首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pacific tarpon (Megalops cyprinoides) use a modified gas bladder as an air-breathing organ (ABO). We examined changes in cardiac output (V(b)) associated with increases in air-breathing that accompany exercise and aquatic hypoxia. Juvenile (0.49 kg) and adult (1.21 kg) tarpon were allowed to recover in a swim flume at 27 degrees C after being instrumented with a Doppler flow probe around the ventral aorta to monitor V(b) and with a fibre-optic oxygen sensor in the ABO to monitor air-breathing frequency. Under normoxic conditions and in both juveniles and adults, routine air-breathing frequency was 0.03 breaths min(-1) and V(b) was about 15 mL min(-1) kg(-1). Normoxic exercise (swimming at about 1.1 body lengths s(-1)) increased air-breathing frequency by 8-fold in both groups (reaching 0.23 breaths min(-1)) and increased V(b) by 3-fold for juveniles and 2-fold for adults. Hypoxic exposure (2 kPa O2) at rest increased air-breathing frequency 19-fold (to around 0.53 breaths min(-1)) in both groups, and while V(b) again increased 3-fold in resting juvenile fish, V(b) was unchanged in resting adult fish. Exercise in hypoxia increased air-breathing frequency 35-fold (to 0.95 breaths min(-1)) in comparison with resting normoxic fish. While juvenile fish increased V(b) nearly 2-fold with exercise in hypoxia, adult fish maintained the same V(b) irrespective of exercise state and became agitated in comparison. These results imply that air-breathing during exercise and hypoxia can benefit oxygen delivery, but to differing degrees in juvenile and adult tarpon. We discuss this difference in the context of myocardial oxygen supply.  相似文献   

2.
In this study, we examined the cardiorespiratory patterns of harbour seal pups under normoxic/normocarbic (air), hypoxic/normocarbic (15%, 12%, and 9% O2 in air), and normoxic/hypercarbic (2%, 4%, and 6% CO2 in air) conditions while awake and sleeping on land. Animals were chronically instrumented to record electroencephalogram (EEG), electromyogram (EMG), and electrocardiogram (EKG) signals, which, along with respiration (whole-body plethysmography) and oxygen consumption (VO2), were recorded from animals breathing each gas mixture for 2-4 h on separate days. Our results show that for animals breathing air, VO2 was not significantly lower during slow-wave sleep (SWS; 7.71 +/- 0.39 mL O2 min(-1) kg(-1); all measurements are mean +/- SEM) than during wakefulness (WAKE; 8.80 +/- 0.25 mL O2 min(-1) kg(-1)) and was unaffected by changes in respiratory drive. Although there was no significant fall in VO2 associated with a decrease in arousal state, breathing frequency (f(R)) did decrease (from 18.80 +/- 1.50 breaths min(-1) in WAKE to 10.40 +/- 0.49 breaths min(-1) in SWS), while the incidence of long apneas (>20 s) increased (12.76 +/- 4.06 apneas h(-1) in WAKE and 31.95 +/- 2.37 apneas h(-1) in SWS). Breathing was rarely seen during rapid eye movement (REM) sleep. Tachypnea was present at all levels of increased respiratory drive; however, hypoxia induced a dramatic bradycardia regardless of arousal state, while hypercarbia produced a tachycardia in SWS only. The hypoxic and hypercarbic chemosensitivities of harbour seal pups were similar to those of terrestrial mammals; however, unlike terrestrial mammals, where hypoxic and hypercarbic sensitivities are often reduced during SWS, the sensitivity of harbour seal pups to hypoxia and hypercarbia remained unchanged during the decrease in arousal state from WAKE to SWS.  相似文献   

