首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tribe Abrotrichini (five genera and 14 living species) is a small clade within the speciose subfamily Sigmodontinae (Rodentia, Cricetidae), representing one of the extant successful radiations of mammals at southern high latitudes of the Neotropics. Its distribution is mostly Andean, reaching its greatest diversity in southern Argentina and Chile. We evaluate the phylogenetic relationships within this tribe through parsimony and Bayesian approaches based on 99 morphological characters (including 19 integumental characters, 38 skull characters, 31 dental characters, three postcranial skeletal characters, seven from the male accessory glands and phallus and one from the digestive system) and six molecular markers (one mitochondrial and five nuclear). We include representatives of all, except one, of the currently recognized species of living Abrotrichini plus one fossil form. Based on total evidence, we recovered a primary division between the genus Abrothrix and a group including the long‐clawed Abrotrichini, Chelemys, Geoxus, Notiomys and Pearsonomys. Both clades are recognized and named here as subtribes. The large degree of morphological variation observed within Abrothrix suggests that species in the genus fall into four groups, which we recognize as subgenera. In addition, the two known species of Chelemys do not form a monophyletic group, and Geoxus was recovered as paraphyletic with respect to Pearsonomys. To reconcile classification and phylogenetics, we describe a new genus for Chelemys macronyx and include Pearsonomys as a junior synonym of Geoxus. Our results highlight the importance of both morphology and molecules in resolving the phylogenetic relationships within this tribe. Based on biogeographical analyses, we hypothesize that Abrotrichini originated in south‐western South America by vicariance and then diversified mostly by successive dispersal events.  相似文献   

2.
3.
To address the phylogenetic relationships of the centipede order Geophilomorpha (more than 1000 species), we have reinterpreted and expanded the knowledge on their morphological disparity, and have doubled the amount of molecular data available. We performed maximum parsimony and maximum likelihood analyses, using 195 phylogenetically informative morphological characters for 80 species, and DNA sequences of 28S, 18S, 16S rRNA and COI for up to 48 species. We found strong support for the monophyly of Geophilomorpha, the basal dichotomy between Adesmata and Placodesmata = Mecistocephalidae, and the basal dichotomy within Adesmata between two clades that are recognized here as superfamilies Himantarioidea and Geophiloidea. With respect to the families currently in use, Himantarioidea comprises three well supported clades corresponding to (i) Oryidae, (ii) Himantariidae, and (iii) Schendylidae s.l. including Ballophilidae; Geophiloidea comprises another three supported clades corresponding to (iv) a new family Zelanophilidae, (v) Gonibregmatidae s.l. including Eriphantidae and Neogeophilidae, and (vi) Geophilidae s.l. including Aphilodontidae, Dignathodontidae, Linotaeniidae, and Macronicophilidae.  相似文献   

4.
Entomobryidae, the largest collembolan family, is traditionally classified at suprageneric level using a limited set of morphological structures, such as scales, antennal segmentation. Most tribal and subfamilial delimitations appear, however, disputable in the light of recent works. Integrating molecular and morphological evidence, we propose here a revision of the systematics of the family. In addition to traditional taxonomic characters, tergal specialized chaetae (S‐chaetae) are newly introduced, and their patterns are shown to be diversified at all levels from species to subfamilies. S‐chaetotaxic pattern on phylogenetic tree shows that evolution of S‐chaetae is not parallel between the different terga and that their patterns coincide well with the known molecular phylogeny, providing a powerful tool for the systematics of Entomobryidae. Orchesellinae sensu Soto‐Adames et al. (Annals of the Entomological Society of America, 101, 2008, 501); is divided into three subfamilies: Orchesellinae s. s., Bessoniellinae and Heteromurinae, the latter two upgraded from the original tribal level. Entomobryinae sensu Szeptycki (Morpho‐Systematic Studies on Collembola. IV. Chaetotaxy of the Entomobryidae and its Phylogenetical Significance, 1979), is no longer divided into scaled and unscaled tribes, and Lepidosira‐group is transferred from Seirinae to Entomobryinae. A key to subfamilies and tribes and a comparison with previous classifications of the Entomobryidae are provided. This study greatly improves the understanding of primary and secondary characters and erects the fundamental framework for the taxonomy of Entomobryidae.  相似文献   

