首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rising sea levels and excessive water withdrawals upstream are making previously freshwater coastal ecosystems saline. Plant and animal responses to variation in the freshwater–saline interface have been well studied in the coastal zone; however, microbial community structure and functional response to seawater intrusion remains relatively unexplored. Here, we used molecular approaches to evaluate the response of the prokaryotic community to controlled changes in porewater salinity levels in freshwater sediments from the Altamaha River, Georgia, USA. This work is a companion to a previously published study describing results from an experiment using laboratory flow-through sediment core bioreactors to document biogeochemical changes as porewater salinity was increased from 0 to 10 over 35 days. As reported in Weston et al. (Biogeochemistry, 77:375–408, 62), porewater chemistry was monitored, and cores were sacrificed at 0, 9, 15, and 35 days, at which time we completed terminal restriction fragment length polymorphism and 16S rRNA clone library analyses of sediment microbial communities. The biogeochemical study documented changes in mineralization pathways in response to artificial seawater additions, with a decline in methanogenesis, a transient increase in iron reduction, and finally a dominance of sulfate reduction. Here, we report that, despite these dramatic and significant changes in microbial activity at the biogeochemical level, no significant differences were found between microbial community composition of control vs. seawater-amended treatments for either Bacterial or Archaeal members. Further, taxa in the seawater-amended treatment community did not become more “marine-like” through time. Our experiment suggests that, as seawater intrudes into freshwater sediments, observed changes in metabolic activity and carbon mineralization on the time scale of weeks are driven more by shifts in gene expression and regulation than by changes in the composition of the microbial community.  相似文献   

2.
A microcosm enrichment approach was employed to isolate bacteria which are representative of long-term biphenyl-adapted microbial communities. Growth of microorganisms was stimulated by incubating soil and sediment samples from polluted and nonpolluted sites with biphenyl crystals. After 6 months, stable population densities between 8 × 109 and 2 × 1011 CFU/ml were established in the microcosms, and a large percentage of the organisms were able to grow on biphenyl-containing minimal medium plates. A total of 177 biphenyl-degrading strains were subsequently isolated and characterized by their ability to grow on biphenyl in liquid culture and to accumulate a yellow meta cleavage product when they were sprayed with dihydroxybiphenyl. Isolates were identified by using a polyphasic approach, including fatty acid methyl ester (FAME) analysis, 16S rRNA gene sequence comparison, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of whole-cell proteins, and genomic fingerprinting based on sequence variability in the 16S-23S ribosomal DNA intergenic spacer region. In all of the microcosms, isolates identified as Rhodococcus opacus dominated the cultivable microbial community, comprising a cluster of 137 isolates with very similar FAME profiles (Euclidean distances, <10) and identical 16S rRNA gene sequences. The R. opacus isolates from the different microcosms studied could not be distinguished from each other by any of the fingerprint methods used. In addition, three other FAME clusters were found in one or two of the microcosms analyzed; these clusters could be assigned to Alcaligenes sp., Terrabacter sp., and Bacillus thuringiensis on the basis of their FAME profiles and/or comparisons of the 16S rRNA gene sequences of representatives. Thus, the microcosm enrichments were strongly dominated by gram-positive bacteria, especially the species R. opacus, independent of the pollution history of the original sample. R. opacus, therefore, is a promising candidate for development of effective long-term inocula for polychlorinated biphenyl bioremediation.  相似文献   

3.
Rising climate temperatures in the future are predicted to accelerate the microbial decomposition of soil organic matter. A field microcosm experiment was carried out to examine the impact of soil warming in freshwater wetlands on different organic carbon (C) pools and associated microbial functional responses. GeoChip 4.0, a functional gene microarray, was used to determine microbial gene diversity and functional potential for C degradation. Experimental warming significantly increased soil pore water dissolved organic C and phosphorus (P) concentrations, leading to a higher potential for C emission and P export. Such losses of total organic C stored in soil could be traced back to the decomposition of recalcitrant organic C. Warming preferentially stimulated genes for degrading recalcitrant C over labile C. This was especially true for genes encoding cellobiase and mnp for cellulose and lignin degradation, respectively. We confirmed this with warming-enhanced polyphenol oxidase and peroxidase activities for recalcitrant C acquisition and greater increases in recalcitrant C use efficiency than in labile C use efficiency (average percentage increases of 48% versus 28%, respectively). The relative abundance of lignin-degrading genes increased by 15% under warming; meanwhile, soil fungi, as the primary decomposers of lignin, were greater in abundance by 27%. This work suggests that future warming may enhance the potential for accelerated fungal decomposition of lignin-like compounds, leading to greater microbially mediated C losses than previously estimated in freshwater wetlands.  相似文献   

