unit of beta-hexosaminidase activity, respectively, and is competitively inhibited by longer chain polyglutamates with increasing effectiveness as shown by Ki values of 334 +/- 19, 201 +/- 16, 106 +/- 13, and 42 +/- 8 microM, for MTX + G1, MTX + G2, MTX + G3, and MTX + G4, respectively. In addition, uptake is inversely related to medium osmolarity indicating that the phenomenon we observe represents internalization of the [3H]MTX + G1 and not adsorption to a possible surface binding site. As a whole, the data are consistent with a single mediated transport system shared by all MTX polyglutamates for entry into lysosomes. It is our view that this transport system represents the initial step in the degradation of polyglutamates in the cell. In addition, based on a comparative analysis of the kinetics for hydrolysis and transport, we suggest that it is also the limiting step in this process and, as such, regulates the extent of degradation of the free cellular pools of these compounds.  相似文献   

6.
Esters of N-hydroxysulfosuccinimide strongly inhibit L-(+)-lactate transport in rabbit erythrocytes, probably by acylating amino groups on the transport protein. Lactate transport studies using bis(sulfosuccinimido) suberate (BS3), bis(sulfosuccinimido) adipate (BS2A), bis(sulfosuccinimido) dithiobis(propionate), and a variety of monocarboxylate esters suggest that an exofacial amino group of the lactate transport protein is essential for lactate transport. Also, reductive methylation studies show that even when positive charge is preserved in modified amino groups, the transport is strongly inhibited. At pH less than 6, band 3 mediated inorganic anion transport is enhanced in BS3-treated cells, while at pH greater than 6, it is inhibited. BS3-induced inhibition of L-(+)-lactate transport does not have this pH dependence. BS3 reduces the labeling of a 40-50-kDa membrane polypeptide (band R) by tritiated 4,4'-diisothiocyanato-2,2-dihydrostilbenedisulfonate ([3H]H2DIDS) and by tritiated bis(sulfosuccinimido) adipate ([3H]BS2A). Tritiated sulfosuccinimido acetate (S2[3H]acetate) also labels band R, over a range of concentrations where lactate transport is inhibited in a dose-dependent manner by S2 acetate. BS3 is a known impermeant protein cross-linker. S2 acetate permeates rabbit red cell membranes by an H2DIDS-inhibitable mechanism. BS3 cross-links the proteolytic fragments of rabbit band 3 produced by extracellular chymotrypsin. These labeling experiments support an association between band R and specific monocarboxylate transport.  相似文献   

7.
Basolateral amino acid transport systems have been characterized in the perfused exocrine pancreas using a high-resolution paired-tracer dilution technique. Significant epithelial uptakes were measured for L-alanine, L-serine, alpha-methylaminoisobutyric acid, glycine, methionine, leucine, phenylalanine, tyrosine and L-arginine, whereas L-tryptophan and L-aspartate had low uptakes. alpha-Methylaminoisobutyric acid transport was highly sodium dependent (81 +/- 3%), while uptake of L-serine, L-leucine and L-phenylalanine was relatively insensitive to perfusion with a sodium-free solution. Cross-inhibition experiments of L-alanine and L-phenylalanine transport by twelve unlabelled amino acids indicated overlapping specificities. Unidirectional L-phenylalanine transport was saturable (Kt = 16 +/- 1 mM, Vmax = 12.3 +/- 0.4 mumol/min per g), and weighted non-linear regression analysis indicated that influx was best described by a single Michaelis-Menten equation. The Vmax/Kt ratio (0.75) for L-phenylalanine remained unchanged in the presence of 10 mM L-serine. Although extremely difficult to fit, L-serine transport appeared to be mediated by two saturable carriers (Kt1 = 5.2 mM, Vmax1 = 7.56 mumol/min per g; Kt2 = 32.8 mM, Vmax2 = 22.9 mumol/min per g). In the presence of 10 mM L-phenylalanine the Vmax/Kt ratio for the two L-serine carriers was reduced, respectively, by 79% and 50%. Efflux of transported L-[3H]phenylalanine or L-[3H]serine was accelerated by increasing perfusate concentrations of, respectively, L-phenylalanine and L-serine, and trans-stimulated by other amino acids. In the pancreas neutral amino acid transport appears to be mediated by Na+-dependent Systems A and ASC, the classical Na+-independent System L and another Na+-independent System asc recently identified in erythrocytes. The interactions in amino acid influx and efflux may provide one of the mechanisms by which the supply of extracellular amino acids for pancreatic protein synthesis is regulated.  相似文献   

