首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of a synthetic atrial natriuretic peptide, rat atriopeptin II (rAP-II) on the formation of cyclic nucleotides and progesterone production in Percoll-purified rat luteal cells was investigated. Incubation of luteal cells with varying concentrations of rAP-II resulted in a dose-related stimulation of intracellular cyclic GMP content; maximum stimulation being achieved with 10 nM rAP-II. The increase in cyclic GMP formation was extremely rapid and a 12-fold increase in the cyclic GMP content over basal level was attained within 5 min of incubation of the cells with 10 nM rAP-II. In the presence of phosphodiesterase inhibitor, 3-isobutyl-1-methyl-xanthine, both basal and rAP-II-stimulated levels of cyclic GMP were increased approximately 10 times, but the magnitude of stimulation remained similar in the presence or absence of the inhibitor. The atrial peptide at the concentration of 1-100 nM, however, had no effect on either basal or gonadotropin-stimulated progesterone production and cyclic AMP formation by the luteal cells. Furthermore, the increase in the level of cellular cyclic GMP content of rAP-II was demonstrated to result from a selective activation of particulate guanylate cyclase.  相似文献   

2.
High affinity binding sites for brain natriuretic peptide were characterized in the rat superior cervical ganglia by quantitative autoradiography. In addition, the peptide increased the formation of cyclic GMP in the ganglia in vitro. Brain natriuretic peptide displaced atrial natriuretic peptide from its binding sites. Our results suggest that brain natriuretic peptide and atrial natriuretic peptide may share physiologically active receptors in sympathetic ganglia. Brain natriuretic peptide may modulate the synaptic transmission in sympathetic ganglia, in addition or in conjunction with atrial natriuretic peptide.  相似文献   

3.
Atriopeptin III and related atrial natriuretic peptide hormones strongly elevate the level of cyclic GMP in three neural tumor cell lines. At peptide concentrations of 1 microM clear-cut plateaus of the dose-response curves are not yet reached. Atriopeptin III increases the intracellular concentration of cyclic GMP to a maximum in the course of 30-40 min. The effect of atriopeptin III on the cellular cyclic GMP level is independent of the concentration of extracellular Ca2+ and is not affected by the Ca2+ ionophore A23187. These results suggest (1) that atrial natriuretic hormones may play an important role in the nervous system, and (2) that cultured neural cells may be useful tools in the elucidation of the mechanisms of action of these hormones.  相似文献   

4.
The effects of different atrial natriuretic peptides on cyclic GMP formation and steroidogenesis have been studied in Percoll-purified mouse Leydig cells. Rat atrial peptides rANP (rat atrial natriuretic peptide), rAP-I (rat atriopeptin I) and rAP-II (rat atriopeptin II), in the presence of a phosphodiesterase inhibitor, stimulated cyclic GMP formation in a concentration-dependent manner. In the presence of saturating concentrations of the peptides, a 400-600 fold stimulation of cyclic GMP accumulation was observed. Among the peptides, rAP-II appeared to be the most potent. ED50 values (concentration causing half-maximal effect) for rAP-II, rANP and rAP-I were 1 X 10(-9) M, 2 X 10(-9) M and 2 X 10(-8) M respectively. A parallel stimulation of cyclic GMP formation and testosterone production by the cells was observed after incubation of the cells with various concentrations of rAP-II. In the presence of a saturating concentration of rAP-II (2 X 10(-8) M), maximum stimulation of intracellular cyclic GMP content was obtained within 5 min of incubation. Testosterone production by mouse Leydig cells could be stimulated by 8-bromo cyclic GMP in a concentration-related manner. At a 10 mM concentration of the cyclic nucleotide, steroidogenesis was stimulated to a similar extent as that obtained with a saturating concentration of human chorionic gonadotrophin (5 ng/ml). On the basis of these results we conclude that cyclic GMP acts as a second messenger in atrial-peptide-stimulated steroidogenesis in mouse Leydig cells. The steroidogenic effect of atrial peptides appears to be species-specific, since none of these peptides stimulated testosterone production by purified Leydig cells of rats, though in these cells a 40-60-fold stimulation of cyclic GMP formation in response to each of the three peptides was observed. However, 8-bromo cyclic GMP could stimulate testosterone production in rat Leydig cells. Therefore we conclude that the lack of steroidogenic response in rat Leydig cells to atrial-natriuretic-factor-stimulation results from an insufficient formation of cyclic GMP in these cells. This species difference would appear to result from a lower guanylate cyclase activity in rat Leydig cells.  相似文献   

