首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Indoor mesocosms were used to study the combined effect of warming and of different densities of overwintering mesozooplankton (mainly copepods) on the spring development of phytoplankton in shallow, coastal waters. Similar to previous studies, warming accelerated the spring phytoplankton peak by ca. 1 day °C?1 whereas zooplankton did not significantly influence timing. Phytoplankton biomass during the experimental period decreased with warming and with higher densities of overwintering zooplankton. Similarly, average cell size and average effective particle size (here: colony size) decreased both with zooplankton density and warming. A decrease in phytoplankton particle size is generally considered at typical footprint of copepod grazing. We conclude that warming induced changes in the magnitude and structure of the phytoplankton spring bloom cannot be understood without considering grazing by overwintering zooplankton.  相似文献   

2.
In this article, we show by mesocosm experiments that winter and spring warming will lead to substantial changes in the spring bloom of phytoplankton. The timing of the spring bloom shows only little response to warming as such, while light appears to play a more important role in its initiation. The daily light dose needed for the start of the phytoplankton spring bloom in our experiments agrees well with a recently published critical light intensity found in a field survey of the North Atlantic (around 1.3 mol photons m?2 day?1). Experimental temperature elevation had a strong effect on phytoplankton peak biomass (decreasing with temperature), mean cell size (decreasing with temperature) and on the share of microplankton diatoms (decreasing with temperature). All these changes will lead to poorer feeding conditions for copepod zooplankton and, thus, to a less efficient energy transfer from primary to fish production under a warmer climate.  相似文献   

3.
Aim The goal of this study was to understand better the role of interannual and interdecadal climatic variation on local pre‐EuroAmerican settlement fire regimes in fire‐prone Jeffrey pine (Pinus jeffreyi Grev. & Balf.) dominated forests in the northern Sierra Nevada Mountains. Location Our study was conducted in a 6000‐ha area of contiguous mixed Jeffrey pine‐white fir (Abies concolor Gordon & Glend.) forest on the western slope of the Carson Range on the eastern shore of Lake Tahoe, Nevada. Methods Pre‐EuroAmerican settlement fire regimes (i.e. frequency, return interval, extent, season) were reconstructed in eight contiguous watersheds for a 200‐year period (1650–1850) from fire scars preserved in the annual growth rings of nineteenth century cut stumps and recently dead pre‐settlement Jeffrey pine trees. Superposed epoch analysis (SEA) and correlation analysis were used to examine relationships between tree ring‐based reconstructions of the Palmer Drought Severity Index (PDSI), Southern Oscillation Index (SOI), Pacific Decadal Oscillation (PDO) and pre‐EuroAmerican fire regimes in order to assess the influence of drought and equatorial and north Pacific teleconnections on fire occurrence and fire extent. Results For the entire period of record (1650–1850), wet conditions were characteristic of years without fires. In contrast, fire years were associated with drought. Drought intensity also influenced fire extent and the most widespread fires occurred in the driest years. Years with widespread fires were also preceded by wet conditions 3 years before the fire. Widespread fires were also associated with phase changes of the PDO, with the most widespread burns occurring when the phase changed from warm (positive) to cold (negative) conditions. Annual SOI and fire frequency or extent were not associated in our study. At decadal time scales, burning was more widespread during decades that were dryer and characterized by La Niña and negative PDO conditions. Interannual and interdecadal fire–climate relationships were not stable over time. From 1700 to 1775 there was no interannual relationship between drought, PDO, and fire frequency or extent. However, from 1775 to 1850, widespread fires were associated with dry years preceded by wet years. This period also had the strongest association between fire extent and the PDO. In contrast, fire–climate associations at interdecadal time scales were stronger in the earlier period than in the later period. The change from strong interdecadal to strong interannual climate influence was associated with a breakdown in decadal scale constructive relationships between PDO and SOI. Main conclusions Climate strongly influenced pre‐settlement pine forest fire regimes in northern Sierra Nevada. Both interannual and interdecadal climatic variation regulated conditions conducive to fire activity, and longer term changes in fire frequency and extent correspond with climate‐mediated changes observed in both the northern and southern hemispheres. The sensitivity of fire regimes to shifts in modes of climatic variability suggests that climate was a key regulator of pine forest ecosystem structure and dynamics before EuroAmerican settlement. An understanding of pre‐EuroAmerican fire–climate relationships may provide useful insights into how fire activity in contemporary forests may respond to future climatic variation.  相似文献   