3.
The Pacific tarpon is an elopomorph teleost fish with an air-breathing organ (ABO) derived from a physostomous gas bladder. Oxygen partial pressure (PO2) in the ABO was measured on juveniles (238 g) with fiber-optic sensors during exposure to selected aquatic PO2 and swimming speeds. At slow speed (0.65 BL s−1), progressive aquatic hypoxia triggered the first breath at a mean PO2 of 8.3 kPa. Below this, opercular movements declined sharply and visibly ceased in most fish below 6 kPa. At aquatic PO2 of 6.1 kPa and swimming slowly, mean air-breathing frequency was 0.73 min−1, ABO PO2 was 10.9 kPa, breath volume was 23.8 ml kg−1, rate of oxygen uptake from the ABO was 1.19 ml kg−1 min−1, and oxygen uptake per breath was 2.32 ml kg−1. At the fastest experimental speed (2.4 BL s−1) at 6.1 kPa, ABO oxygen uptake increased to about 1.90 ml kg−1 min−1, through a variable combination of breathing frequency and oxygen uptake per breath. In normoxic water, tarpon rarely breathed air and apparently closed down ABO perfusion, indicated by a drop in ABO oxygen uptake rate to about 1% of that in hypoxic water. This occurred at a wide range of ABO PO2 (1.7–26.4 kPa), suggesting that oxygen level in the ABO was not regulated by intrinsic receptors.  相似文献   

4.
The bimodally respiring catfish Clarias macrocephalus Günther responded to a toxic extract of Croton tiglium (Euphorbiaceae) seeds by increased air breathing under both normoxic (8.1 ± 0.4 mgO2 l−1) and hypoxic (0.7 ± 0.1 mgO2l−1) conditions. Fish in hypoxia survived longer than those in normoxia when surface access was provided. When air breathing was prevented, survival time in toxin was greatly reduced at both levels of dissolved oxygen, and fish in normoxia survived longer than those in hypoxia. Non-toxin controls without surface access survived in normoxia but in hypoxia died at the same time as the fish in toxin. These results suggest that air breathing increases the resistance offish to toxins by permitting a decrease in the rate of gill ventilation and hence the rate at which toxins are absorbed.  相似文献   

5.
The effect of acute hypoxia and CO2 inhalation on leg blood flow (LBF), on leg vascular resistance (LVR) and on oxygen supply to and oxygen consumption in the exercising leg was studied in nine healthy male subjects during moderate one-leg exercise. Each subject exercised for 20 min on a cycle ergometer in four different conditions: normoxia, normoxia + 2% CO2, hypoxia corresponding to an altitude of 4000 m above sea level, and hypoxia + 1.2% CO2. Gas exchange, heart rate (HR), arterial blood pressure, and LBF were measured, and arterial and venous blood samples were analysed for PCO2, PO2, oxygen saturation, haematocrit and haemoglobin concentration. Systemic oxygen consumption was 1.83 l.min-1 (1.48-2.59) and was not affected by hypoxia or CO2 inhalation in hypoxia. HR was unaffected by CO2, but increased from 136 beat.min-1 (111-141) in normoxia to 155 (139-169) in hypoxia. LBF was 6.5 l.min-1 (5.4-7.6) in normoxia and increased significantly in hypoxia to 8.4 (5.9-10.1). LVR decreased significantly from 2.23 kPa.l-1.min (1.89-2.99) in normoxia to 1.89 (1.53-2.52) in hypoxia. The increase in LBF from normoxia to hypoxia correlated significantly with the decrease in LVR. When CO2 was added in hypoxia a significant correlation was also found between the decrease in LBF and the increase in LVR. In normoxia, the addition of CO2 caused a significant increase in mean blood pressure. Oxygen consumption in the exercising leg (leg VO2) in normoxia was 0.97 l.min-1 (0.72-1.10), and was unaffected by hypoxia and CO2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We investigated the effects of nightly intermittent exposure to hypoxia and of training during intermittent hypoxia on both erythropoiesis and running economy (RE), which is indicated by the oxygen cost during running at submaximal speeds. Twenty-five college long- and middle- distance runners [maximal oxygen uptake (Vo(2max)) 60.3 +/- 4.7 ml x kg(-1) x min(-1)] were randomly assigned to one of three groups: hypoxic residential group (HypR, 11 h/night at 3,000 m simulated altitude), hypoxic training group (HypT), or control group (Con), for an intervention of 29 nights. All subjects trained in Tokyo (altitude of 60 m) but HypT had additional high-intensity treadmill running for 30 min at 3,000 m simulated altitude on 12 days during the night intervention. Vo(2) was measured at standing rest during four submaximal speeds (12, 14, 16, and 18 km/h) and during a maximal stage to volitional exhaustion on a treadmill. Total hemoglobin mass (THb) was measured by carbon monoxide rebreathing. There were no significant changes in Vo(2max), THb, and the time to exhaustion in all three groups after the intervention. Nevertheless, HypR showed approximately 5% improvement of RE in normoxia (P < 0.01) after the intervention, reflected by reduced Vo(2) at 18 km/h and the decreased regression slope fitted to Vo(2) measured during rest position and the four submaximal speeds (P < 0.05), whereas no significant corresponding changes were found in HypT and Con. We concluded that our dose of intermittent hypoxia (3,000 m for approximately 11 h/night for 29 nights) was insufficient to enhance erythropoiesis or Vo(2max), but improved the RE at race speed of college runners.  相似文献   