5.
The aim of this study was to examine the effect of atrial natriuretic peptides on primary cultures of ependymal cells, as measured by changes in intracellular levels of cyclic GMP. Incubation of ependymal cells with rat atrial natriuretic peptide-(1-28) (rANP) elicited a 30-fold increase in ependymal cGMP content within 1 min and more than a 100-fold increase within 10 min to a plateau value of approximately 30 pmol/mg protein. The C-type natriuretic peptide (CNP) elicited a similar increase in cGMP levels; however the maximal effect was observed within 1 min and the levels subsequently dropped by 90% to a low plateau within 10 min. A comparison of the concentration-response curves for rANP, human ANP-(1-28) (hANP) and CNP showed that rANP, hANP and CNP had similar effects, with regards to elevation of cGMP levels at high concentrations, but with differing EC50 values. These results demonstrate the presence of a heterogenous population of functional ANP receptors in cultured ependymal cells suggesting that ANP may regulate specific ependymal cell activity.  相似文献   

6.
A permanent vascular endothelial cell line, EA.hy 926, was shown to express endothelin-1 (ET-1) mRNA and to secrete big ET-1 and ET-1 into culture medium. The concentration of both big ET-1 and ET-1 was significantly increased in EA.hy 926 culture medium by phosphoramidon, a metalloproteinase inhibitor, suggesting that phosphoramidon sensitive protease(s) may be responsible for the degradation of ET-1 and big ET-1. EA.hy 926 cells responded to various regulators of ET-1 similarly as primary human vascular endothelial cells. The production of ET-1 was increased by thrombin and decreased by vasodilators such as atrial natriuretic peptide, brain natriuretic peptide and nitroprusside, and by 8-bromo cyclic GMP and papaverine. This continuous human endothelial hybrid cell line could facilitate studies of regulation of ET-1 production in human endothelial cells, which in primary cultures have limited replication potential.  相似文献   

7.
Synthetic atriopeptin II, an atrial natriuretic factor with potent vasodilatory effects, was studied in isolated strips of rat thoracic aorta to determine its actions on contractility, cyclic nucleotide concentrations and endogenous activity of cyclic nucleotide-dependent protein kinases. Atriopeptin II was found to relax aortic strips precontracted with 0.3 microM norepinephrine whether or not the endothelial layer was present. Relaxation to atriopeptin II was closely correlated in a time- and concentration-dependent manner with increases in cyclic GMP concentrations and activation of cyclic GMP-dependent protein kinase (cyclic GMP-kinase). The threshold concentration for all three effects was 1 nM. Atriopeptin II (10 nM for 10 min) produced an 80% relaxation, an 8-fold increase in cyclic GMP concentrations and a 2-fold increase in cyclic GMP-kinase activity ratios. Atriopeptin II did not significantly alter cyclic AMP concentrations or cyclic AMP-dependent protein kinase activity. These data suggest that cyclic GMP and cyclic GMP-kinase may mediate vascular relaxation to a new class of vasoactive agents, the atrial natriuretic factors. Similar effects have been observed with the nitrovasodilator, sodium nitroprusside, and the endothelium-dependent vasodilator, acetylcholine. Therefore, a common biochemical mechanism of action that includes cyclic GMP accumulation and activation of cyclic GMP-kinase may be involved in vascular relaxation to nitrovasodilators, endothelium-dependent vasodilators and atrial natriuretic factors.  相似文献   

