首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We explored evolutionary changes in wing venation and wing size and shape in Aphidiinae, one of the well-known groups of parasitic wasps from the family Braconidae. Forewings of 53 species from 12 genera were examined, for which a molecular phylogeny was constructed on the basis of the mitochondrial barcoding gene COI. By covering all types of wing venation within the subfamily Aphidiinae and by using landmark-based geometric morphometrics and phylogenetic comparative methods, we tested whether evolutionary changes in wing shape correlate to the changes in wing venation and if both changes relate to wing size. The relationship between wing morphology and host specificity has been also investigated. We found that six types of wing venation, with different degree of vein reduction, could be recognized. Wing venation type is largely genus specific, except in the case of maximal reduction of wing venation which could be found across examined Aphidiinae taxa. The reconstruction of evolutionary changes in wing venation indicates that evolutionary changes in wing shape are related to the changes in wing size, indicating that miniaturization play a role in evolution of wing morphology while host specialization does not affect the wing shape within the subfamily Aphidiinae.  相似文献   

2.
The Mesozoic chrysopid-like Planipennia are revised and several new genera and species are described. The new superfamily Chrysopoidea is proposed for the extant and fossil Chrysopidae, and the fossil families Liassochrysidae n. fam., Allopteridae Zhang 1991 n. sensu, Mesochrysopidae Handlirsch, 1906 n. sensu, Tachinymphidae n. fam., and Limaiidae Martins-Neto and Vulcano 1989 n. sensu. A phylogenetic analysis of the Chrysopoidea is proposed, based on the wing venation characters. With at least the four families Allopteridae, Mesochrysopidae, Tachinymphidae, and Chrysopidae, showing different wing venation patterns, the systematic diversity and morphological disparity of the Chrysopoidea are maximal during the Late Jurassic and Early Cretaceous. The Mesozoic family Limaiidae was still present during the Paleocene/Eocene suggesting a minimal impact on the Chrysopoidea of the crisis of the diversity at the K-T boundary. Other Cenozoic Chrysopoidea can be attributed to the Chrysopidae sensu stricto.  相似文献   

3.
4.
The phylogeny of spider flies is presented based on an analysis of DNA sequence data combined with morphological characters for both living and fossil species. We sampled 40 extant and extinct genera across all major lineages of Acroceridae, which were compared with outgroup taxa from various lower brachyceran families. In all, 81 morphological characters of 60 extant and 10 extinct ingroup species were combined with 7.1 kb of DNA sequences of two nuclear (CAD and 28S rDNA) and two mitochondrial genes (COI and 16S rDNA). Results strongly support the monophyly of Acroceridae, with major clades contained within classified here in five extant subfamilies (Acrocerinae, Cyrtinae stat. rev. , Ogcodinae stat. rev. , Panopinae and Philopotinae) and one extinct subfamily, Archocyrtinae. The evolution of important spider fly traits is discussed, including genitalia and wing venation. The status of the enigmatic Psilodera Gray and Pterodontia Gray as members of the Panopinae is confirmed based on both molecular and morphological data.  相似文献   

5.
The fossil woodwasp Cratoenigma articulata gen. et sp.n. (Insecta: Hymenoptera) is described from the Lower Cretaceous Crato formation of Brazil. This fossil cannot be placed in any existing superfamily, but its putative phylogenetic position within Hymenoptera is discussed in detail on the basis of relevant thoracic, abdominal and wing venation characters. These characters are critically evaluated and compared with those of extant and fossil Hymenoptera. The phylogenetic position of C. articulata sp.n. is investigated relative to extant Xyelidae, Tenthredinoidea s.l., Pamphilioidea, Cephidae, Siricoidea, Xiphydriidae, Orussidae and Apocrita, and also to Mesozoic Gigasiricidae, Myrmiciidae, Daohugoidae, Sepulcidae, Anaxyelidae, Paroryssidae and Ephialtitidae. Based on the presence of a synapomorphic transscutal articulation, a plesiomorphic unconcealed mesopostnotum and autapomorphic hindwing venation (cu‐a distinctly basal to fork between M and Cu), C. articulata sp.n. most likely forms the sister group of Xiphydriidae + Euhymenoptera. This would place it well within Unicalcarida, i.e. the clade in which the transition from endophytic to parasitoid lifestyle evolved.  相似文献   