7.
Among vertebrates, turtles are able to tolerate exceptionally low oxygen tensions. We have investigated the compensatory mechanisms that regulate respiration and blood oxygen transport in snapping turtles during short exposure to hypoxia. Snapping turtles started to hyperventilate when oxygen levels dropped below 10% O(2). Total ventilation increased 1.75-fold, essentially related to an increase in respiration frequency. During normoxia, respiration occurred in bouts of four to five breaths, whereas at 5% O(2), the ventilation pattern was more regular with breathing bouts consisting of a single breath. The increase in the heart rate between breaths during hypoxia suggests that a high pulmonary blood flow may be maintained during non-ventilatory periods to improve arterial blood oxygenation. After 4 days of hypoxia at 5% O(2), hematocrit, hemoglobin concentration and multiplicity and intraerythrocytic organic phosphate concentration remained unaltered. Accordingly, oxygen binding curves at constant P(CO(2)) showed no changes in oxygen affinity and cooperativity. However, blood pH increased significantly from 7.50+/-0.05 under normoxia to 7.72+/-0.03 under hypoxia. The respiratory alkalosis will produce a pronounced in vivo left-shift of the blood oxygen dissociation curve due to the large Bohr effect and this is shown to be critical for arterial oxygen saturation.  相似文献   

8.
This study investigates whether a 6-wk intermittent hypoxia training (IHT), designed to avoid reductions in training loads and intensities, improves the endurance performance capacity of competitive distance runners. Eighteen athletes were randomly assigned to train in normoxia [Nor group; n = 9; maximal oxygen uptake (VO2 max) = 61.5 +/- 1.1 ml x kg(-1) x min(-1)] or intermittently in hypoxia (Hyp group; n = 9; VO2 max = 64.2 +/- 1.2 ml x kg(-1) x min(-1)). Into their usual normoxic training schedule, athletes included two weekly high-intensity (second ventilatory threshold) and moderate-duration (24-40 min) training sessions, performed either in normoxia [inspired O2 fraction (FiO2) = 20.9%] or in normobaric hypoxia (FiO2) = 14.5%). Before and after training, all athletes realized 1) a normoxic and hypoxic incremental test to determine VO2 max and ventilatory thresholds (first and second ventilatory threshold), and 2) an all-out test at the pretraining minimal velocity eliciting VO2 max to determine their time to exhaustion (T(lim)) and the parameters of O2 uptake (VO2) kinetics. Only the Hyp group significantly improved VO2 max (+5% at both FiO2, P < 0.05), without changes in blood O2-carrying capacity. Moreover, T(lim) lengthened in the Hyp group only (+35%, P < 0.001), without significant modifications of VO2 kinetics. Despite similar training load, the Nor group displayed no such improvements, with unchanged VO2 max (+1%, nonsignificant), T(lim) (+10%, nonsignificant), and VO2 kinetics. In addition, T(lim) improvements in the Hyp group were not correlated with concomitant modifications of other parameters, including VO2 max or VO2 kinetics. The present IHT model, involving specific high-intensity and moderate-duration hypoxic sessions, may potentialize the metabolic stimuli of training in already trained athletes and elicit peripheral muscle adaptations, resulting in increased endurance performance capacity.  相似文献   

