首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Inferring phylogenetic relationships between closely related taxa can be hindered by three factors: (1) the lack of informative molecular variation at short evolutionary timescale; (2) the lack of established markers in poorly studied taxa; and (3) the potential phylogenetic conflicts among different genomic regions due to incomplete lineage sorting or introgression. In this context, Restriction site Associated DNA sequencing (RAD‐seq) seems promising as this technique can generate sequence data from numerous DNA fragments scattered throughout the genome, from a large number of samples, and without preliminary knowledge on the taxa under study. However, divergence beyond the within‐species level will necessarily reduce the number of conserved and non‐duplicated restriction sites, and therefore the number of loci usable for phylogenetic inference. Here, we assess the suitability of RAD‐seq for phylogeny using a simulated experiment on the 12 Drosophila genomes, with divergence times ranging from 5 to 63 million years. These simulations show that RAD‐seq allows the recovery of the known Drosophila phylogeny with strong statistical support, even for relatively ancient nodes. Notably, this conclusion is robust to the potentially confounding effects of sequencing errors, heterozygosity, and low coverage. We further show that clustering RAD‐seq data using the BLASTN and SiLiX programs significantly improves the recovery of orthologous RAD loci compared with previously proposed approaches, especially for distantly related species. This study therefore validates the view that RAD sequencing is a powerful tool for phylogenetic inference.  相似文献   

2.
Comprehensively sampled phylogenetic trees provide the most compelling foundations for strong inferences in comparative evolutionary biology. Mismatches are common, however, between the taxa for which comparative data are available and the taxa sampled by published phylogenetic analyses. Moreover, many published phylogenies are gene trees, which cannot always be adapted immediately for species level comparisons because of discordance, gene duplication, and other confounding biological processes. A new database, STBase, lets comparative biologists quickly retrieve species level phylogenetic hypotheses in response to a query list of species names. The database consists of 1 million single- and multi-locus data sets, each with a confidence set of 1000 putative species trees, computed from GenBank sequence data for 413,000 eukaryotic taxa. Two bodies of theoretical work are leveraged to aid in the assembly of multi-locus concatenated data sets for species tree construction. First, multiply labeled gene trees are pruned to conflict-free singly-labeled species-level trees that can be combined between loci. Second, impacts of missing data in multi-locus data sets are ameliorated by assembling only decisive data sets. Data sets overlapping with the user’s query are ranked using a scheme that depends on user-provided weights for tree quality and for taxonomic overlap of the tree with the query. Retrieval times are independent of the size of the database, typically a few seconds. Tree quality is assessed by a real-time evaluation of bootstrap support on just the overlapping subtree. Associated sequence alignments, tree files and metadata can be downloaded for subsequent analysis. STBase provides a tool for comparative biologists interested in exploiting the most relevant sequence data available for the taxa of interest. It may also serve as a prototype for future species tree oriented databases and as a resource for assembly of larger species phylogenies from precomputed trees.  相似文献   

3.
Recently evolved species typically share genetic variation across their genomes due to incomplete lineage sorting and/or ongoing gene flow. Given only subtle allele frequency differences at most loci and the expectation that divergent selection may affect only a tiny fraction of the genome, distinguishing closely related species based on multi‐locus data requires substantial genomic coverage. In this study, we used ddRAD‐seq to sample the genomes of five recently diverged, New World “mallards” (Anas spp.), a group of dabbling duck species characterized by diagnosable phenotypic differences but minimal genetic differentiation. With increased genomic sampling, we aimed to characterize population structure within this group and identify genomic regions that may have experienced divergent selection during speciation. We analyzed 3,017 autosomal ddRAD‐seq loci and 177 loci from the Z‐chromosome. In contrast to previous studies, the ddRAD‐seq data were sufficient to assign individuals to their respective species or subspecies and to generate estimates of gene flow in a phylogenetic framework. We find limited evidence of contemporary gene flow between the dichromatic mallard and several monochromatic taxa, but find evidence for historical gene flow between some monochromatic species pairs. We conclude that the overall genetic similarity of these taxa likely reflects retained ancestral polymorphism rather than recent and extensive gene flow. Thus, despite recurring cases of hybridization in this group, our results challenge the current dogma predicting the genetic extinction of the New World monochromatic dabbling ducks via introgressive hybridization with mallards. Moreover, ddRAD‐seq data were sufficient to identify previously unknown outlier regions across the Z‐chromosome and several autosomal chromosomes that may have been involved in the diversification of species in this recent radiation.  相似文献   