6.
Recent discoveries of new fossil hominid species have been accompanied by several phylogenetic hypotheses. All of these hypotheses are based on a consideration of hominid craniodental morphology. However, Collard and Wood (2000) suggested that cladograms derived from craniodental data are inconsistent with the prevailing hypothesis of ape phylogeny based on molecular data. The implication of their study is that craniodental characters are unreliable indicators of phylogeny in hominoids and fossil hominids but, notably, their analysis did not include extinct species. We report here on a cladistic analysis designed to test whether the inclusion of fossil taxa affects the ability of morphological characters to recover the molecular ape phylogeny. In the process of doing so, the study tests both Collard and Wood's (2000) hypothesis of character reliability, and the several recently proposed hypotheses of early hominid phylogeny. One hundred and ninety-eight craniodental characters were examined, including 109 traits that traditionally have been of interest in prior studies of hominoid and early hominid phylogeny, and 89 craniometric traits that represent size-corrected linear dimensions measured between standard cranial landmarks. The characters were partitioned into two data sets. One set contained all of the characters, and the other omitted the craniometric characters. Six parsimony analyses were performed; each data set was analyzed three times, once using an ingroup that consisted only of extant hominoids, a second time using an ingroup of extant hominoids and extinct early hominids, and a third time excluding Kenyanthropus platyops. Results suggest that the inclusion of fossil taxa can play a significant role in phylogenetic analysis. Analyses that examined only extant taxa produced most parsimonious cladograms that were inconsistent with the ape molecular tree. In contrast, analyses that included fossil hominids were consistent with that tree. This consistency refutes the basis for the hypothesis that craniodental characters are unreliable for reconstructing phylogenetic relationships. Regarding early hominids, the relationships of Sahelanthropus tchadensis and Ardipithecus ramidus were relatively unstable. However, there is tentative support for the hypotheses that S. tchadensis is the sister taxon of all other hominids. There is support for the hypothesis that A. anamensis is the sister taxon of all hominids except S. tchadensis and Ar. ramidus. There is no compelling support for the hypothesis that Kenyanthropus platyops shares especially close affinities with Homo rudolfensis. Rather, K. platyops is nested within the Homo + Paranthropus + Australopithecus africanus clade. If K. platyops is a valid species, these relationships suggest that Homo and Paranthropus are likely to have diverged from other hominids much earlier than previously supposed. There is no support for the hypothesis that A. garhi is either the sister taxon or direct ancestor of the genus Homo. Phylogenetic relationships indicate that Australopithecus is paraphyletic. Thus, A. anamensis and A. garhi should be allocated to new genera.  相似文献   

7.
A phylogenetic tree is proposed for the superfamily Ptychopteroidea, reconstructed taking into account both extinct and extant taxa and based mainly on characters of wing venation.  相似文献   

8.
In flying organisms, wing shape and biomechanical properties are recognized as key traits related to dispersal, foraging behavior, sexual selection and habitat preferences. To determine if differences in dung beetle wing shape and flight biomechanics are consistent with habitat preferences in a phylogenetic context, we examined how wing morphology varied in a set of 18 Mozambique forest and grassland dung beetle (Scarabaeinae) species, representing nine genera and six tribes. Geometric morphometric measurements were taken of entire wings, as well as two additional shape characters comprising the RA4 and CuA to J regions of veins. Ordination (Principal Components Analysis and Canonical Variate Analysis) of landmark data revealed three different trends in wing shape related to expansion or contraction in external wing margins. These trends were consistent with published dung beetle phylogenies and a phylogenetic reconstruction of ancestral morphological changes using parsimony analysis of wing landmark configurations. Analysis of variance showed that the Procrustes distances between wing shapes were significantly correlated to species identity (~?48% of variance), wing size (~?27%), habitat (~?11%) and two of the three, tested, biomechanical variables (wing loading, wing aspect ratio: ~?1%). However, while a phylogenetic generalized least squares analysis confirmed a strongly significant phylogenetic signal for wing shape, it found no significant effect of any other variable. Therefore, wing shape evolution in dung beetles appears to have been phylogenetically constrained and habitat may constitute only a weak selective pressure for changes in wing shape.  相似文献   