9.
Air-breathing fish are common in the tropics, and their importance in Asian aquaculture is increasing, but the respiratory physiology of some of the key species such as the striped catfish, Pangasianodon hypophthalmus Sauvage 1878 is unstudied. P. hypophthalmus is an interesting species as it appears to possess both well-developed gills and a modified swim bladder that functions as an air-breathing organ indicating a high capacity for both aquatic and aerial respiration. Using newly developed bimodal intermittent-closed respirometry, the partitioning of oxygen consumption in normoxia and hypoxia was investigated in P. hypophthalmus. In addition the capacity for aquatic breathing was studied through measurements of oxygen consumption when access to air was denied, both in normoxia and hypoxia, and the critical oxygen tension, Pcrit, was also determined during these experiments. Finally, gill ventilation and air-breathing frequency were measured in a separate experiment with pressure measurements from the buccal cavity. The data showed that P. hypophthalmus is able to maintain standard metabolic rate (SMR) through aquatic breathing alone in normoxia, but that air-breathing is important during hypoxia. Gill ventilation was reduced during air-breathing, which occurred at oxygen levels below 8 kPa, coinciding with the measured Pcrit of 7.7 kPa. The findings in this study indicate that the introduction of aeration into the aquaculture of P. hypophthalmus could potentially reduce the need to air-breathe. The possibility of reducing air-breathing frequency may be energetically beneficial for the fish, leaving more of the aerobic scope for growth and other activities, due to the proposed energetic costs of surfacing behavior.  相似文献   

10.
We tested the hypothesis that individual differences in the effect of acute hypoxia on the cardiovagal arterial baroreflex would determine individual susceptibility to hypoxic syncope. In 16 healthy, nonsmoking, normotensive subjects (8 women, 8 men, age 20-33 yr), we assessed orthostatic tolerance with a 20-min 60 degrees head-upright tilt during both normoxia and hypoxia (breathing 12% O(2)). On a separate occasion, we assessed baroreflex control of heart rate (cardiovagal baroreflex gain) using the modified Oxford technique during both normoxia and hypoxia. When subjects were tilted under hypoxic conditions, 5 of the 16 developed presyncopal signs or symptoms, and the 20-min tilt had to be terminated. These "fainters" had comparable cardiovagal baroreflex gain to "nonfainters" under both normoxic and hypoxic conditions (normoxia, fainters: -1.2 +/- 0.2, nonfainters: -1.0 +/- 0.2 beats.min(-1).mmHg(-1), P = 0.252; hypoxia, fainters: -1.3 +/- 0.2, nonfainters: -1.0 +/- 0.1 beats.min(-1).mmHg(-1), P = 0.208). Furthermore, hypoxia did not alter cardiovagal baroreflex gain in either group (both P > 0.8). It appears from these observations that hypoxic syncope results from the superimposed vasodilator effects of hypoxia on the cardiovascular system and not from a hypoxia-induced maladjustment in baroreflex control of heart rate.  相似文献   

