首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethylene and fruit ripening   总被引:13,自引:0,他引:13  
The latest advances in our understanding of the relationship between ethylene and fruit ripening are reviewed. Considerable progress has been made in the characterisation of genes encoding the key ethylene biosynthetic enzymes, ACC synthase (ACS) and ACC oxidase (ACO) and in the isolation of genes involved in the ethylene signal transduction pathway, particularly those encoding ethylene receptors ( ETR ). These have allowed the generation of transgenic fruit with reduced ethylene production and the identification of the Nr tomato ripening mutant as an ethylene receptor mutant. Through these tools, a clearer picture of the role of ethylene in fruit ripening is now emerging. In climacteric fruit, the transition to autocatalytic ethylene production appears to result from a series of events where developmentally regulated ACO and ACS gene expression initiates a rise in ethylene production, setting in motion the activation of autocatalytic ethylene production. Differential expression of ACS and ACO gene family members is probably involved in such a transition. Finally, we discuss evidence suggesting that the NR ethylene perception and transduction pathway is specific to a defined set of genes expressed in ripening climacteric fruit and that a distinct ETR pathway regulates other ethylene-regulated genes in both immature and ripening climacteric fruit as well as in non-climacteric fruit. The emerging picture is one where both ethylene-dependent and -independent pathways coexist in both climacteric and non-climacteric fruits. Further work is needed in order to dissect the molecular events involved in individual ripening processes and to understand the regulation of the expression of both ethylene-dependent and -independent genes.  相似文献   

2.
花衰老相关的乙烯信号转导基因研究进展   总被引:2,自引:0,他引:2  
乙烯在许多切花衰老过程中起着重要的调节作用,不同的植物乙烯信号转导组分在花衰老过程中有不同的转录调节特性。根据乙烯信号转导标准模式,通过调节乙烯信号转导基因表达能够调控花对乙烯的敏感性,深入研究乙烯信号转导机制;可能有多条途径可延缓切花衰老。综述了香石竹和月季等几种观赏植物在花衰老过程中乙烯受体和乙烯信号转导基因表达及特性。  相似文献   

3.
Ethylene regulation of fruit ripening: Molecular aspects   总被引:19,自引:0,他引:19  
Progress in ethylene regulating fruit ripening concerning itsperception and signal transduction and expression of ACC synthaseand ACC oxidase genes is reviewed. ACC synthase and ACC oxidasehave been characterized and their genes cloned from various fruittissues. Both ACC synthase and ACC oxidase are encoded bymultigene families, and their activities are associated withfruit ripening. In climacteric fruit, the transition toautocatalytic ethylene production appears to be due to a seriesof events in which ACC sythase and ACC oxidase genes have beenexpressed developmentally. Differential expression of ACCsynthase and ACC oxidase gene family members is probably involvedin such a transition that ultimately controls the onset of fruitripening.In comparison to ACC synthase and ACC oxidase, less is knownabout ethylene perception and signal transduction because of thedifficulties in isolating and purifying ethylene receptors orethylene-binding proteins using biochemical methods. However, theidentification of the Nr tomato ripening mutant as anethylene receptor, the applications of new potent anti-ethylenecompounds and the generation of transgenic fruits with reducedethylene production have provided evidence that ethylenereceptors regulate a defined set of genes which are expressedduring fruit ripening. The properties and functions of ethylenereceptors, such as ETR1, are being elucidated.Application of molecular genetics, in combination withbiochemical approaches, will enable us to better understand theindividual steps leading from ethylene perception and signaltransduction and expression of ACC synthase and ACC oxidase genefamily member to the physiological responses.  相似文献   

4.
Genetic basis of ethylene perception and signal transduction in Arabidopsis   总被引:1,自引:0,他引:1  
  相似文献   

5.
On basis of fruit differential respiration and ethylene effects, climacteric and non-climacteric fruits have been classically defined. Over the past decades, the molecular mechanisms of climacteric fruit ripening were abundantly described and found to focus on ethylene perception and signaling transduction. In contrast, until our most recent breakthroughs, much progress has been made toward understanding the signaling perception and transduction mechanisms for abscisic acid (ABA) in strawberry, a model for non-climacteric fruit ripening. Our reports not only have provided several lines of strong evidences for ABA-regulated ripening of strawberry fruit, but also have demonstrated that homology proteins of Arabidopsis ABA receptors, including PYR/PYL/RCAR and ABAR/CHLH, act as positive regulators of ripening in response to ABA. These receptors also trigger a set of ABA downstream signaling components, and determine significant changes in the expression levels of both sugar and pigment metabolism-related genes that are closely associated with ripening. Soluble sugars, especially sucrose, may act as a signal molecular to trigger ABA accumulation through an enzymatic action of 9-cis-epoxycarotenoid dioxygenase 1 (FaNCED1). This mini-review offers an overview of these processes and also outlines the possible, molecular mechanisms for ABA in the regulation of strawberry fruit ripening through the ABA receptors.  相似文献   

