首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
The Enzymes II of the PEP:carbohydrate phosphotransferase system (PTS) specific for N-acetylglucosamine (IINag) and beta-glucosides (IIBgl) contain C-terminal domains that show homology with Enzyme IIIGlc of the PTS. We investigated whether one or both of the Enzymes II could substitute functionally for IIIGlc. The following results were obtained: (i) Enzyme IINag, synthesized from either a chromosomal or a plasmid-encoded nagE+ gene could replace IIIGlc in glucose, methyl alpha-glucoside and sucrose transport via the corresponding Enzymes II. An Enzyme IINag with a large deletion in the N-terminal domain but with an intact C-terminal domain could also replace IIIGlc in IIGlc-dependent glucose transport. (ii) After decryptification of the Escherichia coli bgl operon, Enzyme IIBgl could substitute for IIIGlc. (iii) Phospho-HPr-dependent phosphorylation of methyl alpha-glucoside via IINag/IIGlc is inhibited by antiserum against IIIGlc as is N-acetylglucosamine phosphorylation via IINag. (iv) In strains that contained the plasmid which coded for IINag, a protein band with a molecular weight of 62,000 D could be detected with antiserum against IIIGlc. We conclude from these results that the IIIGlc-like domain of Enzyme IINag and IIBgl can replace IIIGlc in IIIGlc-dependent carbohydrate transport and phosphorylation.  相似文献   

7.
Glucose is taken up in Bacillus subtilis via the phosphoenolpyruvate:glucose phosphotransferase system (glucose PTS). Two genes, orfG and ptsX, have been implied in the glucose-specific part of this PTS, encoding an Enzyme IIGlc and an Enzyme IIIGlc, respectively. We now show that the glucose permease consists of a single, membrane-bound, polypeptide with an apparent molecular weight of 80,000, encoded by a single gene which will be designated ptsG. The glucose permease contains domains that are 40-50% identical to the IIGlc and IIIGlc proteins of Escherichia coli. The B. subtilis IIIGlc domain can replace IIIGlc in E. coli crr mutants in supporting growth on glucose and transport of methyl alpha-glucoside. Mutations in the IIGlc and IIIGlc domains of the B. subtilis ptsG gene impaired growth on glucose and in some cases on sucrose. ptsG mutants lost all methyl alpha-glucoside transport but retained part of the glucose-transport capacity. Residual growth on glucose and transport of glucose in these ptsG mutants suggested that yet another uptake system for glucose existed, which is either another PT system or regulated by the PTS. The glucose PTS did not seem to be involved in the regulation of the uptake or metabolism of non-PTS compounds like glycerol. In contrast to ptsl mutants in members of the Enterobacteriaceae, the defective growth of B. subtilis ptsl mutants on glycerol was not restored by an insertion in the ptsG gene which eliminated IIGlc. Growth of B. subtilis ptsG mutants, lacking IIGlc, was not impaired on glycerol. From this we concluded that neither non-phosphorylated nor phosphorylated IIGlc was acting as an inhibitor or an activator, respectively, of glycerol uptake and metabolism.  相似文献   

8.
The nucleotide sequence of 1,947 bases of DNA containing the tyrP structural gene was determined, and an open reading frame of 1,260 nucleotides was identified. The putative structural gene encodes an extremely hydrophobic protein which comprises 404 amino acids, 70% of which are nonpolar, and which has a molecular weight of 43,261.  相似文献   

9.
L F Wu  M H Saier  Jr 《Journal of bacteriology》1990,172(12):7167-7178
The nucleotide sequence of the fruA gene, the terminal gene in the fructose operon of Rhodobacter capsulatus, is reported. This gene codes for the fructose permease (molecular weight, 58,575; 578 aminoacyl residues), the fructose enzyme II (IIFru) of the phosphoenolpyruvate-dependent phosphotransferase system. The deduced aminoacyl sequence of the encoded gene product was found to be 55% identical throughout most of its length with the fructose enzyme II of Escherichia coli, with some regions strongly conserved and others weakly conserved. Sequence comparisons revealed that the first 100 aminoacyl residues of both enzymes II were homologous to the second 100 residues, suggesting that an intragenic duplication of about 300 nucleotides had occurred during the evolution of IIFru prior to divergence of the E. coli and R. capsulatus genes. The protein contains only two cysteyl residues, and only one of these residues is conserved between the two proteins. This residue is therefore presumed to provide the active-site thiol group which may serve as the phosphorylation site. IIFru was found to exhibit regions of homology with sequenced enzymes II from other bacteria, including those specific for sucrose, beta-glucosides, mannitol, glucose, N-acetylglucosamine, and lactose. The degree of evolutionary divergence differed for different parts of the proteins, with certain transmembrane segments exhibiting high degrees of conservation. The hydrophobic domain of IIFru was also found to be similar to several uniport and antiport transporters of animals, including the human and mouse insulin-responsive glucose facilitators. These observations suggest that the mechanism of transmembrane transport may be similar for permeases catalyzing group translocation and facilitated diffusion.  相似文献   