4.
Next‐generation sequencing technologies (NGS) allow systematists to amass a wealth of genomic data from non‐model species for phylogenetic resolution at various temporal scales. However, phylogenetic inference for many lineages dominated by non‐model species has not yet benefited from NGS, which can complement Sanger sequencing studies. One such lineage, whose phylogenetic relationships remain uncertain, is the diverse, agriculturally important and charismatic Coreoidea (Hemiptera: Heteroptera). Given the lack of consensus on higher‐level relationships and the importance of a robust phylogeny for evolutionary hypothesis testing, we use a large data set comprised of hundreds of ultraconserved element (UCE) loci to infer the phylogeny of Coreoidea (excluding Stenocephalidae and Hyocephalidae), with emphasis on the families Coreidae and Alydidae. We generated three data sets by including alignments that contained loci sampled for at least 50%, 60%, or 70% of the total taxa, and inferred phylogeny using maximum likelihood and summary coalescent methods. Twenty‐six external morphological features used in relatively comprehensive phylogenetic analyses of coreoids were also re‐evaluated within our molecular phylogenetic framework. We recovered 439–970 loci per species (16%–36% of loci targeted) and combined this with previously generated UCE data for 12 taxa. All data sets, regardless of analytical approach, yielded topologically similar and strongly supported trees, with the exception of outgroup relationships and the position of Hydarinae. We recovered a monophyletic Coreoidea, with Rhopalidae highly supported as the sister group to Alydidae + Coreidae. Neither Alydidae nor Coreidae were monophyletic; the coreid subfamilies Hydarinae and Pseudophloeinae were recovered as more closely related to Alydidae than to other coreid subfamilies. Coreinae were paraphyletic with respect to Meropachyinae. Most morphological traits were homoplastic with several clades defined by few, if any, synapomorphies. Our results demonstrate the utility of phylogenomic approaches in generating robust hypotheses for taxa with long‐standing phylogenetic problems and highlight that novel insights may come from such approaches.  相似文献   

5.
6.
Rubin BE  Ree RH  Moreau CS 《PloS one》2012,7(4):e33394
Reduced-representation genome sequencing represents a new source of data for systematics, and its potential utility in interspecific phylogeny reconstruction has not yet been explored. One approach that seems especially promising is the use of inexpensive short-read technologies (e.g., Illumina, SOLiD) to sequence restriction-site associated DNA (RAD)--the regions of the genome that flank the recognition sites of restriction enzymes. In this study, we simulated the collection of RAD sequences from sequenced genomes of different taxa (Drosophila, mammals, and yeasts) and developed a proof-of-concept workflow to test whether informative data could be extracted and used to accurately reconstruct "known" phylogenies of species within each group. The workflow consists of three basic steps: first, sequences are clustered by similarity to estimate orthology; second, clusters are filtered by taxonomic coverage; and third, they are aligned and concatenated for "total evidence" phylogenetic analysis. We evaluated the performance of clustering and filtering parameters by comparing the resulting topologies with well-supported reference trees and we were able to identify conditions under which the reference tree was inferred with high support. For Drosophila, whole genome alignments allowed us to directly evaluate which parameters most consistently recovered orthologous sequences. For the parameter ranges explored, we recovered the best results at the low ends of sequence similarity and taxonomic representation of loci; these generated the largest supermatrices with the highest proportion of missing data. Applications of the method to mammals and yeasts were less successful, which we suggest may be due partly to their much deeper evolutionary divergence times compared to Drosophila (crown ages of approximately 100 and 300 versus 60 Mya, respectively). RAD sequences thus appear to hold promise for reconstructing phylogenetic relationships in younger clades in which sufficient numbers of orthologous restriction sites are retained across species.  相似文献   