9.
Approaches to the identification of angiosperm leaf remains   总被引:1,自引:0,他引:1  
During the past 125 years the history of early angiosperms, interpreted through the fossil leaf record has been largely an exercise in paleofloristic studies, ignoring evolution. Imprecise identifications of ancient leaves “matched” to extant genera and families have been used as the basis for reconstructions of paleocommunities and paleoclimates. However, as the result of careful morphological studies of leaf form, venation and cuticular features new insights into the evolution of angiosperms are now available. In this paper considerations are given to the usefulness and shortcomings of leaf form, venation and cuticular analysis as diagnostic tools of plant identification. Many techniques for the study of the morphology of modern and fossil leaves are included in this paper as well as tables outlining features of leaf venation and the epidermis. Careful morphological studies of leaf form (such as the venation and epidermal characters emphasized in this paper) will provide better understanding of the relationships of living angiosperms and transform the fossil leaf record into useful data that can be used to study the evolution of the angiosperms.  相似文献   

10.
Abstract. The order Zoraptera has traditionally been thought to contain only one family (Zorotypidae) and one genus ( Zorotypus Silvestri). An analysis of known zorapteran wings shows that the wing venation contains character sets indicative of the existence of seven genera: Zorotypus, Brazilozoros gen.n., Centrozoros gen.n., Floridazoros gen.n., Latinozoros gen.n., Meridozoros gen.n. and Usazoros gen.n. The wing venation of Meridozoros leleupi (Weidner) from the Galapagos Islands, Ecuador and Venezuela is described here for the first time.
The major wing structures show that Zoraptera belong to the blattoid lineage. Head and abdomen characters indicate that Zoraptera probably diverged from the Blattoneoptera stock early, almost certainly before the (Protelytroptera + Dermaptera) line, and much before the (Isoptera + (Blattodea + Mantodea)) line. A homologized wing vein system is proposed for the Isoptera.
The homologized wing vein system is based on the hypothesis that the Pterygota originated with the development of protowings, which then diverged through separate but characteristic adaptations for flapping flight. Therefore the basic wing venation pattern is monophyletic, but the changes in wing musculature, articulation and basic braces between main veins are different in the major (super-ordinal) pterygote lineages (Pleconeoptera, Orthoneoptera, Blattoneoptera, Hemineoptera and Endoneoptera). Thus, these characters provide an extremely useful, almost untapped, source of data for higher-level systematics. Both higher-level and lower-level wing characters have been applied here to the phylogeny of Zoraptera and are discussed.  相似文献   

11.
A key is presented for use in identifying asymmetrically winged fruits (samaras) with either proximal or distal locules. It aids identification based on dispersed fuit morphology and can be used to identify undetermined extant herbarium specimens or fossil fruits to the correct extant family and genus. The 39 genera from 11 families (Aceraceae, Anacardiaceae, Fabaceae, Malpighiaceae, Phytolaccaceae, Polygalaceae, Polygonaceae, Rutaceae, Sapindaceae, Trigoniaceae, Ulmaceae) are distinguished on the basis of wing venation, size of fruit, presence and position of attachment surface, presence and type of subsidiary wings on the ovary wall. ornamentation, size and shape of the ovary, locule position, shape of locule cross section, style position and ornamentation, distinction between ovary wall and wing, and angle of attachment between individual samaras. The developmental origins of some of these features are discussed.  相似文献   

