首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Epidemiological studies in humans suggest that skeletal muscle aging is a risk factor for the development of several age‐related diseases such as metabolic syndrome, cancer, Alzheimer's and Parkinson's disease. Here, we review recent studies in mammals and Drosophila highlighting how nutrient‐ and stress‐sensing in skeletal muscle can influence lifespan and overall aging of the organism. In addition to exercise and indirect effects of muscle metabolism, growing evidence suggests that muscle‐derived growth factors and cytokines, known as myokines, modulate systemic physiology. Myokines may influence the progression of age‐related diseases and contribute to the intertissue communication that underlies systemic aging.  相似文献   

3.
miRNAS in normal and diseased skeletal muscle   总被引:1,自引:0,他引:1  
The last 20 years have witnessed major advances in the understanding of muscle diseases and significant inroads are being made to treat muscular dystrophy. However, no curative therapy is currently available for any of the muscular dystrophies, despite the immense progress made using several approaches and only palliative and symptomatic treatment is available for patients. The discovery of miRNAs as new and important regulators of gene expression is expected to broaden our biological understanding of the regulatory mechanism in muscle by adding another dimension of regulation to the diversity and complexity of gene-regulatory networks. As important regulators of muscle development, unravelling the regulatory circuits involved may be challenging, given that a single miRNA can regulate the expression of many mRNA targets. Although the identification of the regulatory targets of miRNAs in muscle is a challenge, it will be critical for placing them in genetic pathways and biological contexts. Therefore, combining informatics, biochemical and genetic approaches will not only expected to reveal the elucidation of the miRNA regulatory network in skeletal muscle and to bring a better knowledge on muscle tissue regulation but will also raise new opportunities for therapeutic intervention in muscular dystrophies by identifying candidate miRNAs as potential targets for clinical application.  相似文献   

4.
5.
为探讨系统性硬化症(SSc)患者尿液样本中的长链非编码RNA(lncRNA)、信使RNA(mRNA)的表达谱和生物学功能。选取6名SSc患者和3名健康对照者(HC),采集样本为中段晨尿,应用mRNA和lncRNA微阵列检测总RNA表达变异,SSc组与HC组相比。检测尿液lncRNA和mRNA表达,Gene ontology (GO)分析Kyoto Encyclopedia of Genes and Genomes (KEGG)信号通路分析差异表达的lncRNA功能分布;STRING在线网站和Cytoscape软件网络应用分析构建蛋白质相互作用网络(PPI)并筛选出核心基因(Hub Gene)。结果发现:与HC相比,SSc患者尿液中共有645个(上调546,下调99)mRNA和1 888个(上调1 647,下调241)lncRNA差异表达(Fold Change绝对值≥2,且P≤0.05)。KEGG通路结果显示富集TGF-β信号通路、氧化磷酸化、磷酸戊糖通路。SSc的GO分析显示与转录调控、DNA去甲基化、白介素6反应等相关;PPI网络分析表明主要富集在氧化磷酸化、细胞凋亡、自噬途径通路...  相似文献   

6.
Insulin-independent glucose metabolism, including anaerobic glycolysis that is promoted in resistance training, plays critical roles in glucose disposal and systemic metabolic regulation. However, the underlying mechanisms are not completely understood. In this study, through genetically manipulating the glycolytic process by overexpressing human glucose transporter 1 (GLUT1), hexokinase 2 (HK2) and 6-phosphofructo-2-kinase-fructose-2,6-biphosphatase 3 (PFKFB3) in mouse skeletal muscle, we examined the impact of enhanced glycolysis in metabolic homeostasis. Enhanced glycolysis in skeletal muscle promoted accelerated glucose disposal, a lean phenotype and a high metabolic rate in mice despite attenuated lipid metabolism in muscle, even under High-Fat diet (HFD). Further study revealed that the glucose metabolite sensor carbohydrate-response element-binding protein (ChREBP) was activated in the highly glycolytic muscle and stimulated the elevation of plasma fibroblast growth factor 21 (FGF21), possibly mediating enhanced lipid oxidation in adipose tissue and contributing to a systemic effect. PFKFB3 was critically involved in promoting the glucose-sensing mechanism in myocytes. Thus, a high level of glycolysis in skeletal muscle may be intrinsically coupled to distal lipid metabolism through intracellular glucose sensing. This study provides novel insights for the benefit of resistance training and for manipulating insulin-independent glucose metabolism.  相似文献   