7.
The angiosperm Apiaceae tribe Scandiceae includes four major clades—subtribes Daucinae, Ferulinae, Torilidinae, and Scandicinae—that originated ca. 20 Mya. Although all four subtribes are highly supported in molecular analyses, and morphological data indicate a sister relationship between Daucinae and Torilidinae, their branching order has not been resolved using standard Sanger multilocus data. Therefore, in this study, we test the utility of genomic RAD seq data in resolving deep phylogenetic relationships (up to 20 Mya) in Apiaceae subfamily Apioideae, with special emphasis on tribe Scandiceae using 12 representative species. We used two bioinformatic pipelines, pyRAD and RADIS (based on STACKS), to assemble RAD seq data and we tested the influence of various combinations of parameters on the robustness of the inferred tree topologies. Although different data processing approaches produced alignments with various amounts of missing data, they converged to two well‐supported topologies, irrespective of the phylogenetic method applied. Highly supported trees showed Scandicinae as sister to all other clades and indicated that Daucinae and Torilidinae are sister groups, thus confirming the relationship inferred from morphology. We conclude that the RAD seq method can be successfully used to resolve deep relationships formed 20 Mya within Apiaceae. We provide recommendations for parameter settings in RADIS and pyRAD for the analysis of taxa that have accumulated considerable genomic divergence.  相似文献   

8.
9.
The possibility of gene tree incongruence in a species-level phylogenetic analysis of the genus Ips (Coleoptera: Scolytidae) was investigated based on mitochondrial 16S rRNA (16S) and nuclear elongation factor-1 alpha (EF-1 alpha) sequences, and existing cytochrome oxidase I (COI) and nonmolecular data sets. Separate cladistic analyses of the data partitions resulted in partially discordant most-parsimonious trees but revealed only low conflict of the phylogenetic signal. Interactions among data partitions, which differed in the extent of sequence divergence (COI > 16S > EF-1 alpha), base composition, and homoplasy, revealed that much of the branch support emerges only in the simultaneous analysis, particularly for deeper nodes in the tree, which are almost entirely supported through "hidden support" (sensu Gatesy et al., Cladistics 15:271-313, 1999). Apparent incongruence between data partitions is in part due to suboptimal alignments and bias of character transformations, but little evidence supports invoking incongruent phylogenetic histories of genetic loci. There is also no justification for eliminating or downweighting gene partitions on the basis of their apparent homoplasy or incongruence with other partitions, because the signal emerges only in the interaction of all data. In comparison with traditional taxonomy, the pini, plastographus, and perturbatus groups are polyphyletic, whereas the grandicollis group is monophyletic except for inclusion of the (monophyletic) calligraphus group. The latidens group and some European species are distantly related and closer to other genera within Ipini. Our robust cladogram was used to revise the classification of Ips. We provide new diagnoses for Ips and four subgeneric taxa.  相似文献   