8.
Developmental patterns and pharmacological and biochemical properties of taurine transport system were investigated using developing primary cultured neurons prepared from mouse cerebral cortex by trypsin treatment. [3H]Taurine was incorporated into neurons via a high-affinity transport system of which the Km value as well as the Vmax value increased during neuronal development in vitro. This transport system was also inhibited by sodium withdrawal from incubation medium and exposures for 15 h to several metabolic inhibitors such as 2,4-dinitrophenol and monoiodoacetate. In addition, [3H]taurine uptake in both neurons cultured for 3 and 14 days was competitively inhibited by beta-alanine, guanidinoethanesulfonate and hypotaurine. Cysteic acid and cysteine sulfinic acid, metabolic intermediates produced in the process of taurine biosynthesis in the brain from cysteine, induced significant reductions in [3H]taurine uptake in both types of cultured neurons, while cysteine, isethionic acid, cysteamine and cystamine exhibited no alterations in [3H]taurine transport. Moreover, non-competitive inhibition of [3H]taurine uptake by cysteic acid was observed in both neurons. These results clearly indicate that taurine uptake was mediated by the sodium- and energy-dependent transport system with high affinity in 14-day-old neurons as well as neurons cultured for 3 days and that both the Km and Vmax values of this transport system increase during neuronal development in vitro. The results described above suggest that the decrease in taurine content observed in developing brain is unlikely to be due to alteration in the capacity of the taurine transport system during neuronal development.  相似文献   

9.
Lysosomal transport of monoiodotyrosine was characterized in countertransport experiments using rat FRTL-5 thyroid cell lysosomes. Monoiodotyrosine carrier activity was temperature-dependent (Ea = 11.65 kcal/mol) and had a pH optimum of 7.5. Carrier activity was minimally inhibited by KCl and NaCl, but unaffected by the presence of other ions or ATP. Monoiodotyrosine transport was unaffected by the presence of carbonyl cyanide m-chlorophenylhydrazone, nigericin, or ammonium chloride, indicating that a proton or K+ gradient is not necessary for monoiodotyrosine transport across the lysosomal membrane. Monoiodotyrosine countertransport showed a 6-fold increase in lysosomes from FRTL-5 cells grown in medium containing thyrotropin by comparison to cells grown without this hormone. Thyrotropin responsiveness raised the possibility that monoiodotyrosine was transported by system h, the only known lysosomal carrier whose activity is enhanced by thyrotropin. Consistent with this, monoiodotyrosine-loaded lysosomes exhibited countertransport of [3H]tyrosine, [3H]phenylalanine, and [3H]leucine, three system h ligands, but not [3H]cystine, a nonsystem h ligand. Unlabeled tyrosine, phenylalanine, and leucine, but not cystine or proline, inhibited [125I]monoiodotyrosine countertransport, and leucine inhibition of [3H]tyrosine countertransport and [125I]monoiodotyrosine countertransport yielded virtually identical KI values, 3.5 and 3.2 microM, respectively. Competition studies with monoiodotyrosine analogues showed that system h recognizes a broad range of ligands with an alpha-amino acid configuration at one end and a hydrophobic region at the other. Ring-substituted halogens, regardless of mass or ring position, but not amino, nitro, hydroxy, or methoxy groups, enhanced carrier recognition of system h analogues. It appears that a single system effects the transport of iodinated (e.g. monoiodotyrosine) and noniodinated (e.g. tyrosine) thyroglobulin catabolites into the cytosol for salvage and reutilization by FRTL-5 thyroid cells.  相似文献   