4.
Although several microorganisms that produce and degrade methanethiol (MT) and dimethyl sulfide (DMS) have been isolated from various habitats, little is known about the numbers of these microorganisms in situ. This study reports on the identification and quantification of microorganisms involved in the cycling of MT and DMS in freshwater sediments. Sediment incubation studies revealed that the formation of MT and DMS is well balanced with their degradation. MT formation depends on the concentrations of both sulfide and methyl group-donating compounds. A most-probable number (MPN) dilution series with syringate as the growth substrate showed that methylation of sulfide with methyl groups derived from syringate is a commonly occurring process in situ. MT appeared to be primarily degraded by obligately methylotrophic methanogens, which were found in the highest positive dilutions on DMS and mixed substrates (methanol, trimethylamine [TMA], and DMS). Amplified ribosomal DNA restriction analysis (ARDRA) and 16S rRNA gene sequence analysis of the total DNA isolated from the sediments and of the DNA isolated from the highest positive dilutions of the MPN series (mixed substrates) revealed that the methanogens that are responsible for the degradation of MT, DMS, methanol, and TMA in situ are all phylogenetically closely related to Methanomethylovorans hollandica. This was confirmed by sequence analysis of the product obtained from a nested PCR developed for the selective amplification of the 16S rRNA gene from M. hollandica. The data from sediment incubation experiments, MPN series, and molecular-genetics detection correlated well and provide convincing evidence for the suggested mechanisms for MT and DMS cycling and the common presence of the DMS-degrading methanogen M. hollandica in freshwater sediments.  相似文献   

5.
The interdependence between geoelectrical signatures at underground petroleum plumes and the structures of subsurface microbial communities was investigated. For sediments contaminated with light non-aqueous-phase liquids, anomalous high conductivity values have been observed. Vertical changes in the geoelectrical properties of the sediments were concomitant with significant changes in the microbial community structures as determined by the construction and evaluation of 16S rRNA gene libraries. DNA sequencing of clones from four 16S rRNA gene libraries from different depths of a contaminated field site and two libraries from an uncontaminated background site revealed spatial heterogeneity in the microbial community structures. Correspondence analysis showed that the presence of distinct microbial populations, including the various hydrocarbon-degrading, syntrophic, sulfate-reducing, and dissimilatory-iron-reducing populations, was a contributing factor to the elevated geoelectrical measurements. Thus, through their growth and metabolic activities, microbial populations that have adapted to the use of petroleum as a carbon source can strongly influence their geophysical surroundings. Since changes in the geophysical properties of contaminated sediments parallel changes in the microbial community compositions, it is suggested that geoelectrical measurements can be a cost-efficient tool to guide microbiological sampling for microbial ecology studies during the monitoring of natural or engineered bioremediation processes.  相似文献   

6.
Abstract The response of a sediment microbial assemblage to a pulse of diatoms was studied over 36 days by measuring bacterial activity and biomass, ATP concentration, and overall community respiration in laboratory microcosms. Also, the contribution of macrofaunal chironomids to the decomposition of settling diatoms in benthic communities, and the relative importance of benthic meiofauna in community metabolism, were determined. The addition of diatoms resulted in an immediate response by sediment bacteria, with higher bacterial production recorded after only 2 h, and a more than tenfold increase within one day. The rapid response by sediment bacteria was accompanied by relatively high initial concentrations of dissolved organic carbon. In treatments receiving diatoms, higher bacterial production was sustained throughout the experiment. Surprisingly, neither these elevated production estimates, nor the starvation of controls affected bacterial abundance. Mean bacterial cell volume, however, was markedly affected by the addition of diatoms. Combining community respiration measurements and bacterial production estimates showed that growth efficiencies for sediment bacteria ranged from 14.6 to 34.5%. The contribution of ambient meiozoobenthos to carbon metabolism was less than 1%. Carbon budgets showed that 1.3 mg C was cooxidized along with 4.3 mg added diatom C. Sediment reworking by Chironomus larvae initially enhanced bacterial production, but the presence of Chironomus resulted in lower bacterial production estimates after 16 and 36 days. This was interpreted as a result of faster decomposition of diatoms in treatments with chironomids, which was validated by a faster decline of ATP and chlorophyll a in the sediment. Our results indicate that Chironomus larvae compete with sediment bacteria for available organic substrates. Received: 11 June 1996; Accepted: 13 August 1996  相似文献   