8.
Atrial natriuretic factors (ANFs) were tested for their effects on cyclic GMP production in two neurally derived cell lines, the C6-2B rat glioma cells and the PC12 rat pheochromocytoma cells. These cell lines were selected because both are known to possess high amounts of the particulate form of guanylate cyclase, a proposed target of ANF in peripheral organs. Previous studies from our laboratory have shown that ANF selectively activates particulate, but not soluble, guanylate cyclase in homogenates of a variety of rat tissues and that one class of ANF receptor appears to be the same glycoprotein as particulate guanylate cyclase. In the present study we found that four analogs of ANF stimulate cyclic GMP accumulation in both C6-2B and PC12 cells with the rank order of potency being atriopeptin III = atriopeptin II greater than human atrial natriuretic polypeptide greater than atriopeptin I. Atriopeptin II (100 nM) for 20 min elevated cyclic GMP content in C6-2B cells fourfold and in PC12 cells 12-fold. Atriopeptin II (100 nM) for 20 min also stimulated the efflux of cyclic GMP from both C6-2B cells (47-fold) and PC12 cells (12-fold). Accumulation of cyclic GMP in both cells and media was enhanced by preincubation with the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (250 microM). After 20 min of exposure to atriopeptin II, cyclic GMP amounts in the media were equal to or greater than the amounts in the cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
A series of truncated atrial natriuretic peptide analogs were examined as a means of defining the structural requirements for receptor occupancy and stimulation of cyclic GMP accumulation in bovine aortic smooth muscle cells. It was determined that deletion of amino acids from the carboxyl and/or amino termini of the peptides diminished their ability to increase cyclic GMP levels. Deletion of amino acids from the carboxyl terminus had the greatest effect, and atrial natriuretic peptide analogs lacking the carboxyl-terminal phenylalanyl-arginyl-tyrosine tripeptide were 100-1000-fold less active than parent compounds in stimulating intracellular cyclic GMP accumulation. In marked contrast to the cyclic GMP effects, deletion of amino- and/or carboxyl-terminal amino acids had only minor effects on the affinity of the peptides for specific smooth muscle cell-associated receptors. Peptide analogs lacking the phenylalanyl-arginyl-tyrosine tripeptide bound to receptors with an affinity only 1.1-5-fold weaker than the parent compounds. Thus, there was no correlation between apparent receptor binding affinity of atrial natriuretic peptide analogs and potency of these same peptides for stimulating intracellular cyclic GMP accumulation. Furthermore, analogs that bound to receptors and failed to elicit significant cyclic GMP responses did not antagonize or modulate increases in cyclic GMP induced by parent compounds. These data are most consistent with the existence of multiple subpopulations of atrial natriuretic peptide receptors on aortic smooth muscle cells.  相似文献   

10.
Abstract: C-type natriuretic peptide and sodium nitroprusside, a nitric oxide donor molecule, induced large increases in cyclic GMP formation in cultured rat brain capillary endothelial cells. Isoproterenol, a potent agonist of adenylate cyclase, potentiated the actions of C-type natriuretic peptide and of sodium nitroprusside. These actions were not observed in the presence of isobutylmethylxanthine and were mimicked by forskolin. Endothelin-1 had no action on basal cyclic GMP levels. It reduced cyclic GMP formation induced by C-type natriuretic peptide and sodium nitroprusside by about 50%. These actions involved an ETA receptor subtype and a Ca2+-dependent and protein kinase C-independent mechanism. Finally, increasing cyclic GMP slightly prolonged intracellular Ca2+ transients induced by endothelin-1. The results suggest the presence of extensive cross talk among cyclic AMP, cyclic GMP, and Ca2+-dependent mechanisms in endothelial cells of brain microvessels. The relevance of the results to the regulation of the blood-brain barrier permeability is discussed.  相似文献   