10.
Book Review     
1-Aminocyclopropane carboxylic acid (ACPC) competitively inhibited (IC50, 38 +/- 7 nM) [3H]glycine binding to rat forebrain membranes but did not affect [3H]strychnine binding to rat brainstem/spinal cord membranes. Like glycine, ACPC enhanced 3H-labelled (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate ([3H]MK-801) binding to N-methyl-D-aspartate receptor-coupled cation channels (EC50, 135 +/- 76 nM and 206 +/- 78 nM for ACPC and glycine, respectively) but was approximately 40% less efficacious in this regard. The maximum increase in [3H]MK-801 binding produced by a combination of ACPC and glycine was not different from that elicited by glycine, but both compounds potentiated glutamate-stimulated [3H]MK-801 binding. These findings indicate that ACPC is a potent and selective ligand at the glycine modulatory site associated with the N-methyl-D-aspartate receptor complex.  相似文献   

11.
D Khananshvili 《Biochemistry》1990,29(10):2437-2442
In order to distinguish between the Ping-Pong and sequential mechanisms of cation transport in the cardiac Na(+)-Ca2+ exchange system, the initial rates of the Nai-dependent 45Ca uptake (t = 1 s) were measured in reconstituted proteoliposomes, loaded with a Ca chelator. Under "zero-trans" conditions ([Na]o = [Ca]i = 0) at a fixed [Na]i = 10-160 mM with varying [45Ca]o = 2.5-122 microM for each [Na]i, the Km and Vmax values increased from 7.7 to 33.5 microM and from 2.3 to 9.0 nmol.mg-1.s-1, respectively. The Vmax/Km values show a +/- 2-10% deviation from the average value of 0.274 nmol.mg-1.s-1.microM-1 over the whole range of [Na]i. These deviations are within the standard error of Vmax (+/- 3-7%), Km (+/- 11-17%), and Vmax/Km (+/- 11-19%). This suggests that, under conditions in which Vmax and Km are [Na]i dependent and vary 4-5-fold, the Vmax/Km values are constant within the experimental error. In the presence of K(+)-valinomycin the Vmax/Km values are 0.85 +/- 0.17 and 1.08 +/- 0.18 nmol.mg-1.s-1.microM-1 at [Na]i = 20 and 160 mM, respectively, suggesting that under conditions of "short circuit" of the membrane potential the Vmax/Km values still exhibit the [Na]i independence. At a very low fixed [45Ca]o = 1.1 microM with varying [Na]i = 10-160 mM, the initial rates were found to be [Na]i independent. At a high fixed [45Ca]o = 92 microM the initial rates show a sigmoidal dependence on the [Na]i with Vmax = 13.8 nmol.mg-1.s-1, KmNa = 21 mM, and Hill coefficient nH = 1.5. The presented data support a Ping-Pong (consecutive) mechanism of cation transport in the Na(+)-Ca2+ exchanger.  相似文献   

12.
Uptake of L-2,4-diaminobutyric acid (DABA), a positively charged analogue of gamma-aminobutyric acid (GABA), by a synaptosomal fraction isolated from rat brain occurred with a Km of 54 +/- 12 microM and a Vmax of 1.3 +/- 0.2 nmol/min/mg protein. The transport of DABA was inhibited competitively by GABA whereas that of GABA was affected in the same manner by addition of DABA. The maximal accumulation of DABA ([DABA]i/[DABA]c) was observed to increase as the second power of the transmembrane electrical potential ([K+]i/[K+]e) and the first power of the sodium ion concentration gradient. These findings indicate that DABA is transported on the GABA carrier with a net charge of +2, where one charge is provided by the cotransported Na+ and the second is contributed by the amino acid itself. Since uptake of GABA, an electroneutral molecule, is accompanied by transfer of two sodium ions, the results obtained with DABA suggest that one of the sodium binding sites on the GABA transporter is in proximity to the amino acid binding site.  相似文献   