7.
In Central Europe climate change will increase summer droughts, which cause both, premature leaf fall and fragmentation of small streams during summer and early autumn. As a consequence dissolved organic carbon (DOC) leached from leaves will be dispersed into pools with long water residence time. A microcosm experiment was performed to test the effect of high concentrations of leachate DOC and the relative importance of labile and refractory leachate compounds on leaf associated microbial parameters. In microcosms leaf discs colonized in a stream were exposed to high concentrations of either leaf leachate, glucose or tannic acid. Leaf associated respiration, fungal sporulation, leaf mass loss and fungal biomass (ergosterol) were measured during a 3 weeks experimental period and compared to control without DOC amendment. The results imply that depending on source and composition elevated leachate DOC may have variable effects on microbial mediated litter decomposition. Our findings suggest reduced microbial decomposition rates in pools of fragmented streams receiving premature leaf fall. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The population density and activity of a microbial community associated with the sediment and rhizosphere of an intertidal freshwater wetland dominated by Scirpus pungens was monitored before and following the application of weathered Mesa light crude oil and fertilizers. The influence of nutrient enrichment (fertilizers) and plant growth on oil degradation rates was determined from the resulting data. The study plots (four blocks of replicates) were subjected to five treatments: oil only (natural attenuation); oil plus ammonium nitrate and phosphate, with regular cropping of the plants; oil plus ammonium nitrate and phosphate; oil plus sodium nitrate and phosphate; no oil, ammonium nitrate and phosphate. The plots were regularly monitored in the field for gas production (carbon dioxide and nitrous oxide), and samples were collected for laboratory analysis of denitrification activity, aliphatic and aromatic hydrocarbon degradation activity, and total heteroptrophic bacteria.

The viable bacterial population density increased during the first 4 weeks in oiled and unoiled experimental plots that were fertilized. In contrast, population densities in untreated areas remained relatively unchanged throughout the monitoring period. The microbial population demonstrated a rapid and sustained increase in naphthalene mineralization activity in plots that were both fertilized and oiled. Hexadecane mineralization activity increased in response to fertilizer application, with ammonium nitrate causing a larger increase than sodium nitrate. A very significant difference observed in the mineralization of hexadecane was that the surface sediments were much more active than the subsurface sediments. This difference became even more pronounced in the second year of monitoring, even though the treatment regime had been discontinued. This compartmentalization of mineralization activity was not observed for naphthalene. Following fertilizer application, field and laboratory evaluation of nitrogen metabolism in the sediments indicated significant denitrification activity that was not adversely affected by oiling. The results demonstrated that the application of fertilizers stimulated the activities of indigenous hydrocarbon-degrading and denitrifying bacteria, and the presence of oil either enhanced or had no detrimental effect on these activities. As a remediation strategy, the application of fertilizers to a wetland shoreline following an oil spill would promote the growth of indigenous plants and their associated microbial flora, resulting in increased metabolic activity and the potential for increased oil degradation activity.  相似文献   

9.
The population density and activity of a microbial community associated with the sediment and rhizosphere of an intertidal freshwater wetland dominated by Scirpus pungens was monitored before and following the application of weathered Mesa light crude oil and fertilizers. The influence of nutrient enrichment (fertilizers) and plant growth on oil degradation rates was determined from the resulting data. The study plots (four blocks of replicates) were subjected to five treatments: oil only (natural attenuation); oil plus ammonium nitrate and phosphate, with regular cropping of the plants; oil plus ammonium nitrate and phosphate; oil plus sodium nitrate and phosphate; no oil, ammonium nitrate and phosphate. The plots were regularly monitored in the field for gas production (carbon dioxide and nitrous oxide), and samples were collected for laboratory analysis of denitrification activity, aliphatic and aromatic hydrocarbon degradation activity, and total heteroptrophic bacteria. The viable bacterial population density increased during the first 4 weeks in oiled and unoiled experimental plots that were fertilized. In contrast, population densities in untreated areas remained relatively unchanged throughout the monitoring period. The microbial population demonstrated a rapid and sustained increase in naphthalene mineralization activity in plots that were both fertilized and oiled. Hexadecane mineralization activity increased in response to fertilizer application, with ammonium nitrate causing a larger increase than sodium nitrate. A very significant difference observed in the mineralization of hexadecane was that the surface sediments were much more active than the subsurface sediments. This difference became even more pronounced in the second year of monitoring, even though the treatment regime had been discontinued. This compartmentalization of mineralization activity was not observed for naphthalene. Following fertilizer application, field and laboratory evaluation of nitrogen metabolism in the sediments indicated significant denitrification activity that was not adversely affected by oiling. The results demonstrated that the application of fertilizers stimulated the activities of indigenous hydrocarbon-degrading and denitrifying bacteria, and the presence of oil either enhanced or had no detrimental effect on these activities. As a remediation strategy, the application of fertilizers to a wetland shoreline following an oil spill would promote the growth of indigenous plants and their associated microbial flora, resulting in increased metabolic activity and the potential for increased oil degradation activity.  相似文献   