7.
The Ca2+-sensitive photoprotein aequorin was injected into single frog skeletal muscle fibers, and the intracellular aequorin light intensity during muscle activation with different maneuvers was mapped with digital imaging microscopy. During 50 Hz electrical activation (tetanus), the aequorin light intensity from different locations in the muscle fiber rose with very similar time course. Caffeine (10 mM) application, on the other hand, caused aequorin light signals to show significantly different time courses, with an earlier increase in Ca2+ concentration near the surface of the fiber than near the core. The non-uniform rise of intracellular Ca2+ concentration with caffeine treatment is consistent with the slow inward diffusion of caffeine and subsequent Ca2+ release from sarcoplasmic reticulum.  相似文献   

8.
9.
Diffusion-tensor magnetic resonance imaging (DT-MRI) offers objective measures of muscle characteristics, providing insights into age-related changes. We used DT-MRI to probe skeletal muscle microstructure and architecture in a large healthy-aging cohort, with the aim of characterizing age-related differences and comparing these to muscle strength. We recruited 94 participants (43 female; median age = 56, range = 22–89 years) and measured microstructure parameters—fractional anisotropy (FA) and mean diffusivity (MD)—in 12 thigh muscles, and architecture parameters—pennation angle, fascicle length, fiber curvature, and physiological cross-sectional area (PCSA)—in the rectus femoris (RF) and biceps femoris longus (BFL). Knee extension and flexion torques were also measured for comparison to architecture measures. FA and MD were associated with age (β = 0.33, p = 0.001, R2 = 0.10; and β = −0.36, p < 0.001, R2 = 0.12), and FA was negatively associated with Type I fiber proportions from the literature (β = −0.70, p = 0.024, and R2 = 0.43). Pennation angle, fiber curvature, fascicle length, and PCSA were associated with age in the RF (β = −0.22, 0.26, −0.23, and −0.31, respectively; p < 0.05), while in the BFL only curvature and fascicle length were associated with age (β = 0.36, and −0.40, respectively; p < 0.001). In the RF, pennation angle and PCSA were associated with strength (β = 0.29, and 0.46, respectively; p < 0.01); in the BFL, only PCSA was associated with strength (β = 0.43; p < 0.001). Our results show skeletal muscle architectural changes with aging and intermuscular differences in the microstructure. DT-MRI may prove useful for elucidating muscle changes in the early stages of sarcopenia and monitoring interventions aimed at preventing age-associated microstructural changes in muscle that lead to functional impairment.  相似文献   