11.
In Arctica islandica, a long lifespan is associated with low metabolic activity, and with a pronounced tolerance to low environmental oxygen. In order to study metabolic and physiological responses to low oxygen conditions vs. no oxygen in mantle, gill, adductor muscle and hemocytes of the ocean quahog, specimens from the German Bight were maintained for 3.5 days under normoxia (21 kPa=controls), hypoxia (2 kPa) or anoxia (0 kPa). Tissue levels of anaerobic metabolites octopine, lactate and succinate as well as specific activities of octopine dehydrogenase (ODH) and lactate dehydrogenase (LDH) were unaffected by hypoxic incubation, suggesting that the metabolism of A. islandica remains fully aerobic down to environmental oxygen levels of 2 kPa. PO(2)-dependent respiration rates of isolated gills indicated the onset of metabolic rate depression (MRD) below 5 kPa in A. islandica, while anaerobiosis was switched on in bivalve tissues only at anoxia. Tissue-specific levels of glutathione (GSH), a scavenger of reactive oxygen species (ROS), indicate no anticipatory antioxidant response takes place under experimental hypoxia and anoxia exposure. Highest specific ODH activity and a mean ODH/LDH ratio of 95 in the adductor muscle contrasted with maximal specific LDH activity and a mean ODH/LDH ratio of 0.3 in hemocytes. These differences in anaerobic enzyme activity patterns indicate that LDH and ODH play specific roles in different tissues of A. islandica which are likely to economize metabolism during anoxia and reoxygenation.  相似文献   

12.
The present study examined the acute effects of hypoxia on the regulation of skeletal muscle metabolism at rest and during 15 min of submaximal exercise. Subjects exercised on two occasions for 15 min at 55% of their normoxic maximal oxygen uptake while breathing 11% O(2) (hypoxia) or room air (normoxia). Muscle biopsies were taken at rest and after 1 and 15 min of exercise. At rest, no effects on muscle metabolism were observed in response to hypoxia. In the 1st min of exercise, glycogenolysis was significantly greater in hypoxia compared with normoxia. This small difference in glycogenolysis was associated with a tendency toward a greater concentration of substrate, free P(i), in hypoxia compared with normoxia. Pyruvate dehydrogenase activity (PDH(a)) was lower in hypoxia at 1 min compared with normoxia, resulting in a reduced rate of pyruvate oxidation and a greater lactate accumulation. During the last 14 min of exercise, glycogenolysis was greater in hypoxia despite a lower mole fraction of phosphorylase a. The greater glycogenolytic rate was maintained posttransformationally through significantly higher free [AMP] and [P(i)]. At the end of exercise, PDH(a) was greater in hypoxia compared with normoxia, contributing to a greater rate of pyruvate oxidation. Because of the higher glycogenolytic rate in hypoxia, the rate of pyruvate production continued to exceed the rate of pyruvate oxidation, resulting in significant lactate accumulation in hypoxia compared with no further lactate accumulation in normoxia. Hence, the elevated lactate production associated with hypoxia at the same absolute workload could in part be explained by the effects of hypoxia on the activities of the rate-limiting enzymes, phosphorylase and PDH, which regulate the rates of pyruvate production and pyruvate oxidation, respectively.  相似文献   