13.
The characteristics of lactate transport in brush-border membrane vesicles isolated from normal human full-term placentas were investigated. Lactate transport in these vesicles was Na+-independent, but was greatly stimulated when the extravesicular pH was made acidic. In the presence of an inwardly directed H+ gradient ([H+]o greater than [H+]i), transient uphill transport of lactate could be demonstrated. This H+ gradient-dependent stimulation was not a result of a H+ diffusion potential. Transport of lactate in the presence of the H+ gradient was not inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid or by furosemide, ruling out the participation of an anion exchanger in placental lactate transport. Many monocarboxylates strongly interacted with the lactate transport system, whereas, with the single exception of succinate, dicarboxylates did not. The monocarboxylates pyruvate and lactate, but not the dicarboxylate succinate, when present inside the vesicles, were able to exert a trans-stimulatory effect on the uptake of radiolabeled lactate. Kinetic analyses provided evidence for a single transport system with a Kt of 4.1 +/- 0.4 mM for lactate and a Vmax of 54.2 +/- 9.9 nmol/mg of protein/30 s. Pyruvate inhibited lactate transport competitively, by reducing the affinity of the system for lactate without altering the maximal velocity. It is concluded that human placental brush-border membranes possess a transport system specific for lactate and other monocarboxylates and that this transport system is Na+-independent and is energized by an inwardly directed H+ gradient. Lactate-H+ symport rather than lactate-OH- antiport appears to be the mechanism of the H+ gradient-dependent lactate transport in these membranes.  相似文献   

14.
Characteristics of taurine transport in rat hepatocytes maintained in primary culture for 24 h (cultured hepatocytes) have been investigated. The uptake of [3H] taurine by cultured hepatocytes at 2 degrees C was unsaturable, whereas that at 37 degrees C consisted of unsaturable and saturable processes. The saturable transport system was sodium-dependent and consisted of two processes with low and with high affinities. The latter process (Km, 76.9 microM; Vmax, 0.256 nmole/mg protein/min; activation energy (EA), 37.8 kcal mol-1) was competitively inhibited by 2,4-dinitrophenol and ouabain, as well as by taurine analogues such as hypotaurine and guanidinoethyl sulphonate. The Vmax and EA values found in cultured hepatocytes at 37 degrees C were 6.0 and 6.8 times higher than those found in freshly isolated hepatocytes. These results indicate that taurine transport in hepatocytes in primary culture consisted of unsaturable, and saturable, sodium and energy-dependent carrier-mediated transport processes, respectively. The facilitation of the latter transport system by primary culture of hepatocytes is also suggested.  相似文献   

15.
Purified rat liver lysosomes ('tritosomes') were prepared from rats injected with Triton WR-1339. 2. The water space of tritosomes, measured by using [3H]water and [14C]sucrose, was 2.15 +/- 0.72 microliter/mg of protein (mean +/- S.E.M., n = 12). 3. Tritosomes, when compared with a crude preparation of normal lysosomes by an indirect method of study, showed sugar specificity but decreased stereospecificity of sugar uptake. 4. At 125 mM the relative rates of net uptake of D-[14C]ribose, D-[14C]- or D-[3H]glucose and 2-deoxy-D-[3H]glucose were the same as that inferred from the indirect study. 5. The entry of D-[3H]glucose into tritosomes showed concentration-dependence suggestive of saturation, with a Km of 48 +/- 18 mM (4). 6. D- and L-glucose, D-ribose, 2-deoxy-D-glucose and D-mannose competed with D-[14C]glucose or D-[14C]ribose for uptake. 7. Cytochalasin B inhibited D-[3H]glucose uptake. 8. Uptake of 1 mM-L-[14C]glucose was slower than for 1 mM-D-[14C]glucose. 9. It is concluded that a facilitated-diffusion transport system is present in purified rat liver lysosomes.  相似文献   