10.
We investigated whether localized 1H nuclear magnetic resonance spectroscopy (NMRS) using stimulated echoes (STEAM) with a long mixing time (t m) allowed the suppression of the fat signal and detection of lactate in skeletal muscle. The 1H NMRS sequence was first validated in three isolated and perfused rabbit biceps brachii muscles. Spectra were obtained on a wide-bore spectrometer using a dual-tuned probe (1H and 31P). Death was simulated by ceasing the muscle perfusion, which allowed post-mortem changes to be followed. During and after the simulated death, changes in levels of pH and in content of energy-rich compounds were observed with 31P NMRS. Our results showed an inverse linear relationship between pH and lactate in each of the three rabbits (r = 0.93, P < 0.001; r = 0.92, P < 0.01; r = 0.89, P < 0.01) and a decrease in phosphocreatine and concomitant increase in lactate. We then investigated whether this sequence allowed repeated detection of lactate in human soleus muscle during the recovery between periods of intense exercise (force-velocity test, F-v test). Seven subjects mean age 25.1 (SEM 0.8) years participated in this study. Soleus muscle lactate was detected at rest and for 3 min 30 s of the 5-min recovery between periods using a 2.35-T 40-cm bore magnet spectrometer. Arm venous plasma lactate concentration was measured at rest, during the F-v test when the subject stopped pedalling (S1), and at the end of each 5-min recovery between periods (S2). Results showed that the venous plasma lactate concentration at S1 and S2 increased significantly from the beginning of the F-v test to peak anaerobic power (W an,peak) (P < 0.001). The spectra showed that muscle lactate resonance intensity rose markedly when W an,peak was achieved. The muscle lactate resonance intensity plotted as a percentage of the resting value increased significantly at W an,peak compared with submaximal braking forces (P < 0.05). We concluded from these results that localized 1H NMRS using STEAM with a long t m allows suppression of the fat signal and repeated detection of lactate on isolated perfused skeletal muscle in animals and between periods of intense exercise in humans. Accepted: 19 January 1998  相似文献   

11.
A chain is no stronger than its weakest link is an old idiom that holds true for muscle biology. As the name implies, skeletal muscle’s main function is to move the bones. However, for a muscle to transmit force and withstand the stress that contractions give rise to, it relies on a chain of proteins attaching the cytoskeleton of the muscle fiber to the surrounding extracellular matrix. The importance of this attachment is illustrated by a large number of muscular dystrophies caused by interruption of the cytoskeletal-extracellular matrix interaction. One of the major components of the extracellular matrix is laminin, a heterotrimeric glycoprotein and a major constituent of the basement membrane. It has become increasingly apparent that laminins are involved in a multitude of biological functions, including cell adhesion, differentiation, proliferation, migration and survival. This review will focus on the importance of laminin-211 for normal skeletal muscle function.  相似文献   

12.
Systemic sclerosis (SSc) is a multisystem disease of unknown etiology. It is characterized by excessive cutaneous and visceral fibrosis, damage to small blood vessels, and production of autoantibodies. Interleukin-13 (IL-13) has been shown to be involved in abnormal fibrosis in other diseases. Therefore, we have evaluated its possible involvement in SSc. We analyzed four IL13 gene polymorphisms, rs1800925 (IL13-1055), rs20541 (Arg130Gln), rs847, and rs2243204 in 107 unrelated SSc patients (40 patients having diffuse cutaneous form and 67 patients having limited cutaneous form) and in 170 controls. All subjects were Caucasians. In the total patient population and in the diffuse cutaneous subset, we observed an association between two IL13 polymorphisms, IL13 rs1800925 (IL13-1055), and IL13 rs2243204, and disease (p=0.03–0.04). The IL13 rs2243204T allele was more common in SSc patients (p=0.01, OR=2.3 CI 1.21–4.38) and in the diffuse cutaneous form (p=0.01, OR=2.95, CI 1.35–6.49) than in control subjects. Our result supports the suggestion that polymorphisms in IL13 are associated to SSc and skin fibrosis process. However, further studies on larger and independent population and functional analyses are needed to confirm these findings.  相似文献   

13.
Skeletal muscle aging is a major cause of disability and frailty in the elderly. The progressive impairment of skeletal muscle function with aging was recently linked to a disequilibrium between damage and repair. Macrophages participate in muscle tissue repair, first as pro‐inflammatory M1 subtype and then as anti‐inflammatory M2 subtype. However, information on the presence of macrophages in skeletal muscle is still sporadic and the effect of aging on macrophage phenotype remains unknown. In this study, we sought to characterize the polarization status of macrophages in skeletal muscle of persons across a wide range of ages. We found that most macrophages in human skeletal muscle are M2, and that this number increased with advancing age. On the contrary, M1 macrophages declined with aging, making the total number of macrophages invariant with older age. Notably, M2 macrophages colocalized with increasing intermuscular adipose tissue (IMAT) in aging skeletal muscle. Similarly, aged BALB/c mice showed increased IMAT and M2 macrophages in skeletal muscle, accompanied by slightly increased collagen protein production. Collectively, we report that polarization of macrophages to the major M2 subtype is associated with IMAT and propose that increased M2 in aged skeletal muscle may impact upon muscle metabolism associated with aging.  相似文献   