10.
While the contribution of Bacteria to bioremediation of oil-contaminated shorelines is well established, the response of Archaea to spilled oil and bioremediation treatments is unknown. The relationship between archaeal community structure and oil spill bioremediation was examined in laboratory microcosms and in a bioremediation field trial. 16S rRNA gene-based PCR and denaturing gradient gel analysis revealed that the archaeal community in oil-free laboratory microcosms was stable for 26 days. In contrast, in oil-polluted microcosms a dramatic decrease in the ability to detect Archaea was observed, and it was not possible to amplify fragments of archaeal 16S rRNA genes from samples taken from microcosms treated with oil. This was the case irrespective of whether a bioremediation treatment (addition of inorganic nutrients) was applied. Since rapid oil biodegradation occurred in nutrient-treated microcosms, we concluded that Archaea are unlikely to play a role in oil degradation in beach ecosystems. A clear-cut relationship between the presence of oil and the absence of Archaea was not apparent in the field experiment. This may have been related to continuous inoculation of beach sediments in the field with Archaea from seawater or invertebrates and shows that the reestablishment of Archaea following bioremediation cannot be used as a determinant of ecosystem recovery following bioremediation. Comparative 16S rRNA sequence analysis showed that the majority of the Archaea detected (94%) belonged to a novel, distinct cluster of group II uncultured Euryarchaeota, which exhibited less than 87% identity to previously described sequences. A minor contribution of group I uncultured Crenarchaeota was observed.  相似文献   

11.
12.
An extensive culture-dependent and -independent study was conducted to identify microorganisms contributing to the biogeochemical cycling of manganese (Mn) in Ashumet Pond, a freshwater pond in Massachusetts currently undergoing remediation. A variety of bacteria (including Gamma-, Beta-, and Alpha-proteobacteria, Firmicutes, and Bacteroides) and Ascoymete fungi were isolated from the pond that promote Mn(II) oxidation and subsequent formation of Mn(III/IV) oxide minerals. Targeted-amplicon pyrosequencing of the bacterial and fungal communities associated with Mn oxide-encrusted samples show a highly diverse microbial community, of which the cultured phylotypes represent a minor proportion. This suggests a larger community, not identified through culturing, contributes to Mn oxide formation within the Pond.  相似文献   

13.
Microcosms capable of reductive dechlorination of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) were constructed in glass bottles by seeding them with a polluted river sediment and incubating them anaerobically with an organic medium. All of the PCDD/F congeners detected were equally reduced without the accumulation of significant amounts of less-chlorinated congeners as the intermediate or end products. Alternatively, large amounts of catechol and salicylic acid were produced in the upper aqueous phase. Thus, the dechlorination of PCDD/Fs and the oxidative degradation of the dechlorinated products seemed to take place simultaneously in the microcosm. Denaturing gel gradient electrophoresis and clone library analyses of PCR-amplified 16S rRNA genes from the microcosm showed that members of the phyla Firmicutes, Proteobacteria, and Bacteroidetes predominated. A significant number of Chloroflexi clones were also detected. Quantitative real-time PCR with specific primer sets showed that the 16S rRNA genes of a putative dechlorinator, “Dehalococcoides,” and its relatives accounted for 0.1% of the total rRNA gene copies of the microcosm. Most of the clones thus obtained formed a cluster distinct from the typical “Dehalococcoides” group. Quinone profiling indicated that ubiquinones accounted for 18 to 25% of the total quinone content, suggesting the coexistence and activity of ubiquinone-containing aerobic bacteria. These results suggest that the apparent complete dechlorination of PCDD/Fs found in the microcosm was due to a combination of the dechlorinating activity of the “Dehalococcoides”-like organisms and the oxidative degradation of the dechlorinated products by aerobic bacteria with aromatic hydrocarbon dioxygenases.  相似文献   