6.
以拟南芥为模式植物研究植物激素乙烯信号转导,在过去20年来取得了长足进展,并以遗传学与生物化学为基础建立了一个线性的信号转导途径模型.虽然这个模型基本上解释了乙烯信号组分参与的信号传递过程,但是,其中仍然存在若干问题亟待进一步研究.例如,上游的多个乙烯受体家族成员与CONSTITUTIVETRIPLE—RESPONSE1蛋白如何协同作用,下游的ETHYLENEINsENsITIVE2(EIN2)如何将乙烯信号传递给转录激活因子EIN3,以及是否存在其他的信号途径调控乙烯反应等.本文将着重阐述不同乙烯受体家族成员的协作对乙烯信号途径的差异性调控,植物利用多个乙烯受体感受乙烯的生物学意义,以及乙烯受体除了通过CTR1蛋白调节EIN2功能外,是否还存在其他的信号转导途径.  相似文献   

7.
8.
Ethylene has been regarded as a stress hormone involved in many stress responses. However, ethylene receptors have not been studied for the roles they played under salt stress condition. Previously, we characterized an ethylene receptor gene NTHK1 from tobacco, and found that NTHK1 is salt-inducible. Here, we report a further investigation towards the function of NTHK1 in response to salt stress by using a transgenic approach. We found that NTHK1 promotes leaf growth in the transgenic tobacco seedlings but affects salt sensitivity in these transgenic seedlings under salt stress condition. Differential Na+/K+ ratio was observed in the control Xanthi and NTHK1-transgenic plants after salt stress treatment. We further found that the NTHK1 transgene is also salt-inducible in the transgenic plants, and the higher NTHK1 expression results in early inductions of the ACC (1-aminocyclopropane-1-carboxylic acid) oxidase gene NtACO3 and ethylene responsive factor (ERF) genes NtERF1 and NtERF4 under salt stress. However, NTHK1 suppresses the salt-inducible expression of the ACC synthase gene NtACS1. These results indicate that NTHK1 regulates salt stress responses by affecting ion accumulation and related gene expressions, and hence have significance in elucidation of ethylene receptor functions during stress signal transduction.  相似文献   

9.
10.
拟南芥乙烯信号传递途径   总被引:4,自引:0,他引:4  
植物激素乙烯早在一百多年前就已经被确认,相关的研究使得乙烯广泛地被应用于农业上.一直到十年前第一个植物激素乙烯受体拟南芥ETR1基因被发现之后,人们对于乙烯信号传递的研究并才真正开始有所突破.以遗传学为基础对乙烯反应突变体所做的分析,使得乙烯信号传递已经成为目前植物信号传递领域中被研究得最清楚的信号传递途径之一.该文着重于回顾乙烯信号传递途径上各个元件的发现和确认,以及如何利用遗传学的方法将现有的突变体相关基因构建出目前广为接受的信号传递的遗传模式.最后,该文就目前所知的乙烯信号传递理论及相关研究,做了总结和深入的讨论.  相似文献   

11.
Zhao XC  Schaller GE 《FEBS letters》2004,562(1-3):189-192
In hormone perception, varying the concentrations of hormone, receptor, or downstream signaling elements can modulate signal transduction. Previous research has demonstrated that ethylene biosynthesis in plants is regulated by abiotic factors. Here we report that exposure of Arabidopsis plants to NaCl reduced expression of the ethylene receptor ETR1. The change in gene expression was reflected at the protein level based on immunoblot analysis. Further analysis supports a general effect of osmotic stress upon the expression level of ETR1. The reduction in ETR1 levels should cause increased sensitivity of the plant to ethylene. These results suggest that plant responses to abiotic stress are modulated by changes in the expression level of ethylene receptors.  相似文献   

12.
番茄乙烯受体结构和功能研究进展   总被引:3,自引:0,他引:3  
综述了近年来番茄乙烯受体研究方面的最新进展。以拟南芥的乙类受体为探针,从番茄加筛选得到Le-ETR1、Le-ETR2、Le-ETR3、Le-ETR4、Le-ETR55个有功能的乙烯受体基因。番茄乙类受体与细菌的双组分感受系统高度相似,同乙烯结合需要铜离子的协同作用。植物株发育期间通过激活某些受体基因的表达和(或)控制铜离子的转运调节乙烯敏感性。调节乙烯受体表达的基因工程显示了广阔的前景。但各个受体的功能及基因分析与活体标记的关系还需进一步研究。  相似文献   