10.
P Gros  J Croop  D Housman 《Cell》1986,47(3):371-380
The complete nucleotide and primary structure (1276 amino acids) of a full length mdr cDNA capable of conferring a complete multidrug-resistant phenotype is presented. The deduced amino acid sequence suggests that mdr is a membrane glycoprotein which includes six pairs of transmembrane domains and a cluster of potentially N-linked glycosylation sites near the amino terminus. A striking feature of the protein is an internal duplication that includes approximately 500 amino acids. Each duplicated segment includes a consensus ATP-binding site. Amino acid homology is observed between the mdr gene and a series of bacterial transport genes. This strong homology suggests that a highly conserved functional unit involved in membrane transport is present in the mdr polypeptide. We propose that an energy-dependent transport mechanism is responsible for the multidrug-resistant phenotype.  相似文献   

11.
Genomic DNA isolated from blood and semen of dairy cattle with known kappa-casein (kappa-CN) genotypes was subjected to Southern blot hybridization and polymerase chain reaction (PCR) using up to 14 restriction endonucleases. kappa-casein genotypes AA, AB and BB were identified using Hin dIII and Hin fI while genotypes with kappa-CNC and kappa-CNE were misidentified. Direct sequencing of the PCR product (kappa-CN EE) showed a substitution of guanine (kappa-CNA,B) by adenine (kappa-CNE) which creates a HaeIII restriction site. Therefore using PCR followed by Hin dIII or HinfI and Hae III digest allows discrimination between kappa-casein A, B and E directly at the DNA level.  相似文献   

12.
We have determined the nucleotide sequence of the gene encoding adenovirus type 2 (Ad2) DNA binding protein (DBP). From the nucleotide sequence the complete amino acid sequence of Ad2 DBP has been deduced. A comparison of the amino acid sequences of Ad2 and Ad5 DBP, both 529 residues long, reveals that the C-terminal 354 residues of both sequences are identical. Within the N-terminal 175 amino acid residues Ad2 and Ad5 show nine differences. The site of mutation in Ad2 ND1ts23, a mutant with a temperature-sensitive DNA replication, was mapped at the nucleotide level. A single nucleotide alteration in the DBP gene, resulting in a leucine leads to phenylalanine substitution at position 282 in the amino acid sequence is responsible for the temperature-sensitive character of this mutant. Previously, we localized the mutation of another DBP mutant with a temperature-sensitive DNA replication (H5ts125) at position 413 in the amino acid sequence of the DBP molecule (Nucleic Acids Res. 9 (1981) 4439-4457). These mapping data are discussed in relation to the structure and function of the DBP molecule.  相似文献   

13.
Six species of ruminal bacteria were surveyed for the phosphoenolpyruvate (PEP)-dependent phosphorylation of glucose. Selenomonas ruminantium HD4, Streptococcus bovis JB1, and Megasphaera elsdenii B159 all showed significant activity, but Butyrivibrio fibrisolvens 49, Bacteroides succinogenes S85, and Bacteroides ruminicola B1(4) showed low rates of PEP-dependent phosphorylation and much higher rates in the presence of ATP. S. ruminantium HD4, S. bovis JB1, and M. elsdenii B159 also used PEP to phosphorylate the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DG). Rates of 2-DG phosphorylation with ATP were negligible for S. bovis JB1 and M. elsdenii B159, but toluene-treated cells of S. ruminantium HD4 phosphorylated 2-DG in the presence of ATP as well as PEP. Cell-free extracts of S. ruminantium HD4 used ATP but not PEP to phosphorylate glucose and 2-DG. Since PEP could serve as a phosphoryl donor in toluene-treated cells but not in cell-free extracts, there was evidence for membrane and hence phosphotransferase system involvement in the PEP-dependent activity. The ATP-dependent phosphorylating enzymes from S. ruminantium HD4 and S. bovis JB1 had molecular weights of approximately 48,000 and were not inhibited by glucose 6-phosphate. Based on these criteria, they were glucokinases rather than hexokinases. The S. ruminantium HD4 glucokinase was competitively inhibited by 2-DG and mannose, sugars that differ from glucose in the C-2 position. Since 2-DG was a competitive inhibitor of glucose, the same enzyme probably phosphorylates both sugars. The S. bovis JB1 glucokinase was not inhibited by either 2-DG or mannose and had a higher Km and Vmax for glucose.  相似文献   