14.
Denitrifying microbial communities and denitrification in salt marsh sediments may be affected by many factors, including environmental conditions, nutrient availability, and levels of pollutants. The objective of this study was to examine how microbial community composition and denitrification enzyme activities (DEA) at a California salt marsh with high nutrient loading vary with such factors. Sediments were sampled from three elevations, each with different inundation and vegetation patterns, across 12 stations representing various salinity and nutrient conditions. Analyses included determination of cell abundance, total and denitrifier community compositions (by terminal restriction fragment length polymorphism), DEA, nutrients, and eluted metals. Total bacterial (16S rRNA) and denitrifier (nirS) community compositions and DEA were analyzed for their relationships to environmental variables and metal concentrations via multivariate direct gradient and regression analyses, respectively. Community composition and DEA were highly variable within the dynamic salt marsh system, but each was strongly affected by elevation (i.e., degree of inundation) and carbon content as well as by selected metals. Carbon content was highly related to elevation, and the relationships between DEA and carbon content were found to be elevation specific when evaluated across the entire marsh. There were also lateral gradients in the marsh, as evidenced by an even stronger association between community composition and elevation for a marsh subsystem. Lastly, though correlated with similar environmental factors and selected metals, denitrifier community composition and function appeared uncoupled in the marsh.  相似文献   

15.
The phenotypic and genotypic adaptation of a freshwater sedimentary microbial community to elevated (22 to 217 μg g [dry weight] of sediment−1) levels of polycyclic aromatic hydrocarbons (PAHs) was determined by using an integrated biomolecular approach. Central to the approach was the use of phospholipid fatty acid (PLFA) profiles to characterize the microbial community structure and nucleic acid analysis to quantify the frequency of degradative genes. The study site was the Little Scioto River, a highly impacted, channelized riverine system located in central Ohio. This study site is a unique lotic system, with all sampling stations having similar flow and sediment characteristics both upstream and downstream from the source of contamination. These characteristics allowed for the specific analysis of PAH impact on the microbial community. PAH concentrations in impacted sediments ranged from 22 to 217 μg g (dry weight) of sediment−1, while PAH concentrations in ambient sediments ranged from below detection levels to 1.5 μg g (dry weight) of sediment−1. Total microbial biomass measured by phospholipid phosphate (PLP) analysis ranged from 95 to 345 nmol of PLP g (dry weight) of sediment−1. Nucleic acid analysis showed the presence of PAH-degradative genes at all sites, although observed frequencies were typically higher at contaminated sites. Principal component analysis of PLFA profiles indicated that moderate to high PAH concentrations altered microbial community structure and that seasonal changes were comparable in magnitude to the effects of PAH pollution. These data indicate that this community responded to PAH contamination at both the phenotypic and the genotypic level.  相似文献   

16.
Soil microbial communities mediate critical ecosystem carbon and nutrient cycles. How microbial communities will respond to changes in vegetation and climate, however, are not well understood. We reciprocally transplanted soil cores from under oak canopies and adjacent open grasslands in a California oak–grassland ecosystem to determine how microbial communities respond to changes in the soil environment and the potential consequences for the cycling of carbon. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid analysis (PLFA), microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups by quantifying 13C uptake from a universal substrate (pyruvate) into PLFA biomarkers. Soil in the open grassland experienced higher maximum temperatures and lower soil water content than soil under the oak canopies. Soil microbial communities in soil under oak canopies were more sensitive to environmental change than those in adjacent soil from the open grassland. Oak canopy soil communities changed rapidly when cores were transplanted into the open grassland soil environment, but grassland soil communities did not change when transplanted into the oak canopy environment. Similarly, microbial biomass, enzyme activities, and microbial respiration decreased when microbial communities were transplanted from the oak canopy soils to the grassland environment, but not when the grassland communities were transplanted to the oak canopy environment. These data support the hypothesis that microbial community composition and function is altered when microbes are exposed to new extremes in environmental conditions; that is, environmental conditions outside of their “life history” envelopes.  相似文献   