13.
14.
植物乙烯信号转导研究进展   总被引:11,自引:0,他引:11  
过去10年,对模式植物拟南芥的分子遗传学研究建立了植物乙烯信号转导线性模型.乙烯结合到受体上,经一条MAPK级联反应和转录级联途径将信号转导而产生乙烯反应.拟南芥乙烯受体家族由5个成员构成,ETR1、ERS1、ETR2、ERS2和EIN4.乙烯受体包括三个结构域:乙烯结合结构域、组氨酸激酶结构域和反应调控结构域.乙烯受体定位于内质网,与CTR1协同负调控乙烯反应.ENI2、EIN3/EIL、ERF1依次位于CTR1下游,正调控乙烯反应.EIN3属于转录激活因子调控蛋白家族,受转录后调控.乙烯稳定EIN3结构,EBF1/EBF2促进EIN3分解.ERF1是转录调控因子家族成员之一,是EIN3/EIL的直接作用目标.  相似文献   

15.
The plant hormone ethylene regulates many aspects of growth, development and responses to the environment. The Arabidopsis ETHYLENE INSENSITIVE3 (EIN3) protein is a nuclear-localized component of the ethylene signal-transduction pathway with DNA-binding activity. Loss-of-function mutations in this protein result in ethylene insensitivity in Arabidopsis. To gain a better understanding of the ethylene signal-transduction pathway in tomato, we have identified three homologs of the Arabidopsis EIN3 gene (LeEILs). Each of these genes complemented the ein3-1 mutation in transgenic Arabidopsis, indicating that all are involved in ethylene signal transduction. Transgenic tomato plants with reduced expression of a single LeEIL gene did not exhibit significant changes in ethylene response; reduced expression of multiple tomato LeEIL genes was necessary to reduce ethylene sensitivity significantly. Reduced LeEIL expression affected all ethylene responses examined, including leaf epinasty, flower abscission, flower senescence and fruit ripening. Our results indicate that the LeEILs are functionally redundant and positive regulators of multiple ethylene responses throughout plant development.  相似文献   

16.
Recent Advances in the Study of Mechanisms of Action of Phytohormones   总被引:3,自引:0,他引:3  
This review highlights recent advances in studies of mechanisms underlying the effects of five phytohormone groups: auxin, cytokinin, gibberellin, abscisic acid, and ethylene. The review summarizes data on receptors of all these phytohormones and the hormone signal transduction systems, which include second messengers, hormone-dependent trans-factors, and the genes controlled by these factors. The effects of phytohormones involve not only induction of novel protein synthesis via activation of their gene expression, but also degradation of repressor proteins through the ubiquitin system. The review contains examples of successful use of data on genes encoding enzymes of phytohormone synthesis and their receptors for development of transgenic plants with particular hormonal characteristics that provide practically valuable traits.  相似文献   

17.
The gaseous plant hormone ethylene is perceived by a family of five ethylene receptor members in the dicotyledonous model plant Arabidopsis. Genetic and biochemical studies suggest that the ethylene response is suppressed by ethylene receptor complexes, but the biochemical nature of the receptor signal is unknown. Without appropriate biochemical measures to trace the ethylene receptor signal and quantify the signal strength, the biological significance of the modulation of ethylene responses by multiple ethylene receptors has yet to be fully addressed. Nevertheless, the ethylene receptor signal strength can be reflected by degrees in alteration of various ethylene response phenotypes and in expression levels of ethylene-inducible genes. This mini-review highlights studies that have advanced our understanding of cooperative ethylene receptor signaling.  相似文献   

18.
乙烯受体是乙烯信号转导网络的第一个转导元件,通过调控受体基因的表达,可以调节植物对乙烯的敏感性,以调控果实的成熟及花衰老进程的响应。随着人们对乙烯受体研究的深入,乙烯受体突变体及受体抑制剂在采后果实和切花保鲜上的应用已受到广泛关注。就近年来关于乙烯受体的相关研究进展进行综述,重点介绍了乙烯受体的分子调控机制及乙烯受体在果实成熟和花衰老中的应用,并对今后乙烯受体的研究方向作了展望,以期为进一步研究提供参考。  相似文献   

19.
20.
Receptors for plant growth regulators: Recent advances   总被引:7,自引:0,他引:7  
We have reviewed recent progress in research on plant growth regulator (PGR) receptors. For some growth regulators, no receptor protein has yet been identified, but promising new approaches are discussed. For other receptors, specific and sensitive probes have been developed and, in one case, the membrane-associated auxin-binding protein of maize, these have been used to study the function of the receptor. The maize receptor has been cloned and sequenced; cDNA probes will allow the expression of receptor genes in normal and transformed plants to be studied. PGR sensitivity mutants have been described and, in conjunction with biochemical probes, should prove valuable in elucidating the functions of receptors and the nature of subsequent signal transduction events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号