10.
Blue‐tailed skinks (genus Plestiodon) are a common component of the terrestrial herpetofauna throughout their range in eastern Eurasia and North and Middle America. Plestiodon species are also frequent subjects of ecological and evolutionary research, yet a comprehensive, well‐supported phylogenetic framework does not yet exist for this genus. We construct a comprehensive molecular phylogeny of Plestiodon using Bayesian phylogenetic analyses of a nine‐locus data set comprising 8308 base pairs of DNA, sampled from 38 of the 43 species in the genus. We evaluate potential gene tree/species tree discordance by conducting phylogenetic analyses of the concatenated and individual locus data sets, as well as employing coalescent‐based methods. Specifically, we address the placement of Plestiodon within the evolutionary tree of Scincidae, as well as the phylogenetic relationships between Plestiodon species, and their taxonomy. Given our sampling of major Scincidae lineages, we also re‐evaluate ‘deep’ relationships within the family, with the goal of resolving relationships that have been ambiguous in recent molecular phylogenetic analyses. We infer strong support for several scincid relationships, including a major clade of ‘scincines’ and the inter‐relationships of major Mediterranean and southern African genera. Although we could not estimate the precise phylogenetic affinities of Plestiodon with statistically significant support, we nonetheless infer significant support for its inclusion in a large ‘scincine’ clade exclusive of Acontinae, Lygosominae, Brachymeles, and Ophiomorus. Plestiodon comprises three major geographically cohesive clades. One of these clades is composed of mostly large‐bodied species inhabiting northern Indochina, south‐eastern China (including Taiwan), and the southern Ryukyu Islands of Japan. The second clade comprises species inhabiting central China (including Taiwan) and the entire Japanese archipelago. The third clade exclusively inhabits North and Middle America and the island of Bermuda. A vast majority of interspecific relationships are strongly supported in the concatenated data analysis, but there is nonetheless significant conflict amongst the individual gene trees. Coalescent‐based gene tree/species tree analyses indicate that incongruence amongst the nuclear loci may severely obscure the phylogenetic inter‐relationships of the primarily small‐bodied Plestiodon species that inhabit the central Mexican highlands. These same analyses do support the sister relationship between Plestiodon marginatus Hallowell, 1861 and Plestiodon stimpsonii (Thompson, 1912), and differ with the mitochondrial DNA analysis that supports Plestiodon elegans (Boulenger, 1887) + P. stimpsonii. Finally, because the existing Plestiodon taxonomy is a poor representation of evolutionary relationships, we replace the existing supraspecific taxonomy with one congruent with our phylogenetic results. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 165 , 163–189.  相似文献   

11.
The fact that different phylogenomic data sets can lead to highly supported but inconsistent results suggest that conflict among gene trees in real data sets could be severe. We provide here a detailed exploration of gene tree space to investigate the relationships in Hymenoptera based on data obtained by Johnson et al. (Current Biology, 2013, 23, 2058), in which ants and Apoidea (bees and spheciform wasps) were recovered as sister groups, contradicting previous studies. We found high levels of topological variation among gene trees, several of them disagreeing with previously published hypotheses. To profile the dynamics of emerging support versus conflicting signal in combined analysis of data, we employed a novel method based on the incremental addition of randomized data to coalescence‐based phylogenetic inference. Although the monophyly of Aculeata and of Formicidae were consistently recovered using as little as 6.5% of the 308 available markers, signal for the Formicidae + Apoidea clade prevailed only after more than 50% of the loci were sampled. Still, non‐negligible support for alternative hypotheses remained until all genes were added to the analysis. Our results suggest that phylogenetic conflict is rather pervasive and not scattered as noise across individual gene trees because alternative topologies were recovered not from a specific subset, but from several random combinations of loci. Thus, even though phylogenetic signal recovered from full gene data sets was already dominant in much smaller ensembles, large amounts of data may be indeed necessary to overcome phylogenetic conflict.  相似文献   

12.
In this study, we explore the long‐standing issue of how many loci are needed to infer accurate phylogenetic relationships, and whether loci with particular attributes (e.g., parsimony informativeness, variability, gene tree resolution) outperform others. To do so, we use an empirical data set consisting of the seven species of chickadees (Aves: Paridae), an analytically tractable, recently diverged group, and well‐studied ecologically but lacking a nuclear phylogeny. We estimate relationships using 40 nuclear loci and mitochondrial DNA using four coalescent‐based species tree inference methods (BEST, *BEAST, STEM, STELLS). Collectively, our analyses contrast with previous studies and support a sister relationship between the Black‐capped and Carolina Chickadee, two superficially similar species that hybridize along a long zone of contact. Gene flow is a potential source of conflict between nuclear and mitochondrial gene trees, yet we find a significant, albeit low, signal of gene flow. Our results suggest that relatively few loci with high information content may be sufficient for estimating an accurate species tree, but that substantially more loci are necessary for accurate parameter estimation. We provide an empirical reference point for researchers designing sampling protocols with the purpose of inferring phylogenies and population parameters of closely related taxa.  相似文献   