5.
6.
Macroptilium (Benth.) Urban (Phaseoleae, Papilionoideae, Leguminosae) is an American genus of legumes, belonging to subtribe Phaseolinae along with other economically important genera, such as Vigna Savi and Phaseolus L. (the common bean genus). Cladistic analyses based on morphological, biochemical (storage seed proteins) and molecular (nuclear and plastid DNA sequences) data were performed on the 18 species currently ascribed to the genus, exploring several character weighting strategies. Equal weights, implied weighting and different transversion/transition costs were applied. The three data sets were first analyzed with separate partitions, and then combined into a single matrix. This study is the first one to analyze all the species of the genus from a cladistic point of view. In all the most parsimonious trees obtained, Macroptilium is monophyletic with excellent support values. Two monophyletic clades are recovered in almost all the analyses. Both are compound by nine species, and they constitute two sections of Macroptilium. Several interspecific relationships inside the genus are discussed. © The Willi Hennig Society 2007.  相似文献   

7.
Abstract. Dermaptera (earwigs) is a cosmopolitan order of insects, the phylogenetic relationships of which are poorly understood. The phylogeny of Dermaptera was inferred from large subunit ribosomal (28S), small subunit ribosomal (18S), histone-3 (H3) nuclear DNA sequences, and forty-three morphological characters. Sequence data were collected for thirty-two earwig exemplar taxa representing eight families in two suborders: Hemimeridae (suborder Hemimerina); Pygidicranidae, Anisolabididae, Labiduridae, Apachyidae, Spongiphoridae, Chelisochidae and Forficulidae (suborder Forficulina). Eighteen taxa from ten additional orders were also included, representing Ephemeroptera, Odonata, Orthoptera, Phasmida, Embiidina, Mantodea, Isoptera, Blattaria, Grylloblattodea and Zoraptera. These data were analysed via direct optimization in poy under a range of gap and substitution values to test the sensitivity of the data to variations in parameter values. These results indicate that the epizoic Hemimerus is not sister to the remaining Dermaptera, but rather nested as sister to Forficulidae + Chelisochidae. These analyses support the paraphyly of Pygidicranidae and Spongiphoridae and the monophyly of Chelisochidae, Forficulidae, Anisolabididae and Labiduridae.  相似文献   

8.
描述了四川凤仙花属一新种,凉山凤仙花。新种与黄麻叶凤仙花近缘,主要区别:花序2~6花,均垂于叶片下,囊状的唇瓣肿胀,在中部明显弯曲,翼瓣基部裂片先端长渐尖或尾尖,上部裂片背腹约120°~180°扭转。  相似文献   

9.
Liu S  Liu Y  Guo P  Sun Z  Murphy RW  Fan Z  Fu J  Zhang Y 《Zoological science》2012,29(9):610-622
The systematics of Oriental voles remains controversial despite numerous previous studies. In this study, we explore the systematics of all species of Oriental voles, except Eothenomys wardi, using a combination of DNA sequences and morphological data. Our molecular phylogeny, based on two mitochondrial genes (COI and cyt b), resolves the Oriental voles as a monophyletic group with strong support. Four distinct lineages are resolved: Eothenomys, Anteliomys, Caryomys, and the new subgenus Ermites. Based on morphology, we consider Caryomys and Eothenomys to be valid genera. Eothenomys, Anteliomys, and Ermites are subgenera of Eothenomys. The molecular phylogeny resolves subgenera Anteliomys and Ermites as sister taxa. Subgenus Eothenomys is sister to the clade Anteliomys + Ermites. Caryomys is the sister group to genus Eothenomys. Further, the subspecies E. custos hintoni and E. chinensis tarquinius do not cluster with E. custos custos and E. chinensis chinensis, respectively, and the former two taxa are elevated to species level and assigned to the new subgenus Ermites.  相似文献   

10.
11.
A new species of Impatiens L. from Hubei, China, Impatiens zhuxiensis Q.L. Gan & X.W. Li, is described and illustrated. Impatiens zhuxiensis resembles I. nasuta Hook. f. and I. compta Hook. f. and these are the only species in I. sect. Impatiens with a long abaxial rostrum on the midvein of the dorsal petal. However, the flowers of I. zhuxiensis are yellow while those of I. nasuta and I. compta are deep purple-red and pale purple-blue, respectively; I. zhuxiensis has the midvein of the dorsal petal abaxially elongated into a pointed rostrum near the apex, whilst the rostrum of I. nasuta is elephant-trunk-shaped near the middle, and that of I. compta is recurved near the apex. A molecular phylogenetic analysis of Impatiens based on ITS, atpB-rbcL and trnL-F supported these three species as closely allied and that they belong to I. sect. Impatiens.  相似文献   