17.
Currently there are very few researches on studying the vertical changes of metabolic and thermodynamic properties of microbial communities in freshwater lake sediment. In this work, a multi-channel microcalorimetric system was applied to investigate both the metabolism and thermodynamic properties of 0–35 cm sediment cores from Lake Honghu (Jingzhou, Hubei Province, China). It is suggested that the catastrophic flood in 1998 had changed the structure of the 20–25 cm sediment layer. In this layer, both the physicochemical properties of sediment and the thermodynamic activities of microorganisms exhibit distinct differences from other layers. It displays the highest TOC, TN and C/N values. The power-time curves of microcalorimetric measurement on the sediment samples were plotted to illustrate their microbial activities. The 20–25 cm sediment layer showed the lowest microbial activities with a maximum heat flow rate of 56.97 μW, a growth rate constant of 0.06 h ?1 and the time to reach the peak was 98 h. A positive correlation (r= 0.972, P< 0.001) was found between the cell specific metabolic enthalpy change rate (ΔH0 ) and the TOC of the sediment samples. ΔH0 could indicate the utilization efficiency of carbon source which is not affected by the biomass but relies on the intrinsic properties of sediment. Our work shows that the higher the TOC in sediment; the lower the efficiency in assimilating carbon into biomass by the microbes.  相似文献   

18.
The microbial population of geothermally heated sediments in a shallow bay of Vulcano Island (Italy) was characterized with respect to metabolic activities and the putatively catalyzing hyperthermophiles. Site-specific anoxic culturing media, most of which were amended with combinations of electron donors (glucose or carboxylic acids) and acceptors (sulfate), were used for selective enrichment of metabolically defined subpopulations. The mostly archaeal chemoautotrophs produced formate at rates of 3.25 and 0.46 fmol cell−1 day−1 with and without sulfate, respectively. The glucose fermenting heterotrophs produced acetate (18 fmol cell−1 day−1) and lactate (2.6 fmol cell−1 day−1) and were identified as predominantly Thermus sp. and coccoid archaea. These archaeal cells also metabolized lactate (5.6 fmol cell−1 day−1), but neither formate nor acetate. The heterotrophic culture enriched on formate/acetate/propionate/sulfate utilized mainly formate (27 fmol cell−1 day−1) and lactate (89–195 fmol cell−1 day−1), and consumed sulfate (38–68 fmol cell−1 day−1). These formate or lactate consuming sulfate reducers were dominated by Archaeoglobales (7% in situ) and unidentified Archaea. The in situ benthic community comprised 15% Crenarchaeota, a significant group only in the autotrophic cultures, and 3% Thermus sp., the putatively predominant group involved in fermentative metabolism. The role of Thermoccales (4% in situ) remained undisclosed in our experiments. This first comprehensive data set established plausible links between several groups of hyperthermophiles in shallow marine hydrothermal systems, their metabolic function within the benthic microbial community, and biogeochemical turnover rates.  相似文献   

19.
Ecosystems - Environmental changes can alter the interactions between biotic and abiotic ecosystem components in tidal wetlands and therefore impact important ecosystem functions. The objective of...  相似文献   

20.
The effects of spilled oil on sedimentary bacterial communities were examined in situ at 20 m water depth in a Mediterranean coastal area. Sediment collected at an experimental site chronically subjected to hydrocarbon inputs was reworked into PVC cores with or without a massive addition of crude Arabian light oil (∼20 g kg−1 dry weight). Cores were reinserted into the sediment and incubated in situ at the sampling site (20 m water depth) for 135 and 503 days. The massive oil contamination induced significant shifts in the structure of the indigenous bacterial communities as shown by ribosomal intergenic spacer analysis (RISA). The vertical heterogeneity of the bacterial communities within the sediment was more pronounced in the oiled sediments particularly after 503 days of incubation. Response to oil of the deeper depth communities (8–10 cm) was slower than that of superficial depth communities (0–1 and 2–4 cm). Analysis of the oil composition by gas chromatography revealed a typical microbial alteration of n-alkanes during the experiment. Predominant RISA bands in oiled sediments were affiliated to hydrocarbonoclastic bacteria sequences. In particular, a 395-bp RISA band, which was the dominant band in all the oiled sediments for both incubation times, was closely related to hydrocarbonoclastic sulfate-reducing bacteria (SRB). These bacteria may have contributed to the main fingerprint changes and to the observed biodegradation of n-alkanes. This study provides useful information on bacterial dynamics in anoxic contaminated infralittoral sediments and highlights the need to assess more precisely the contribution of SRB to bioremediation in oil anoxic contaminated areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号