首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
The endogenous levels of polyamines (PAs) in leaf-base explants isolated from plants of two isogenic lines of Dactylis glomerata L., differing in their competence for somatic embryogenesis, were compared. Leaf-bases isolated from plants with a high level of competence for somatic embryogenesis (HEC) contained four times the level of polyamines compared to those isolated from plants with a low level of competence for somatic embryogenesis (LEC). When the levels of individual polyamines in the HEC and LEC lines were compared, leaf-bases from plants of the HEC line had much lower PUT/SPD ratios than those from the LEC line. When changes in the levels of PAs were monitored during the first 28 d of culture, on a medium which promotes initiation of somatic embryogenesis, leaf-base cultures from plants of the HEC line showed a 50% increase in the levels of PAs during the first 7 d of culture, after which time levels began to decline. By day 21, levels had dropped below those found in freshly isolated leaf bases. While PUT and SPM levels increased by about 30%, the greatest increase was shown by SPD, which increased by more than 100% during the first 7 d of culture, before declining. In contrast much smaller changes in PA levels were found when leaf-bases from plants of the LEC line were cultured.  相似文献   

6.
7.
8.
植物LEC蛋白是NF-Y转录因子的一类B亚基,在植物胚状体形成过程中起重要作用。为了研究大麦小孢子体外培养形成胚状体的机理,本研究利用RACE技术在大麦中克隆了一个新的LEC基因,该基因cDNA全长为1004 bp,开放阅读框全长为597 bp,编码198个氨基酸,其蛋白1~59位氨基酸含有LEC结构域,命名为HvLEC1。HvLEC1在大麦的根、茎、叶和小孢子培养过程中均能表达,其中小孢子培养7 d时表达量最高,且HvLEC1在大麦品系BI04中的表达量比基19高,BI04愈伤产量也比基19高,表明HvLEC1表达量和愈伤产量有相关性,受盐胁迫后HvLEC1在大麦的根中快速上调表达,提示HvLEC1可能不仅参与小孢子胚状体发生,而且参与盐胁迫响应。  相似文献   

9.
The expression pattern of the LEC1 and FUS3 genes during somatic embryogenesis in Arabidopsis explants (immature zygotic embryos) induced in vitro was analysed, using Real-time quantitative PCR (qRT-PCR). The analysis revealed differential expression of LEC1 but not FUS3 within a 30 day time course of somatic embryo development, and a significant auxin-dependent upregulation of LEC1 was found over the time course. In contrast to embryogenic culture, the level of LEC1 and FUS3 expression was noticeably lower in non-embryogenic callus of Col-0 and hormonal mutants (cbp20 and axr4-1) with low SE-efficiency. In addition, the expression profile of LEC1 and FUS3 was followed in the embryogenic culture derived from 35S::LEC2-GR explants. A significant increase of LEC1 but not FUS3 activity was observed under LEC2 overexpression induced in auxin-treated explants. The work provides further experimental evidence on LEC gene involvement in the embryogenic response in Arabidopsis somatic cells, and also implicates LEC1 function in more advanced stages of SE culture in relation to somatic embryo differentiation and development.  相似文献   

10.
11.
LEAFY COTYLEDON1 (LEC1) is a central regulator of seed development that plays a key role in controlling the maturation phase during which storage macromolecules accumulate and the embryo becomes tolerant of desiccation. We queried the genomes of seedless plants and identified a LEC1 homolog in the lycophyte, Selaginella moellendorffii , but not in the bryophyte, Physcomitrella patens . Genetic suppression experiments indicated that Selaginella LEC1 is the functional ortholog of Arabidopsis LEC1. Together, these results suggest that LEC1 originated at least 30 million years before the first seed plants appeared in the fossil record. The accumulation of Selaginella LEC1 RNA primarily in sexual and asexual reproductive structures suggests its involvement in cellular processes similar to those that occur during the maturation phase of seed development.  相似文献   

12.
13.
Immature cotyledons of open-pollinated seeds from five walnut (Juglans regia L.) cultivars were excised from fruits at 6–11 weeks after full pistillate bloom and grown on a sequence of media to induce somatic embryogenesis. Globular, heart, cotyledonary and complete somatic embryos were obtained. Embryogenic cultures were maintained for more than a year by repetitive embryogenesis in which the roots, cotyledons and hypocotyls of somatic embryos formed additional adventive somatic embryos. Mature somatic embryos required a cold treatment of 8–10 weeks at 2–4°C to overcome apical dormancy. Selected plantlets derived from these somatic embryos were grown to young plants in soil. In addition, somatic embryogenesis was induced in J. hindsii (Jeps.), Jeps., and in Pterocarya sp., another member of the Juglandaceae.  相似文献   

14.
Plant cells have the capacity to generate a new plant without egg fertilization by a process known as somatic embryogenesis (SE), in which differentiated somatic cells can form somatic embryos able to generate a functional plant. Although there have been advances in understanding the genetic basis of SE, the epigenetic mechanism that regulates this process is still unknown. Here, we show that the embryogenic development of Coffea canephora proceeds through a crosstalk between DNA methylation and histone modifications during the earliest embryogenic stages of SE. We found that low levels of DNA methylation, histone H3 lysine 9 dimethylation (H3K9me2) and H3K27me3 change according to embryo development. Moreover, the expression of LEAFY COTYLEDON1 (LEC1) and BABY BOOM1 (BBM1) are only observed after SE induction, whereas WUSCHEL-RELATED HOMEOBOX4 (WOX4) decreases its expression during embryo maturation. Using a pharmacological approach, it was found that 5-Azacytidine strongly inhibits the embryogenic response by decreasing both DNA methylation and gene expression of LEC1 and BBM1. Therefore, in order to know whether these genes were epigenetically regulated, we used Chromatin Immunoprecipitation (ChIP) assays. It was found that WOX4 is regulated by the repressive mark H3K9me2, while LEC1 and BBM1 are epigenetically regulated by H3K27me3. We conclude that epigenetic regulation plays an important role during somatic embryogenic development, and a molecular mechanism for SE is proposed.  相似文献   

15.
16.
We studied the rate of oxygen consumption by the Lymnaea stagnalis embryos. The rate of oxygen consumption increased consistently during embryogenesis. The volume specific rate of oxygen consumption increased initially from the early cleavage stages until the gastrula stage and then decreased gradually to the eclosion of snails. There are three periods in embryogenesis of L. stagnalis, which differ in the coefficients of allometric dependence between the rate of oxygen consumption and volume of embryos: (1) early embryogenesis, when the increase in the rate of oxygen consumption is not accompanied by the growth of volume of the embryos; (2) larval period (trochophore and veliger stages; exponential coefficient k = 0.514), and (3) postlarval period (exponential coefficient k = 0.206).  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号