13.
Phylogeny reconstruction is challenging when branch lengths vary and when different genetic loci show conflicting signals. The number of DNA sequence characters required to obtain robust support for all the nodes in a phylogeny becomes greater with denser taxon sampling. We test the usefulness of an approach mixing densely sampled, variable non-coding sequences (trnL-F; rpl16; atpB-rbcL; ITS) with sparsely sampled, more conservative protein coding and ribosomal sequences (matK; ndhF; rbcL; 26S), for the grass subfamily Danthonioideae. Previous phylogenetic studies of Danthonioideae revealed extensive generic paraphyly, but were often impeded by insufficient character and taxon sampling and apparent inter-gene conflict. Our variably-sampled supermatrix approach allowed us to represent 79% of the species with up to c. 9900 base pairs for taxa representing the major clades. A 'taxon duplication' approach for taxa with conflicting phylogenetic signals allowed us to combine the data whilst representing the differences between chloroplast and nuclear encoded gene trees. This approach efficiently improves resolution and support whilst maximising representation of taxa and their sometimes composite evolutionary histories, resulting in a phylogeny of the Danthonioideae that will be useful both for a wide range of evolutionary studies and to inform forthcoming realignment of generic delimitations in the subfamily.  相似文献   

14.
Combining data sets with different phylogenetic histories   总被引:1,自引:0,他引:1  
The possibility that two data sets may have different underlying phylogenetic histories (such as gene trees that deviate from species trees) has become an important argument against combining data in phylogenetic analysis. However, two data sets sampled for a large number of taxa may differ in only part of their histories. This is a realistic scenario and one in which the relative advantages of combined, separate, and consensus analysis become much less clear. I propose a simple methodology for dealing with this situation that involves (1) partitioning the available data to maximize detection of different histories, (2) performing separate analyses of the data sets, and (3) combining the data but considering questionable or unresolved those parts of the combined tree that are strongly contested in the separate analyses (and which therefore may have different histories) until a majority of unlinked data sets support one resolution over another. In support of this methodology, computer simulations suggest that (1) the accuracy of combined analysis for recovering the true species phylogeny may exceed that of either of two separately analyzed data sets under some conditions, particularly when the mismatch between phylogenetic histories is small and the estimates of the underlying histories are imperfect (few characters, high homoplasy, or both) and (2) combined analysis provides a poor estimate of the species tree in areas of the phylogenies with different histories but gives an improved estimate in regions that share the same history. Thus, when there is a localized mismatch between the histories of two data sets, the separate, consensus, and combined analyses may all give unsatisfactory results in certain parts of the phylogeny. Similarly, approaches that allow data combination only after a global test of heterogeneity will suffer from the potential failings of either separate or combined analysis, depending on the outcome of the test. Excision of conflicting taxa is also problematic, in that doing so may obfuscate the position of conflicting taxa within a larger tree, even when their placement is congruent between data sets. Application of the proposed methodology to molecular and morphological data sets for Sceloporus lizards is discussed.  相似文献   

15.
McGeoch DJ  Dolan A  Ralph AC 《Journal of virology》2000,74(22):10401-10406
With the aim of deriving a definitive phylogenetic tree for as many mammalian and avian herpesvirus species as possible, alignments were made of amino acid sequences from eight conserved and ubiquitously present genes of herpesviruses, with 48 virus species each represented by at least one gene. Phylogenetic trees for both single-gene and concatenated alignments were evaluated thoroughly by maximum-likelihood methods, with each of the three herpesvirus subfamilies (the Alpha-, Beta-, and Gammaherpesvirinae) examined independently. Composite trees were constructed starting with the top-scoring tree based on the broadest set of genes and supplemented by addition of virus species from trees based on narrower gene sets, to give finally a 46-species tree; branching order for three regions within the tree remained unresolved. Sublineages of the Alpha- and Betaherpesvirinae showed extensive cospeciation with host lineages by criteria of congruence in branching patterns and consistency in extent of divergence. The Gammaherpesvirinae presented a more complex picture, with both higher and lower substitution rates in different sublineages. The final tree obtained represents the most detailed view to date of phylogenetic relationships in any family of large-genome viruses.  相似文献   