11.
The effects on guanylate cyclase and cyclic GMP accumulation of a synthetic peptide containing the amino acid sequence and biological activity of atrial natriuretic factor (ANF) were studied. ANF activated particulate guanylate cyclase in a concentration- and time- dependent fashion in crude membranes obtained from homogenates of rat kidney. Activation of particulate guanylate cyclase by ANF was also observed in particulate fractions from homogenates of rat aorta, testes, intestine, lung, and liver, but not from heart or brain. Soluble guanylate cyclase obtained from these tissues was not activated by ANF. Trypsin treatment of ANF prevented the activation of guanylate cyclase, while heat treatment had no effect. Accumulation of cyclic GMP in kidney minces and aorta was stimulated by ANF activation of guanylate cyclase. These data suggest a role for particulate guanylate cyclase in the molecular mechanisms underlying the physiological effects of ANF such as vascular relaxation, natriuresis, and diuresis.  相似文献   

12.
Takekoshi K  Ishii K  Isobe K  Nomura F  Nammoku T  Nakai T 《Life sciences》2000,66(22):PL303-PL311
Atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) are present in adrenal chromaffin cells, and are co-secreted with catecholamines suggesting that these natriuretic peptides (NPs) may modulate functions of chromaffin cells in an autocrine and/or paracrine manner. Therefore, we investigated the effects of NPs on tyrosine hydroxylase (TH: a rate-limiting enzyme in biosynthesis of catecholamine) mRNA in rat pheochromocytoma PC12 cells. It was also determined whether the cyclic GMP/cGMP-dependent protein kinase (cGMP/PKG) pathway was involved in theses effects. Finally, we examined the effects of NPs on intracellular catecholamine content to confirm increase of catecholamine synthesis following TH mRNA induction. NPs (0.1 microM) induced significant increases of the TH mRNA (ANP= BNP> CNP). Also, the effects of NPs on TH mRNA were mimicked by 8-bromo cyclic GMP (1mM), and were blocked by KT5823 (1 microM) (inhibitor PKG) or LY83583 (1 microM) (guanylate cyclase inhibitor). Moreover, NPs were shown to induce significant increases of intracellular catecholamine contents (ANP= BNP> CNP). These findings suggest that NPs induced increases of TH mRNA through cGMP/PKG dependent mechanisms, which, in turn, resulted in stimulation of catecholamine synthesis in PC12 cells.  相似文献   

13.
The effect of C-type natriuretic peptide (CNP), a novel member of the natriuretic peptide family, on cyclic GMP (cGMP) generation was studied in primary cultures of mouse astrocytes. CNP stimulated cGMP production by mouse astrocytes in a dose-dependent fashion, with an EC50 of 32 nM and a maximal stimulatory concentration of greater than 1 microM, which induced a rise of cGMP level from a baseline of 1.0 +/- 0.1 pmol/mg of protein to 196.2 +/- 22.0 pmol/mg of protein. Compared with our previously reported atrial and brain natriuretic peptide-induced cGMP responses, CNP had a lower EC50 and was 10-20 times more efficacious in its maximal effect on cGMP stimulation. These data lend support to the concept of a significant role of CNP in neuromodulation/neurotransmission.  相似文献   