14.
Six groups of 5 male rats (starting body weight 109 g) were allowed free access to a conventional rat diet. At 4 hourly intervals, starting at 10.00 h muscle protein synthesis was measured. By relating the weights of the gastrocnemius and soleus muscles to the initial body weights of the animals (i.e., at 09.30, day 1), a linear increase in muscle weight throughout the day was demonstrated. The fractional rate of muscle protein synthesis varied from 16.8% per day to 20.3% per day in gastrocnemius muscle and from 17.9% per day and 22.1% per day in the soleus. It was calculated that the maximum error incurred in estimating daily muscle protein synthesis by extrapolation of the value at any one time was 6% in gastrocnemius and 9% in soleus. It is concluded that calculations of the average rate of muscle protein degradation based on the difference between the rates of synthesis and deposition are generally valid in rats allowed free access to an adequate diet.  相似文献   

15.
微RNA(microRNA,miRNA)是一类在分子进化中十分保守的非编码RNA,长度约22个核苷酸,一般情况下它在转录后水平抑制基因表达。miRNA在细胞增殖、分化、凋亡等诸多生理过程中发挥着重要作用。有些miRNA具有组织特异性表达,其中miR-206是目前发现的唯一在骨骼肌中特异表达的miRNA,它在调节骨骼肌发生过程中扮演重要角色。miR-206表达异常与一些肌肉相关疾病如肌肉营养不良、肌萎缩性侧索硬化症等有关。此外,在Texel羊中,myostatin基因的一个点突变就产生了一个miR-206和miR-1的靶点,抑制了myostain基因的表达,从而产生了双肌表型。因此,miR-206有可能成为治疗肌肉相关疾病和畜禽改良育种的重要候选分子。  相似文献   

16.
Myosin-binding protein C (MyBPC) is proposed to take on a trimeric collar arrangement around the thick filament backbone in cardiac muscle, based on interactions between cardiac MyBPC domains C5 and C8. We have now determined, using yeast two-hybrid and in vitro binding assays, that the C5:C8 interaction is not dependent on the 28-residue cardiac-specific insert in C5. Furthermore, an interaction of similar affinity occurs between domains C5 and C8 of fast skeletal muscle MyBPC, but not between these domains of the slow skeletal muscle protein. These data have implications for the role and quaternary structure of MyBPC in skeletal muscle.  相似文献   

17.
骨骼肌的内分泌功能   总被引:7,自引:1,他引:7  
长期以来,骨骼肌被认为是一种效应器官,接受神经和体液的调节。近年大量实验研究资料发现骨骼肌也具有分泌活性物质的功能,能表达、合成和分泌多种生物信号分子,包括调节肽、细胞因子和生长因子等,也是一种重要的内分泌器官。骨骼肌分泌的活性物质以旁分泌和/或自分泌方式调节骨骼肌的生长、代谢和运动功能;甚至以血液循环内分泌的方式调节机体远隔器官组织的功能。骨骼肌生成和分泌的活性物质在运动系统疾病和某些全身性疾病的发病中具有重要的作用。本文将对骨骼肌分泌的主要活性物质及其生理和病理生理学意义进行综述。  相似文献   