16.
The phylogenetic relationships of 22 species of Coelopidae are reconstructed based on a data matrix consisting of morphological and DNA sequence characters (16S rDNA, EF-1alpha). Optimal gap and transversion costs are determined via a sensitivity analysis and both equal weighting and a transversion cost of 2 are found to perform best based on taxonomic congruence, character incongruence, and tree support. The preferred phylogenetic hypothesis is fully resolved and well-supported by jackknife, bootstrap, and Bremer support values, but it is in conflict with the cladogram based on morphological characters alone. Most notably, the Coelopidae and the genus Coelopa are not monophyletic. However, partitioned Bremer Support and an analysis of node stability under different gap and transversion costs reveal that the critical clades rendering these taxa non-monophyletic are poorly supported. Furthermore, the monophyly of Coelopidae and Coelopa is not rejected in analyses using 16S rDNA that was manually aligned. The resolution of the tree based on this reduced data sets is, however, lower than for the tree based on the full data sets. Partitioned Bremer support values reveal that 16S rDNA characters provide the largest amount of tree support, but the support values are heavily dependent on analysis conditions. Problems with direct comparison of branch support values for trees derived using fixed alignments with those obtained under optimization alignment are discussed. Biogeographic history and available behavioral and genetic data are also discussed in light of this first cladogram for Coelopidae based on a quantitative phylogenetic analysis.  相似文献   

17.
Here I advocate the utility of Bayesian concordance analysis as a mechanism for exploring the magnitude and source of phylogenetic signal in concatenated mitogenomic phylogenetic studies. While typically applied to the study of independently evolving gene trees, Bayesian concordance analysis can also be applied to linked, but individually analyzed, gene regions using a prior probability that reflects the expectation of similar phylogenetic reconstructions. For true branches in the mitogenomic tree, concordance factors should represent the number of gene regions that contain phylogenetic signal for a particular clade. As a demonstration of the application of Bayesian concordance analysis to empirical data, I analyzed two different salamander (Hynobiidae and Plethodontidae) mitogenomic data sets using a gene-based partitioning strategy. The results revealed many strongly supported clades in the concatenated trees that have high concordance factors, permitting the inference that these are robustly resolved through phylogenetic signal distributed across the mitogenome. In contrast, a number of strongly supported clades in the concatenated tree received low concordance factors, indicating that their reconstruction is either driven primarily by phylogenetic signal in a small number of gene regions, or that they are inconsistent reconstructions influenced by properties of the data that can produce inaccurate trees (e.g., compositional bias, selection, etc.). Exploration of the Bayesian joint posterior distribution of trees highlighted partitions that contribute phylogenetic information to similar clade reconstructions. This approach was particularly insightful in the hynobiid data, where different combinations of genes were identified that support alternative tree reconstructions. Concatenated analysis of these different subsets of genes highlighted through Bayesian concordance analysis produced strongly supported and contrasting trees, demonstrating the potential for inconsistency in concatenated mitogenomic phylogenetics. The overall results presented here suggest that Bayesian concordance analysis can serve as an effective exploration of the influence of different gene regions in mitogenomic (and other organellar genomic) phylogenetic studies.  相似文献   