12.
Although often preserved in the fossil record, mandibular dental roots are rarely used for evolutionary studies. This study qualitatively and quantitatively characterizes the three-dimensional morphology of hominoid dental roots. The sample comprises extant apes as well as two fossil species, Khoratpithecus piriyai and Ouranopithecus macedoniensis. The morphological differences between extant genera are observed, quantified and tested for their potential in systematics. Dental roots are imaged using X-ray computerized tomography, conventional microtomography and synchrotron microtomography. Resulting data attest to the high association between taxonomy and tooth root morphology, both qualitatively and quantitatively. A cladistic analysis based on the dental root characters resulted in a tree topology congruent with the consensus phylogeny of hominoids, suggesting that tooth roots might provide useful information in reconstructing hominoid phylogeny. Finally, the evolution of the dental root morphology in apes is discussed.  相似文献   

13.
对中国锯天牛族的后翅基部关节和后翅翅脉特征进行了研究,发现利用Kukalová-Peck和Lawrence (2004)的后翅命名系统能够很好地对中国锯天牛族后翅翅脉进行命名。但是在中国锯天牛族中,后中脉( MP)和前肘脉(CuA)在后缘并不合并;当前臀脉( AA3)和前肘脉(CuA3 +4)与后肘脉(CuP)相遇时,前臀脉(AA3)消失,前肘脉(CuA3 +4)和后肘脉(CuP)合并,因此楔室(W)仅由肘脉(Cu)的分支脉围成。尽管基部翅关节在研究的各属和各种之间没有表现出差异,但是后翅翅脉在土天牛属Dorysthenes和锯天牛属Prionus不同种类之间差异明显,这些特征包括径室的长宽比例和各边的长度关系、r3存在与否及其长度、后径脉的长度、楔室的长宽比例、以及后中脉(MP3 +4)和前肘脉(CuA3 +4)端部是否分叉等。因此,后翅翅脉特征在土天牛属Dorysthenes和锯天牛属Prionus分种时可能具有分类学意义。  相似文献   

14.
We present a new measure of morphological asymmetry that avoids most of the statistical problems inherent in character-by-character analysis of size or shape. The method is an application of Procrustes analysis, which computes best-fitting super-positions of configurations of landmarks to the left and right sides of a single specimen. The Procrustes method combines subtle deviations in all aspects of the landmark configuration into one net asymmetry score. Directional asymmetry is separated from fluctuating asymmetry in a simple partition of a net sum-of-squares, and geometrical details of either component can be inspected by traditional methods of multivariate statistical analysis of landmarks. We demonstrate this method in a comparison of wing venation asymmetry in male (haploid) and female (diploid) honey bees (Apis mellifera). In addition we investigate the effects of ploidy and inter-subspecies hybridization on asymmetry and wing venation abnormalities, using the subspecies A. m. mellifera, A. m. carnica, and the hybrid strain “Nigra”. Results suggest that while the haploid males showed a higher frequency of wing venation abnormalities and greater total asymmetry than the diploid females, most of the asymmetry difference between males and females was in the form of directional, not fluctuating, asymmetry. Hybrid females had a higher frequency of wing venation abnormalities than females of either subspecies, but there were no significant differences in the mean level of asymmetry among females of A. m. mellifera, A. m. carnica and hybrid Nigra. Hybrid males had higher absolute frequency of wing venation abnormalities and asymmetry than males of either subspecies. However the mean frequency of venation abnormalities did not differ significantly between Nigra and A. m. carnica males, and mean asymmetries were not significantly different between Nigra and A. m. mellifera males. We discuss the relationship which is assumed to exist between developmental stability and fluctuating asymmetry in light of our result.  相似文献   