14.
15.
16.
17.
A systematic characterization of lens crystallins from five major classes of vertebrates was carried out by exclusion gel filtration, cation-exchange chromatography and N-terminal sequence determination. All crystallin fractions except that of -crystallin were found to be N-terminally blocked. -Crystallin is present in major classes of vertebrates except the bird, showing none, or decreased amounts, of this protein in chicken and duck lenses, respectively. N-Terminal sequence analysis of the purified -crystallin polypeptides showed extensive homology between different classes of vertebrates, supporting the close relatedness of this family of crystallin even from the evolutionarily distant species. Comparison of nucleotide sequences and their predicted amino acid sequences between -crystallins of carp and rat lenses and heat-shock proteins demonstrated partial sequence homology of the encoded polypeptides and striking homology at the gene level. The unexpected strong homology of complementary DNA (cDNA) lies in the regions coding for 40 N-terminal residues of carp -II, rat 2-1, and the middle segments of 23,000- and 70,000-M r heat-shock proteins. The optimal alignment of DNA sequences along these two segments shows about 50% homology. The percentage of protein sequence identity for the corresponding aligned segments is only 20%. The weak sequence homology at the protein level is also found between the invertebrate squid crystallin and rat -crystallin polypeptides. These results pointed to the possibility of unifying three major classes of vertebrate crystallins into one // superfamily and corroborated the previous supposition that the existing crystallins in the animal kingdom are probably mutually interrelated, sharing a common ancestry.  相似文献   

18.
19.
The CorA Mg2+ transport system of Salmonella typhimurium mediates both influx and efflux of Mg2+. Mutations at the corA locus (83.5 min) confer resistance to Co2+. Using transposon mutagenesis, three additional Co2+ resistance loci (corB, corC, and corD) were found and mapped to 55, 15, and 3min, respectively, on the S. typhimurium chromosome. No mutations corresponding to the reported corB locus at 95 min in Escherichia coli were obtained. The corB, corC, and corD mutations confer levels of Co2+ resistance intermediate between those of the wild-type and corA mutations. Isogenic strains were constructed containing combinations of transposon insertion mutations in each of the three Co(2+)-resistance loci to assess their influence on the CorA Mg2+ transport system. The Vmax and Km values for 28Mg2+ or for 57Co2+ and 63Ni2+ influx, analogues of Mg2+ transported by the CorA system, were changed less than twofold compared with the wild-type values, regardless of the mutation(s) present. However, while efflux of 28Mg2+ through the CorA system was decreased threefold in strains carrying one or two mutant alleles among corB, corC, or corD, efflux was completely abolished in either a corA or a corBCD strain. Thus, although the corA gene product is necessary and sufficient to mediate Mg2+ influx, Mg2+ efflux requires the presence of a wild-type allele of at least one of the corB, corC or corD loci.  相似文献   

20.
Six species of ruminal bacteria were surveyed for the phosphoenolpyruvate (PEP)-dependent phosphorylation of glucose. Selenomonas ruminantium HD4, Streptococcus bovis JB1, and Megasphaera elsdenii B159 all showed significant activity, but Butyrivibrio fibrisolvens 49, Bacteroides succinogenes S85, and Bacteroides ruminicola B1(4) showed low rates of PEP-dependent phosphorylation and much higher rates in the presence of ATP. S. ruminantium HD4, S. bovis JB1, and M. elsdenii B159 also used PEP to phosphorylate the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DG). Rates of 2-DG phosphorylation with ATP were negligible for S. bovis JB1 and M. elsdenii B159, but toluene-treated cells of S. ruminantium HD4 phosphorylated 2-DG in the presence of ATP as well as PEP. Cell-free extracts of S. ruminantium HD4 used ATP but not PEP to phosphorylate glucose and 2-DG. Since PEP could serve as a phosphoryl donor in toluene-treated cells but not in cell-free extracts, there was evidence for membrane and hence phosphotransferase system involvement in the PEP-dependent activity. The ATP-dependent phosphorylating enzymes from S. ruminantium HD4 and S. bovis JB1 had molecular weights of approximately 48,000 and were not inhibited by glucose 6-phosphate. Based on these criteria, they were glucokinases rather than hexokinases. The S. ruminantium HD4 glucokinase was competitively inhibited by 2-DG and mannose, sugars that differ from glucose in the C-2 position. Since 2-DG was a competitive inhibitor of glucose, the same enzyme probably phosphorylates both sugars. The S. bovis JB1 glucokinase was not inhibited by either 2-DG or mannose and had a higher Km and Vmax for glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号