13.
Dynamics of breathing in the hypoxic awake lamb   总被引:1,自引:0,他引:1  
Newborn mammals respond to hypoxia with an immediate hyperventilation that is rapidly dampened. Changes in mechanical properties of the respiratory system during hypoxia have been considered an important reason for this fall in minute ventilation (VE). We have studied the dynamic mechanical behavior of the respiratory system in eight unanesthetized intact newborn lambs (mean age 2 days) during normoxia and hypoxia (FIO2 = 0.08). Mouth pressure (P), airflow (V), and volume (V) were recorded while lambs were breathing through a leak-proof face mask and a pneumotachograph. Active compliance (C') and resistance (R') of the respiratory system were computed from P developed during an inspiratory effort against airway closure at end expiration and V and V of the preceding breaths. Tidal expiratory V-V curves were analyzed to estimate the elevation in functional residual capacity (FRC) over resting volume (Vr). After hypoxia, there was an immediate increase in VE in the first 2 min, from 0.49 to 1.13 l.kg-1.min-1, followed by a rapid decrease to 0.80. After 8 min of hypoxia, C' was unchanged. The inspiratory R' decreased during hypoxia, probably reflecting a drop in inspiratory laryngeal resistance. The expiratory V-V curves during hypoxia showed considerable braking, often with a double peak in expiratory V. This pattern was only occasionally seen during normoxia. In animals with a linear segment of the expiratory V-V curves the FRC-Vr difference could be calculated and averaged 1.93 ml/kg during normoxia and 3.47 during hypoxia. The recoil P of the respiratory system at end expiration was 0.75 cmH2O during normoxia vs. 1.63 cmH2O during hypoxia (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The acute Hypoxic Ventilatory Response (HVR) is an important component of human hypoxia tolerance, hence presumably physiological adaptation to high altitude. We measured the isocapnic HVR (L min(-1) %(-1)) in two genetically divergent low altitude southern African populations. The HVR does not differ between African Xhosas (X) and Caucasians (C) (X:-0.34+/-0.36; C:-0.42+/-0.33; P > 0.34), but breathing patterns do. Among all Xhosa subjects, size-independent tidal volume was smaller (X: 0.75+/-0.20; C: 1.11+/-0.32 L; P < 0.01), breathing frequency higher (X: 22.2+/-5.7; C: 14.3+/-4.2 breaths min(-1); P < 0.01) and hypoxic oxygen saturation lower than among Caucasians (X: 78.4+/-4.7%; C: 81.7+/-4.7%; P < 0.05). The results remained significant if subjects from Xhosa and Caucasian groups were matched for gender, body mass index and menstrual cycle phase in the case of females. The latter also employed distinct breathing patterns between populations in normoxia. High repeatability (intra-class correlation coefficient) of the HVR in both populations (0.77-0.87) demonstrates that one of the prerequisites for natural selection, consistent between-individual variation, is met. Finally, we explore possible relationships between inter-population genetic distances and HVR differences among Xhosa, European, Aymara Amerindians, Tibetan and Chinese populations. Inter-population differences in the HVR are not attributable to genetic distance (Mantel Z-test, P = 0.59). The results of this study add novel support for the hypothesis that differences in the HVR, should they be found between other human populations, may reflect adaptation to hypoxia rather than genetic divergence through time.  相似文献   

15.
This study determined whether "living high-training low" (LHTL)-simulated altitude exposure increased the hypoxic ventilatory response (HVR) in well-trained endurance athletes. Thirty-three cyclists/triathletes were divided into three groups: 20 consecutive nights of hypoxic exposure (LHTLc, n = 12), 20 nights of intermittent hypoxic exposure (four 5-night blocks of hypoxia, each interspersed with 2 nights of normoxia, LHTLi, n = 10), or control (Con, n = 11). LHTLc and LHTLi slept 8-10 h/day overnight in normobaric hypoxia (approximately 2,650 m); Con slept under ambient conditions (600 m). Resting, isocapnic HVR (DeltaVE/DeltaSp(O(2)), where VE is minute ventilation and Sp(O(2)) is blood O(2) saturation) was measured in normoxia before hypoxia (Pre), after 1, 3, 10, and 15 nights of exposure (N1, N3, N10, and N15, respectively), and 2 nights after the exposure night 20 (Post). Before each HVR test, end-tidal PCO(2) (PET(CO(2))) and VE were measured during room air breathing at rest. HVR (l. min(-1). %(-1)) was higher (P < 0.05) in LHTLc than in Con at N1 (0.56 +/- 0.32 vs. 0.28 +/- 0.16), N3 (0.69 +/- 0.30 vs. 0.36 +/- 0.24), N10 (0.79 +/- 0.36 vs. 0.34 +/- 0.14), N15 (1.00 +/- 0.38 vs. 0.36 +/- 0.23), and Post (0.79 +/- 0.37 vs. 0.36 +/- 0.26). HVR at N15 was higher (P < 0.05) in LHTLi (0.67 +/- 0.33) than in Con and in LHTLc than in LHTLi. PET(CO(2)) was depressed in LHTLc and LHTLi compared with Con at all points after hypoxia (P < 0.05). No significant differences were observed for VE at any point. We conclude that LHTL increases HVR in endurance athletes in a time-dependent manner and decreases PET(CO(2)) in normoxia, without change in VE. Thus endurance athletes sleeping in mild hypoxia may experience changes to the respiratory control system.  相似文献   