16.
Skeletal muscle transport of lactate and pyruvate was studied in primary cultures of rat myotubes, applying the pH-sensitive fluorescent indicator 2', 7'-bis(carboxyethyl)-5(6)-carboxyfluorescein. The initial rate of decrease in intracellular pH (pHi) upon lactate or pyruvate incubation was used to determine total transport (carrier mediated and diffusion). Both lactate and pyruvate transport could be inhibited by a combination of 0.5 mM 4,4'-diisothiocyanostilbene-2, 2'-disulfonic acid, 5 mM mersalyl and 10 mM alpha-cyano-4-hydroxycinnamate. The kinetic parameters, Km and Vmax, for carrier-mediated transport of lactate were 9.9+/-1.1 mM and 0. 69+/-0.02 mmol l-1 s-1, respectively. For pyruvate, Km and Vmax were 4.4+/-1.3 mM and 0.30+/-0.05 mmol l-1 s-1, respectively. The diffusion component of the total transport was 0.0040+/-0.0005[S] (n=4) and 0.0048+/-0.0003[S] (n=4) for lactate and pyruvate, respectively. Furthermore, it was observed that the two monocarboxylate transporter isoforms present in mature skeletal muscles, MCT1 and MCT4 (formerly called MCT3 (M.C. Wilson, V.N. Jackson, C. Heddle, N.T. Price, H. Pilegaard, C. Juel, A. Bonen, I. Montgomery, O.F. Hutter, A.P. Halestrap, Lactic acid efflux from white skeletal muscle is catalyzed by the monocarboxylate transporter isoform MCT3, J. Biol. Chem. 273 (1998) 15920-15926)), were also expressed in primary culture of myotubes.  相似文献   

17.
The transport of [U-14C]uridine was investigated in rat cerebral-cortical synaptosomes using an inhibitor-stop filtration method. Under these conditions the rapid efflux of uridine from the synaptosomes is prevented and uridine is not significantly metabolized in the synaptosome during the first 1 min of uptake. The dose-response curve for the inhibition of uridine transport by nitrobenzylthioinosine (NBMPR) was biphasic: approx. 40% of the transport activity was inhibited with an IC50 (concentration causing half-maximal inhibition) value of 0.5 nM, but the remaining activity was insensitive to concentrations as high as 1 microM. Similar biphasic dose-response curves were observed for dilazep inhibition, but both transport components were equally sensitive to dipyridamole inhibition. Uridine influx by both components was saturable (Km 300 +/- 51 and 214 +/- 23 microM, and Vmax. 12 +/- 3 and 16 +/- 3 pmol/s per mg of protein, for NBMPR-sensitive and NBMPR-insensitive components respectively), and inhibited by other nucleosides such as 2-chloroadenosine, adenosine, inosine, thymidine and guanosine with similar IC50 values for the two components. Inhibition of uridine transport by NBMPR was associated with high-affinity binding of NBMPR to the synaptosome membrane (Kd 58 +/- 15 pM). Binding of NBMPR to these sites was competitively blocked by uridine and adenosine and inhibited by dilazep and dipyridamole, with Ki values similar to those measured for inhibiting NBMPR-sensitive uridine influx. These results demonstrate that there are two components of nucleoside transport in our rat synaptosomal preparation that differ in their sensitivity to inhibition by NBMPR. Thus conclusions regarding nucleoside transport in rat brain based only on NBMPR-binding activity must be viewed with caution.  相似文献   

18.
The binding and displacement of beta-adrenoceptor blockers, [3H]propranolol ([3H]PRP) and [3H]dihydroalprenolol ([3H]DHA), were studied on isolated rat erythrocytes, their membranes and ghosts; the binding of [3H]DHA and a M-cholinoceptor blocker, [3H]quinuclidinylbenzylate ([3H]QNB), on cerebral cortex membranes. In all experiments, ligand-receptor interactions conformed to a model of two pools of receptors in the same effector system and the binding of two ligand molecules to the receptor. The results were similar for the displacement of [3H]PRP, [3H]DHA and [3H]QNB with propranolol, dihydroalprenolol and quinuclidinyl-benzylate, respectively. The parameters of [3H]PRP to beta-adrenoceptor binding for intact erythrocytes were: Kd1 = 0.74+/-0.07 nM, Kd2 = 14.40+/-0.41 nM, B1 = 24+/-2 unit/cell, B2 = 263+/-5 unit/cell; for ghosts, Kd1 = 0.70+/-0.17 nM, Kd2 = 19.59+/-2.59 nM, B1 = 9+/-1 fmol/mg protein, B2 = 39+/-4 fmol/mg protein. Receptor affinities were similar in erythrocytes and ghosts; on the ghost membrane, the number of receptors was considerably lower (B1 = 2 unit/cell, B2 = 6 unit/cell). The parameters of [3H]QNB to M-cholinoceptor binding of the cerebral cortex membrane were the following: Kd1 = 0.43 nM, Kd2 = 2.83 nM, B1 = 712 fmol/mg, B2 = 677 fmol/mg.  相似文献   