12.
Tomoceridae is common but among the most problematic groups of Collembola. Its position within Collembola and the relationships within the family remain obscure. This also extends to the generic division of the subfamily Tomocerinae that remains controversial. This study examines these issues by integrating both molecular and morphological evidence. Our molecular phylogeny based on rDNA sequences supports the monophyly of Tomoceridae and the sister relationship between Tomocerinae and Lepidophorellinae. Reconstructions and tree topology tests constraining monophyly did not resolve the relationships between Tomoceridae and other collembolan groups. We also examined the morphology of the first instar (primary) larvae, which has significant phylogenetic value among higher Collembola. Mapping primary chaetotaxy onto our molecular phylogeny provided further evidence for the unique position of Tomoceridae within Entomobryomorpha and Collembola. The monophyly and subfamilial classification within Tomoceridae were validated here, whereas its position among Collembola will need further studies in a broader consideration across the major collembolan orders. Within Tomocerinae, the monophyly of Pogonognathellus was demonstrated, but the status of Tomocerus and Tomocerina is still to be resolved.  相似文献   

13.
AKIYAMA, S., WAKABAYASHI, M. & OHBA, H., 1992. Chromosome evolution in Himalayan Impatiens (Balsaminaceae). Chromosome numbers and karyotypes have been investigated in species of Himalayan Impatiens . In addition to confirming previous chromosome counts, the presence of a tetraploid taxon ( I. exilis) is revealed. In central and east Nepal species with x = 9 are more common than those with other basic numbers and this number is shown to be one of the most frequent numbers in the genus. Most species with x = 9 have a bimodal karyotype. The species relationships are discussed.  相似文献   

14.
The ability to recognize kin is an important element in social behavior and can lead to the evolution of altruism. Recently, it has been shown that plants are capable of kin recognition through root interactions. Here we tested for kin recognition in a North American species of Impatiens that has a high opportunity of growing with kin and responds strongly to aboveground competition. We measured how the plants responded to the aboveground light quality cues of competition and to the presence of root neighbors and determined whether the responses depended on whether the neighbors were siblings or strangers. The study families were identified by DNA sequencing as members of the same species, provisionally identified as Impatiens pallida (hereafter I. cf. pallida). We found that I. cf. pallida plants were capable of kin recognition, but only in the presence of another plant's roots. Several traits responded to relatedness in shared pots, including increased leaf to root allocation with strangers and increased stem elongation and branchiness in response to kin, potentially indicating both increased competition toward strangers and reduced interference (cooperation) toward kin. Impatiens cf. pallida responded to both competition cues simultaneously, with the responses to the aboveground competition cue dependent on the presence of the belowground competition cue.  相似文献   

15.
《Nordic Journal of Botany》2008,25(1-2):27-30
Impatiens angulata S. X. Yu, Y. L. Chen et H. N. Qin sp. nova (Balsaminaceae), a new species from Guangxi, China, is described and illustrated. This species is close to I. hainanensis in morphological characters . Both have succulent stems, 4 lateral sepal connected upper lobes of lateral united petals, but are distinguished by the base of stems with 6–9 ridges, leaves oblong or oblanceolate, the outer lateral sepals with 9 veins, inner lateral sepals ovate and dorsal sepal with deep bilobate spur.  相似文献   

16.
Impatiens bomiensis, a new species of Balsaminaceae from Bomi County, Xizang, China, is described and illustrated. This new species is similar to Impatiens fragicolor based on morphological characters and molecular data, but differs in the shape of the lower sepal, the dorsal petal and the number of globose glands at petiole base.  相似文献   

17.
18.
19.
以不同发育时期的长角凤仙花Impatiens longicornuta Y.L.Chen(凤仙花科Balsaminaceae)为材料,利用扫描电镜技术观察了其花器官的分化及其发育过程。长角凤仙花为两侧对称花,具2枚侧生萼片,唇瓣囊状,旗瓣具鸡冠状突起,雄蕊5枚,子房上位,5心皮5室。其花器官分化顺序为向心式,萼片—花瓣—雄蕊—雌蕊原基。2枚侧生萼片先发生,然后近轴萼片(即唇瓣)原基和2枚前外侧萼片原基近同时发生;但是这3枚萼片原基的发育不同步,远轴的2枚前外侧萼片原基的发育渐渐滞后,然后停止发育,最后渐渐为周围组织所吸收,直至消失不见。花瓣原基中,旗瓣原基最先发生,4个侧生花瓣原基相继成对发生,且之后在基部成对愈合形成翼瓣;5枚雄蕊原基几乎同时发生,5个心皮原基轮状同时发生。本文结果支持凤仙花属植物为5基数的花,并进一步证实了唇瓣的萼片来源;此外,研究结果表明花器官早期发育资料对植物系统与进化研究具有重要参考价值。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号