18.
Toadlets of the genus Brachycephalus are endemic to the Atlantic rainforests of southeastern and southern Brazil. The 14 species currently described have snout-vent lengths less than 18 mm and are thought to have evolved through miniaturization: an evolutionary process leading to an extremely small adult body size. Here, we present the first comprehensive phylogenetic analysis for Brachycephalus, using a multilocus approach based on two nuclear (Rag-1 and Tyr) and three mitochondrial (Cyt b, 12S, and 16S rRNA) gene regions. Phylogenetic relationships were inferred using a partitioned Bayesian analysis of concatenated sequences and the hierarchical Bayesian method (BEST) that estimates species trees based on the multispecies coalescent model. Individual gene trees showed conflict and also varied in resolution. With the exception of the mitochondrial gene tree, no gene tree was completely resolved. The concatenated gene tree was completely resolved and is identical in topology and degree of statistical support to the individual mtDNA gene tree. On the other hand, the BEST species tree showed reduced significant node support relative to the concatenate tree and recovered a basal trichotomy, although some bipartitions were significantly supported at the tips of the species tree. Comparison of the log likelihoods for the concatenated and BEST trees suggests that the method implemented in BEST explains the multilocus data for Brachycephalus better than the Bayesian analysis of concatenated data. Landmark-based geometric morphometrics revealed marked variation in cranial shape between the species of Brachycephalus. In addition, a statistically significant association was demonstrated between variation in cranial shape and genetic distances estimated from the mtDNA and nuclear loci. Notably, B. ephippium and B. garbeana that are predicted to be sister-species in the individual and concatenated gene trees and the BEST species tree share an evolutionary novelty, the hyperossified dorsal plate.  相似文献   

19.
Oceanic dolphins (Delphinidae) are the product of a rapid radiation that yielded ~36 extant species of small to medium-sized cetaceans that first emerged in the Late Miocene. Although they are a charismatic group of organisms that have become poster children for marine conservation, many phylogenetic relationships within Delphinidae remain elusive due to the slow molecular evolution of the group and the difficulty of resolving short branches from successive cladogenic events. Here I combine existing and newly generated sequences from four mitochondrial (mt) genes and 20 nuclear (nu) genes to reconstruct a well-supported phylogenetic hypothesis for Delphinidae. This study compares maximum-likelihood and Bayesian inference methods of several data sets including mtDNA, combined nuDNA, gene trees of individual nuDNA loci, and concatenated mtDNA+nuDNA. In addition, I contrast these standard phylogenetic analyses with the species tree reconstruction method of Bayesian concordance analysis (BCA). Despite finding discordance between mtDNA and individual nuDNA loci, the concatenated matrix recovers a completely resolved and robustly supported phylogeny that is also broadly congruent with BCA trees. This study strongly supports groupings such as Delphininae, Lissodelphininae, Globicephalinae, Sotalia+Delphininae, Steno+Orcaella+Globicephalinae, and Leucopleurus acutus, Lagenorhynchus albirostris, and Orcinus orca as basal delphinid taxa.  相似文献   

20.
Hybridization and convergent evolution are phenomena of broad interest in evolutionary biology, but their occurrence poses challenges for reconstructing evolutionary affinities among affected taxa. Sticklebacks in the genus Pungitius are a case in point: evolutionary relationships and taxonomic validity of different species and populations in this circumpolarly distributed species complex remain contentious due to convergent evolution of traits regarded as diagnostic in their taxonomy, and possibly also due to frequent hybridization among taxa. To clarify the evolutionary relationships among different Pungitius species and populations globally, as well as to study the prevalence and extent of introgression among recognized species, genomic data sets of both reference genome‐anchored single nucleotide polymorphisms and de novo assembled RAD‐tag loci were constructed with RAD‐seq data. Both data sets yielded topologically identical and well‐supported species trees. Incongruence between nuclear and mitochondrial DNA‐based trees was found and suggested possibly frequent hybridization and mitogenome capture during the evolution of Pungitius sticklebacks. Further analyses revealed evidence for frequent nuclear genetic introgression among Pungitius species, although the estimated proportions of autosomal introgression were low. Apart from providing evidence for frequent hybridization, the results challenge earlier mitochondrial and morphology‐based hypotheses regarding the number of species and their affinities in this genus: at least seven extant species can be recognized on the basis of genetic data. The results also shed new light on the biogeographical history of the Pungitius‐complex, including suggestion of several trans‐Arctic invasions of Europe from the Northern Pacific. The well‐resolved phylogeny should facilitate the utility of this genus as a model system for future comparative evolutionary studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号