14.
125I-Porcine brain natriuretic peptide (125I-pBNP) bound to mouse astrocytes in primary culture in a time-dependent manner (t1/2 = 4.5 min), similar to 125I-human atrial natriuretic peptide (125I-hANP) (t1/2 = 5 min). Binding was saturable and reached equilibrium after 90 min at 22 degrees C for both radioligands. Scatchard analysis suggested a single class of binding sites for pBNP with a binding affinity and capacity (KD = 0.08 nM; Bmax = 78.3 fmol/mg of protein) similar to those of hANP1-28 (KD = 0.1 nM; Bmax = 90.3 fmol/mg of protein). In competition binding studies, pBNP or human/rat atrial natriuretic peptide (ANP) analogues [hANP1-28, rat ANP1-28 (rANP1-28), and rANP5-28] displaced 125I-hANP, 125I-pBNP, and 125I-rANP1-28 completely, all with IC50 values of less than nM (0.14-0.83 nM). All four peptides maximally stimulated cyclic GMP (cGMP) production by 10 min at 22 degrees C at concentrations of 1 microM with EC50 values ranging from 50 to 100 nM. However, maximal cGMP induction by brain natriuretic peptide (BNP) (25.9 +/- 2.1 pmol/mg of protein) was significantly greater than that by hANP1-28 (11.5 +/- 2.2 pmol/mg of protein), rANP1-28 (16.5 +/- 2.0 pmol/mg of protein), and rANP5-28 (15.8 +/- 2.2 pmol/mg of protein). These studies indicate that BNP and ANPs act on the same binding sites and with similar affinities in cultured mouse astrocytes. BNP, however, exerts a greater effect on cGMP production. The difference in both affinity and selectivity between binding and cGMP production may indicate the existence of receptor subtypes that respond differentially to natriuretic peptides despite similar binding characteristics.  相似文献   

15.
Rat brain natriuretic peptide (rBNP) and iso-atrial natriuretic peptide (iso-rANP) were discovered independently by two research laboratories. They are considered to be members of the B-type natriuretic peptides. Except for the Gln/Leu substitution at position 44, the amino acid sequence of iso-rANP is identical with that of the C-terminal 45 amino acids of rat pro-BNP and with the 5-kDa cardiac peptide from rat atria. To determine whether this amino acid substitution can modify the known biological effects of rBNP and iso-rANP, the present investigation examined the cardiovascular and renal responses, vasorelaxant effect, receptor binding characteristics, and cyclic GMP production by the two peptides in relation to that of rat atrial natriuretic peptide (rANP). Results indicate that rBNP and iso-rANP are indistinguishable from each other in terms of these known biological activities of atrial natriuretic peptide. We therefore conclude that rBNP and iso-rANP are identical peptides and that the amino acid substitution at position 44 represents a polymorphic form of the rat B-type natriuretic peptide.  相似文献   

16.
The natriuretic peptide receptors are three homologous cell surface proteins, each with a single transmembrane domain. The atrial natriuretic peptide receptor type A (ANPRA) and the homologous receptor type B (ANPRB) are both membrane guanylyl cyclases that synthesize cyclic GMP as an intracellular second messenger. The third receptor in this family, the atrial natriuretic peptide receptor type C (ANPRC), is not coupled to cyclic GMP production. We report on the distribution of the ANPRA, ANPRB, and ANPRC mRNAs in rhesus monkey tissues assayed by in situ hybridization. ANPRA mRNA is most abundantly expressed in the kidney glomerulus, adrenal zona glomerulosa, pituitary, cerebellum, and endocardial endothelial cells of the right and left atrium and right ventricle. In contrast, abundant ANPRB expression appears to be confined to the adrenal medulla, pituitary, and cerebellum. ANPRC mRNA appeared to be expressed very differently than ANPRA and ANPRB. In the heart, ANPRC mRNA is expressed most prominently in endocardial endothelial cells of all four chambers but is also found throughout the myocardium only in the right atrium. These data identify major sites of natriuretic peptide receptor mRNA expression and suggest that there may be prominent cell type-specific differential distribution of these receptors in central and peripheral targets for the natriuretic peptides.  相似文献   