16.
In 10 normal young adults, ventilation was evaluated with and without pretreatment with aminophylline, an adenosine blocker, while they breathed pure O2 1) after breathing room air and 2) after 25 min of isocapnic hypoxia (arterial O2 saturation 80%). With and without aminophylline, 5 min of hyperoxia significantly increased inspiratory minute ventilation (VI) from the normoxic base line. In control experiments, with hypoxia, VI initially increased and then declined to levels that were slightly above the normoxic base line. Pretreatment with aminophylline significantly attenuated the hypoxic ventilatory decline. During transitions to pure O2 (cessation of carotid bodies' output), VI and breathing patterns were analyzed breath by breath with a moving-average technique, searching for nadirs before and after hyperoxia. On placebo days, at the end of hypoxia, hyperoxia produced nadirs that were significantly lower than those observed with room-air breathing and also significantly lower than when hyperoxia followed normoxia, averaging, respectively, 6.41 +/- 0.52, 8.07 +/- 0.32, and 8.04 +/- 0.39 (SE) l/min. This hypoxic depression was due to significant decrease in tidal volume and prolongation of expiratory time. Aminophylline partly prevented these alterations in breathing pattern; significant posthypoxic ventilatory depression was not observed. We conclude that aminophylline attenuated hypoxic central depression of ventilation, although it does not affect hyperoxic steady-state hyperventilation. Adenosine may play a modulatory role in hypoxic but not in hyperoxic ventilation.  相似文献   

17.
The purpose of this study was to examine the interactions of adaptations in O2 transport and utilization under conditions of altered arterial O2 content (CaO2), during rest to exercise transitions. Simultaneous measures of alveolar (VO2alv) and leg (VO2mus) oxygen uptake and leg blood flow (LBF) responses were obtained in normoxic (FiO2 (inspired fraction of O2) = 0.21), hypoxic (FiO2 = 0.14), and hyperoxic (FiO2 = 0.70) gas breathing conditions. Six healthy subjects performed transitions in leg kicking exercise from rest to 48 +/- 3 W. LBF was measured continuously with pulsed and echo Doppler ultrasound methods, VO2alv was measured breath-by-breath at the mouth and VO2mus was determined from LBF and radial artery and femoral vein blood samples. Even though hypoxia reduced CaO2 to 175.9 +/- 5.0 from 193.2 +/- 5.0 mL/L in normoxia, and hyperoxia increased CaO2 to 205.5 +/- 4.1 mL/L, there were no differences in the absolute values of VO2alv or VO2mus across gas conditions at any of the rest or exercise time points. A reduction in leg O2 delivery in hypoxia at the onset of exercise was compensated by a nonsignificant increase in O2 extraction and later by small increases in LBF to maintain VO2mus. The dynamic response of VO2alv was slower in the hypoxic condition; however, hyperoxia did not affect the responses of oxygen delivery or uptake at the onset of moderate intensity leg kicking exercise. The finding of similar VO2mus responses at the onset of exercise for all gas conditions demonstrated that physiological adaptations in LBF and O2 extraction were possible, to counter significant alterations in CaO2. These results show the importance of the interplay between O2 supply and O2 utilization mechanisms in meeting the challenge provided by small alterations in O2 content at the onset of this submaximal exercise task.  相似文献   