19.
Synaptosomes isolated from rat brain accumulated cysteic acid by a high-affinity transport system (Km = 12.3 +/- 2.1 microM; Vmax = 2.5 nmol mg protein-1 min-1). This uptake was competitively inhibited by aspartate (Ki = 13.3 +/- 1.8 microM) and cysteine sulfinate (Ki = 13.3 +/- 2.3 microM). Addition of extrasynaptosomal cysteate, aspartate, or cysteine sulfinate to synaptosomes loaded with [35S]cysteate induced rapid efflux of the cysteate. This efflux occurred via stoichiometric exchange of amino acids with half-maximal rates at 5.0 +/- 1.1 microM aspartate or 8.0 +/- 1.3 microM cysteine sulfinate. Conversely, added extrasynaptosomal cysteate exchanged for endogenous aspartate and glutamate with half-maximal rates at 5.0 +/- 0.4 microM cysteate. In the steady state after maximal accumulation of cysteate, the intrasynaptosomal cysteate concentrations exceeded the extrasynaptosomal concentrations by up to 10,000-fold. The measured concentration ratios were the same, within experimental error, as those for aspartate and glutamate. Depolarization, with either high [K+] or veratridine, of the plasma membranes of synaptosomes loaded with cysteate caused parallel release of cysteate, aspartate, and glutamate. It is concluded that neurons transport cysteate, cysteine sulfinate, aspartate, and glutamate with the same transport system. This transport system catalyzes homoexchange and heteroexchange as well as net uptake and release of all these amino acids.  相似文献   

20.
The effects of insulin, prostaglandin E1 (PGE1) and uptake inhibitors on unidirectional D-glucose influx at brush border (maternal) and basal (fetal) sides of the guinea-pig syncytotrophoblast were investigated in the intact, perfused guinea-pig placenta by rapid, paired-tracer dilution. Experiments were performed in either an in situ preparation artificially perfused through the umbilical vessels (intact maternal circulation) or in the fully isolated dually-perfused placenta in which both interfaces were studied simultaneously. Kinetic characterization of unidirectional D-glucose influx gave apparent Km values (mean +/- SEM) at maternal and fetal sides of 70 +/- 6 and 87 +/- 16 mM respectively; corresponding Vmax values were 53 +/- 3 and 82 +/- 6 mumol min-1g-1. At the fetal side (singly-perfused placenta) cytochalasin B (50 microM), ethylidene-D-glucose (100 mM) and PGE1 (1 microM) partially inhibited D-glucose uptake whereas cortisol (50 microM) and progesterone (100 microM) had no effect. Abolition of the sodium gradient across the fetal interface did not modulate the kinetics of influx. In the presence of 150 mu units ml-1 insulin (dually-perfused placenta), unidirectional uptake into the trophoblast and transplacental D-[3H]glucose transfer were unaltered. In contrast, prostaglandin E1 (1 microM) markedly reduced the Km and Vmax for D-glucose at both interfaces and the inhibitory effect was reflected in a reduction in specific transplacental D-glucose transfer. Further experiments showed that the isolated placenta releases prostaglandins (PGE; PGF2 alpha) into both circulations. Bilateral insulin perfusion did not affect either lactate release by the placenta or rapid metabolism of D-[14C]glucose to [3H]lactate (usually less than 10% effluent [14C]lactate in 5 min). An asymmetric degradation of exogenous insulin was observed in the dually-perfused placenta: uterine venous samples contained 24 +/- 7 microunits ml-1 immunoreactive insulin when compared to the arterial concentration (151 +/- 3 microU ml-1 perfusate) while no change was measureable in the fetal circulation within the same time period (152 +/- 5 microU ml-1). This asymmetry was confirmed in experiments employing [125I]insulin. These results demonstrate that glucose transport in the intact guinea-pig placenta occurs by a sodium-independent, cytochalasin B-inhibitable system which is insulin-insensitive. Prostaglandin E1 appeared to be a potent transport inhibitor which suggests that prostaglandins may be involved in the 'down' regulation of placental glucose transport in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号