17.
The present study examines hormonal and renal responses to acute volume expansion in normal man, with particular emphasis on the atrial natriuretic peptide (ANP)--cyclic GMP coupling. Two liters of isotonic saline were infused into eight normotensive male subjects over a 1-h period. Plasma and urinary measurements were made before, during, and up to 300 min after the start of the saline infusion. With the initial increase in urinary sodium excretion there were increases in plasma ANP and plasma cyclic GMP, which reached maximum levels at 15 min after the end of the saline infusion. Urinary cyclic GMP increased gradually during saline infusion up to approximately 60 min after the end of the infusion. Plasma ANP and plasma and urinary cyclic GMP excretion gradually declined thereafter. By contrast, urinary sodium excretion remained elevated up to the end of the observation period. The saline infusion was associated with marked reductions in plasma renin activity and aldosterone, which persisted up to the end of the study. These results suggest a coupling between the increases in plasma ANP, the production of cyclic GMP, and urinary sodium excretion, in particular during the initial renal response to acute volume expansion. However, other mechanisms including the suppression of the renin--angiotensin--aldosterone system may become increasingly important in the later natriuretic response to acute volume expansion.  相似文献   

18.
19.
To study the hydraulic effects of subtotal immersion as a rehabilitative hydrotherapy, we examined the change in serum levels of atrial natriuretic peptide, catecholamine, cortisol and interleukins in 12 healthy volunteers. The subjects soaked in 42 degrees C water of 70 cm depth up to chin level in the upright seated position for 10 min. The serum level of atrial natriuretic peptide increased significantly 15 min after the start of subtotal immersion, though that of brain natriuretic peptide did not change. The serum dopamine level increased significantly 15 min after immersion, though neither the serum epinephrine nor norepinephrine levels did. In addition, 30 min after the start of immersion, the serum levels of atrial natriuretic peptide and dopamine decreased to those before immersion. The serum level of adrenocorticotropic hormone increased 15 min after immersion, though those of cortisol, interleukin-1beta and 6, and tumor necrotic factor-alpha did not change. It is suggested that 10-min head-out water immersion increased atrial natriuretic peptide partly due to increased venous return or right atrial load by hydraulic pressure.  相似文献   

20.
The potent neutral endopeptidase inhibitor SQ 28,603 (N-(2-(mercaptomethyl)-1-oxo-3-phenylpropyl)-beta-alanine) significantly increased excretion of sodium from 4.9 +/- 2.3 to 14.3 +/- 2.1 muequiv./min and cyclic 3',5'-guanosine monophosphate from 118 +/- 13 to 179 +/- 18 pmol/min after intravenous administration of 300 mumol/kg (approximately 80 mg/kg) in conscious female cynomolgus monkeys. SQ 28,603 did not change blood pressure or plasma atrial natriuretic peptide concentrations in the normal monkeys. In contrast, 1-h infusions of 3, 10, or 30 pmol.kg-1.min-1 of human atrial natriuretic peptide lowered blood pressure by -3 +/- 4, -9 +/- 4, and -27 +/- 3 mmHg (1 mmHg = 133.322 Pa), increased cyclic guanosine monophosphate excretion from 78 +/- 11 to 90 +/- 6, 216 +/- 33, and 531 +/- 41 pmol/min, and raised plasma atrial natriuretic peptide from 7.2 +/- 0.7 to 21 +/- 4, 62 +/- 12, and 192 +/- 35 fmol/mL without affecting sodium excretion. In monkeys receiving 10 pmol.kg-1.min-1 of atrial natriuretic peptide, 300 mumol/kg of SQ 28,603 reduced mean arterial pressure by -13 +/- 5 mmHg and increased sodium excretion from 6.6 +/- 3.2 to 31.3 +/- 6.0 muequiv./min, cyclic guanosine monophosphate excretion from 342 +/- 68 to 1144 +/- 418 pmol/min, and plasma atrial natriuretic peptide from 124 +/- 8 to 262 +/- 52 fmol/mL. In conclusion, SQ 28,603 stimulated renal excretory function in conscious monkeys, presumably by preventing the degradation of atrial natriuretic peptide by neutral endopeptidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号