18.
Adenosine triphosphate, acting through purinergic P2X receptors, has been shown to stimulate ventilation and increase carotid body chemoreceptor activity in adult rats. However, its role during postnatal development of the ventilatory response to hypoxia is yet unknown. Using whole body plethysmography, we measured ventilation in normoxia and in moderate hypoxia (12% fraction of inspired O?, 20 min) before and after intraperitoneal injection of suramin (P2X? and P2X? receptor antagonist, 40 mg/kg) in 4-, 7-, 12-, and 21-day-old rats. Suramin reduced baseline breathing (~20%) and the response to hypoxia (~30%) in all rats, with a relatively constant effect across ages. We then tested the effect of the specific P2X? antagonist, A-317491 (150 mg/kg), in rats aged 4, 7, and 21 days. As with suramin, A-317491 reduced baseline ventilation (~55%) and the hypoxic response (~40%) at all ages studied. Single-unit carotid body chemoreceptor activity was recorded in vitro in 4-, 7-, and 21-day-old rats. Suramin (100 μM) and A-317491 (10 μM) significantly depressed the sinus nerve chemosensory discharge rate (~80%) in normoxia (Po? ~150 Torr) and hypoxia (Po? ~60 Torr), and this decrease was constant across ages. We conclude that, in newborn rats, P2X purinergic receptors are involved in the regulation of breathing under basal and hypoxic condition, and P2X?-containing receptors play a major role in carotid body function. However, these effects are not age dependent within the age range studied.  相似文献   

19.
The discontinuous gas exchange cycle (DGC) is a breathing pattern displayed by many insects, characterized by periodic breath-holding and intermittently low tracheal O(2) levels. It has been hypothesized that the adaptive value of DGCs is to reduce oxidative damage, with low tracheal O(2) partial pressures (PO(2) ≈ 2-5 kPa) occurring to reduce the production of oxygen free radicals. If this is so, insects displaying DGCs should continue to actively defend a low tracheal PO(2) even when breathing higher than atmospheric levels of oxygen (hyperoxia). This behaviour has been observed in moth pupae exposed to ambient PO(2) up to 50 kPa. To test this observation in adult insects, we implanted fibre-optic oxygen optodes within the tracheal systems of adult migratory locusts Locusta migratoria exposed to normoxia, hypoxia and hyperoxia. In normoxic and hypoxic atmospheres, the minimum tracheal PO(2) that occurred during DGCs varied between 3.4 and 1.2 kPa. In hyperoxia up to 40.5 kPa, the minimum tracheal PO(2) achieved during a DGC exceeded 30 kPa, increasing with ambient levels. These results are consistent with a respiratory control mechanism that functions to satisfy O(2) requirements by maintaining PO(2) above a critical level, not defend against high levels of O(2).  相似文献   

20.
The general patterns and individual specific features of human adaptation to acute hypoxic hypoxia caused by breathing a hypoxic oxygen-nitrogen gas mixture containing 8.0% oxygen have been studied. It was found that, at the initial stage of hypoxia, all examined subjects demonstrated a reduced oxygen consumption as compared to normoxia; then, this parameter increased and, beginning from a certain moment (after 5–15 min of exposure), exceeded the baseline level by 10–40%. Hypotheses explaining the mechanisms of this growth in oxygen consumption during hypoxia are considered. It has been found that the roles of the cardiovascular system and mechanisms of the tissue and cellular utilization of oxygen in the growth of the rate of oxygen consumption caused by hypoxia vary in different subjects. The hypothesis is put forward that the relatively low potential for rearrangement of the biological oxidation system at the cellular level, aimed at increasing the rate of oxygen consumption, predetermines a need to increase the rate of oxygen supply by the blood and, therefore, a greater strain of the cardiovascular system. In many cases, this strain can cause failure of adaptation to hypoxia. Other parameters that can serve as characteristics of a subject’s resistance to hypoxia, such as the intensity of EEG slow waves and the level of blood oxygenation, are also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号