15.
Fossil tip‐dating allows for the inclusion of morphological data in divergence time estimates based on both extant and extinct taxa. Neoselachii have a cartilaginous skeleton, which is less prone to fossilization compared to skeletons of Osteichthyans. Therefore, the majority of the neoselachian fossil record is comprised of single teeth, which fossilize more easily. Neoselachian teeth can be found in large numbers as they are continuously replaced. Tooth morphologies are of major importance on multiple taxonomic levels for identification of shark and ray taxa. Here, we review dental morphological characters of squalomorph sharks and test these for their phylogenetic signal. Subsequently, we combine DNA sequence data (concatenated exon sequences) with dental morphological characters from 85 fossil and extant taxa to simultaneously infer the phylogeny and re‐estimate divergence times using information of 61 fossil tip‐dates as well as eight node age calibrations of squalomorph sharks. Our findings show that the phylogenetic placement of fossil taxa is mostly in accordance with their previous taxonomic allocation. An exception is the phylogenetic placement of the extinct genus ?Protospinax , which remains unclear. We conclude that the high number of fossil taxa as well as the comprehensive DNA sequence data for extant taxa may compensate for the limited number of morphological characters identifiable on teeth, serving as a backbone for reliably estimating the phylogeny of both extinct and extant taxa. In general, tip‐dating mostly estimates older node ages compared to previous studies based on calibrated molecular clocks.  相似文献   

16.
A new species of asymmetrically winged fruit is described from Miocene sediments of Andean Ecuador. The new fruit is readily placed in the genus Loxopterygium of the Anacardiaceae based on the size, position of the stigma, wing venation, and serration of the wing tip. The new fossil species is very similar to extant species of Loxopterygium now distributed in dry habitats of coastal Ecuador and Peru, as well as dry interior forests of Bolivia and northern Argentina. We use the fossil to calibrate a molecular-based phylogeny of some members of the Anacardiaceae, showing that dry forest habitats may have been present in South America for more than 10 million years.  相似文献   

17.
Amniote egg and eggshell morphology is a rich source of characters to link aspects of reproductive biology with systematics. Extensive work concerning both anatomy and phylogenetic assignability has been done on fossil bird and dinosaur eggs, but little is known for extant sauropsids. The utility of eggshell characters for phylogenetic analyses is tested and discussed for extant side-necked turtles (Pleurodira), and the diversity of egg ultrastructure is examined in several species. Egg gross morphology and eggshell ultrastructure of 12 species of extant side-necked turtles was documented using scanning electron microscopy. Thirteen eggshell characters were scored and mapped on a composite phylogeny and ancestral character states were reconstructed. Many of the characters do not show a phylogenetic signal according to a test comparing the number of steps on the chosen phylogeny with that on randomly generated trees. The presence of conservative, clade-supporting features could be demonstrated, and the following clades are supported by several characters: the Elseya-Emydura entity, short-necked Australasian chelids, is backed by two characters, and two additional characters could potentially support this group. Three characters support the monophyly of South American chelids, whereas two characters argue for the exclusion of Hydromedusa, a long-necked form resembling Australian chelids rather than South American forms, from this clade.  相似文献   

18.
The phylogenetic placements of leaf fossils of Nothofagus (Nothofagaceae) were determined using parsimony analyses of molecular and morphological data for extant species combined with morphological data for fossils. Placement was possible for only seven of the 30 or so described fossil species of Nothofagus because only these had sufficiently good preservation of both cuticular and leaf architectural characters. In combined analyses of morphology and molecular data, leaf cuticular characters showed little homoplasy. In contrast, many architectural characters, including some leaf margin and venation characters, showed high homoplasy, making it difficult or impossible to accurately determine the phylogenetic affinities of impression fossils of this genus.  相似文献   