18.
The kinetics of voltage-clamped sodium currents were studied in frog skeletal muscle. Sodium currents in frog skeletal muscle activate and inactivate following an initial delay in response to a depolarizing voltage pulse. Inactivation occurs via a double exponential decay exhibiting fast and slow components for virtually all depolarizing pulses used.The deactivation of Na currents exhibits two exponential components, one decaying rapidly, while the other decays slowly in time; the relative amplitude of the two components changes with the duration of the activating pulse. The two deactivation phases remain after pharmacological elimination of inactivation.In individual fibers, the percent amplitude of the slow inactivation component correlates with the percent amplitude of the slow deactivation component.Tetrodotoxin differentially blocks the slow deactivation component.These observations are interpreted as the activation, inactivation and deactivation of two subtypes (fast and slow) of Na channels.Studies of the slow deactivation phase magnitude vs the duration of the eliciting pulse provide a way to determine the kinetics of the slow Na channel in muscle.Ammonium substitution for Na in the Ringer produces a voltage dependent activation and inactivation of current which exhibits only one decay phase, and eliminates the slow decay phase of current, suggesting that adjustments of the ionic environment of the channels can mask the presence of one of the channel subtypes.  相似文献   

19.
Mg2+-selective microelectrodes have been used to measure the intracellular free Mg2+ concentration in frog skeletal muscle fibers. Glass capillaries with a tip diameter of less than 0.4 μm were backfilled with the Mg2+ sensor, ETH 1117. In the absence of interfering ions, they gave Nernstian responses between 1 and 10 mM free Mg2+. In the presence of an ionic environment resembling the myoplasm, the microelectrode response was sub Nernstian (18–24 mV) but still useful. The electrodes were calibrated before and after muscle-fiber impalements. In quiescent fibers from sartorius muscle (Rana pipiens), with resting membrane potentials not less than ?82 mV, the intracellular free Mg2+ concentration was 3.8±0.41 (S.E.) mM (n=58) at 22°C. No significant change in the intracellular free Mg2+ was observed following extensive (approx. 6 h) incubation in Mg2+-free media. Increasing the external concentration of magnesium from 4 to 20 mM (approx. 15 min) produced a slow and small enhancement (1.8 mM) of [Mg2+]i, which was fully reverted when the divalent cation was removed from the bathing solution. No change in ionic magnesium resting concentration was observed when the muscle fibers were treated either with caffeine 3 mM or with Na+-free solutions. In depolarized muscle fibers (?23±2.7 mV) treated with 100 mM K+, the myoplasmic [Mg2+] was 3.7±0.45 (S.E.) mM, n=6, immediately after the spontaneous relaxation of the contracture. Similar determinations in muscle fibers during stimulation at low frequency (5 Hz), and after fatigue development, showed no changes in the concentration of free cytosolic Mg2+. These results point out that [Mg2+]i is not modified under these three different experimental conditions.  相似文献   

20.
Objectives: Systemic sclerosis is a multi-system disorder of connective tissue characterized by Raynaud's phenomenon and fibrosis of various organs. The risk of development of cancer in systemic sclerosis (SSc) has been extensively investigated with inconclusive results. To shed some light on the controversy, we conducted a meta-analysis of all published articles linking SSc to the risk of cancer development. Methods: Relevant electronic databases were searched for English-language studies characterizing the association of cancers in patients with SSc. Standardized incidence rate (SIR) with its 95% confidence interval (CI) of each study was combined using a fixed/random effect model. Results: A total of seven papers including 7183 SSc patients were identified, of which 7 reported the SIR for lung cancer, 4 for non-Hodgkin's lymphoma (NHL) and 4 for hematopoietic cancer and 7 for breast cancer. Compared with the general population, the combined SIR was 3.14 (95% CI: 2.02–4.89), 2.68 (95% CI: 1.58–4.56), 2.57 (95% CI: 1.79–3.68) and 1.09 (95% CI: 0.86–1.38), respectively. Significant heterogeneity was observed in lung cancer group (Q = 26.13, P < 0.001, I2 = 77%). Potential publication bias was absent. Conclusions: This present meta-analysis demonstrated an increased risk of lung, non-Hodgkin's lymphoma and hematopoietic cancers among patients with SSc, but not for breast cancer. However, some of the available data were several decades old, and future studies taking new treatment strategies into account are required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号