19.
It is widely acknowledged that integrating fossils into data sets of extant taxa is imperative for proper placement of fossils, resolution of relationships, and a better understanding of character evolution. The importance of this process has been further magnified because of the crucial role of fossils in dating divergence times. Outstanding issues remain, including appropriate methods to place fossils in phylogenetic trees, the importance of molecules versus morphology in these analyses, as well as the impact of potentially large amounts of missing data for fossil taxa. In this study we used the angiosperm clade Juglandaceae as a model for investigating methods of integrating fossils into a phylogenetic framework of extant taxa. The clade has a rich fossil record relative to low extant diversity, as well as a robust molecular phylogeny and morphological database for extant taxa. After combining fossil organ genera into composite and terminal taxa, our objectives were to (1) compare multiple methods for the integration of the fossils and extant taxa (including total evidence, molecular scaffolds, and molecular matrix representation with parsimony [MRP]); (2) explore the impact of missing data (incomplete taxa and characters) and the evidence for placing fossils on the topology; (3) simulate the phylogenetic effect of missing data by creating "artificial fossils"; and (4) place fossils and compare the impact of single and multiple fossil constraints in estimating the age of clades. Despite large and variable amounts of missing data, each of the methods provided reasonable placement of both fossils and simulated "artificial fossils" in the phylogeny previously inferred only from extant taxa. Our results clearly show that the amount of missing data in any given taxon is not by itself an operational guideline for excluding fossils from analysis. Three fossil taxa (Cruciptera simsonii, Paleoplatycarya wingii, and Platycarya americana) were placed within crown clades containing living taxa for which relationships previously had been suggested based on morphology, whereas Polyptera manningii, a mosaic taxon with equivocal affinities, was placed firmly as sister to two modern crown clades. The position of Paleooreomunnea stoneana was ambiguous with total evidence but conclusive with DNA scaffolds and MRP. There was less disturbance of relationships among extant taxa using a total evidence approach, and the DNA scaffold approach did not provide improved resolution or internal support for clades compared to total evidence, whereas weighted MRP retained comparable levels of support but lost crown clade resolution. Multiple internal minimum age constraints generally provided reasonable age estimates, but the use of single constraints provided by extinct genera tended to underestimate clade ages.  相似文献   

20.
Fin-winged fruits have two or more wings aligned with the longitudinal axis like the feathers of an arrow, as exemplified by Combretum, Halesia, and Ptelea. Such fruits vary in dispersal mode from those in which the fruit itself is the ultimate disseminule, to schizocarps dispersing two or more mericarps, to capsules releasing multiple seeds. At least 45 families and more than 140 genera are known to possess fin-winged fruits. We present an inventory of these taxa and describe their morphological characters as an aid for the identification and phylogenetic assessment of fossil and extant genera. Such fruits are most prevalent among Eudicots, but occur occasionally in Magnoliids (Hernandiaceae: Illigera) and Monocots (Burmannia, Dioscorea, Herreria). Although convergent in general form, fin-winged fruits of different genera can be distinguished by details of the wing number, texture, shape and venation, along with characters of persistent floral parts and dehiscence mode. Families having genera with fin-winged fruits and epigynous perianth include Aizoaceae, Apiaceae, Araliaceae, Asteraceae, Begoniaceae, Burmanniaceae, Combretaceae, Cucurbitaceae, Dioscoreaceae, Haloragaceae, Lecythidiaceae, Lophopyxidaceae, Loranthaceae, and Styracaceae. Families with genera having fin-winged fruits and hypogynous perianth include Achariaceae, Brassicaceae, Burseraceae, Celastraceae, Cunoniaceae, Cyrillaceae, Fabaceae, Malvaceae, Melianthaceae, Nyctaginaceae, Pedaliaceae, Polygalaceae, Phyllanthaceae, Polygonaceae, Rhamnaceae, Salicaceae sl, Sapindaceae, Simaroubaceae, Trigoniaceae, and Zygophyllaceae. This survey has facilitated the identification of fossil winged fruits such as Combretaceae and Araliaceae in the late Cretaceous of western North America and provides additional evidence toward the identification of various Cenozoic fossils including Brassicaceae, Fabaceae, Polygonaceae, Rutaceae, and Sapindaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号