4.
Climate warming alters the seasonal timing of biological events. This raises concerns that species-specific responses to warming may de-synchronize co-evolved consumer-resource phenologies, resulting in trophic mismatch and altered ecosystem dynamics. We explored the effects of warming on the synchrony of two events: the onset of the phytoplankton spring bloom and the spring/summer maximum of the grazer Daphnia. Simulation of 16 lake types over 31 years at 1907 North African and European locations under 5 climate scenarios revealed that the current median phenological delay between the two events varies greatly (20–190 days) across lake types and geographic locations. Warming moves both events forward in time and can lengthen or shorten the delay between them by up to ±60 days. Our simulations suggest large geographic and lake-specific variations in phenological synchrony, provide quantitative predictions of its dependence on physical lake properties and geographic location and highlight research needs concerning its ecological consequences.  相似文献   

5.
The timing of the end of the vegetation growing season (EOS) plays a key role in terrestrial ecosystem carbon and nutrient cycles. Autumn phenology is, however, still poorly understood, and previous studies generally focused on few species or were very limited in scale. In this study, we applied four methods to extract EOS dates from NDVI records between 1982 and 2011 for the Northern Hemisphere, and determined the temporal correlations between EOS and environmental factors (i.e., temperature, precipitation and insolation), as well as the correlation between spring and autumn phenology, using partial correlation analyses. Overall, we observed a trend toward later EOS in ~70% of the pixels in Northern Hemisphere, with a mean rate of 0.18 ± 0.38 days yr?1. Warming preseason temperature was positively associated with the rate of EOS in most of our study area, except for arid/semi‐arid regions, where the precipitation sum played a dominant positive role. Interestingly, increased preseason insolation sum might also lead to a later date of EOS. In addition to the climatic effects on EOS, we found an influence of spring vegetation green‐up dates on EOS, albeit biome dependent. Our study, therefore, suggests that both environmental factors and spring phenology should be included in the modeling of EOS to improve the predictions of autumn phenology as well as our understanding of the global carbon and nutrient balances.  相似文献   

6.
The ongoing changes in vegetation spring phenology in temperate/cold regions are widely attributed to temperature. However, in arid/semiarid ecosystems, the correlation between spring temperature and phenology is much less clear. We test the hypothesis that precipitation plays an important role in the temperature dependency of phenology in arid/semiarid regions. We therefore investigated the influence of preseason precipitation on satellite‐derived estimates of starting date of vegetation growing season (SOS) across the Tibetan Plateau (TP). We observed two clear patterns linking precipitation to SOS. First, SOS is more sensitive to interannual variations in preseason precipitation in more arid than in wetter areas. Spatially, an increase in long‐term averaged preseason precipitation of 10 mm corresponds to a decrease in the precipitation sensitivity of SOS by about 0.01 day mm?1. Second, SOS is more sensitive to variations in preseason temperature in wetter than in dryer areas of the plateau. A spatial increase in precipitation of 10 mm corresponds to an increase in temperature sensitivity of SOS of 0.25 day °C?1 (0.25 day SOS advance per 1 °C temperature increase). Those two patterns indicate both direct and indirect impacts of precipitation on SOS on TP. This study suggests a balance between maximizing benefit from the limiting climatic resource and minimizing the risk imposed by other factors. In wetter areas, the lower risk of drought allows greater temperature sensitivity of SOS to maximize the thermal benefit, which is further supported by the weaker interannual partial correlation between growing degree days and preseason precipitation. In more arid areas, maximizing the benefit of water requires greater sensitivity of SOS to precipitation, with reduced sensitivity to temperature. This study highlights the impacts of precipitation on SOS in a large cold and arid/semiarid region and suggests that influences of water should be included in SOS module of terrestrial ecosystem models for drylands.  相似文献   

7.
Climate warming is pronounced in the Arctic and migratory birds are expected to be among the most affected species. We examined the effects of local and regional climatic variations on the breeding phenology and reproductive success of greater snow geese ( Chen caerulescens atlantica ), a migratory species nesting in the Canadian Arctic. We used a long-term dataset based on the monitoring of 5447 nests and the measurements of 19 234 goslings over 16 years (1989–2004) on Bylot Island. About 50% of variation in the reproductive phenology of individuals was explained by spring climatic factors. High mean temperatures and, to a lesser extent, low snow cover in spring were associated with an increase in nest density and early egg-laying and hatching dates. High temperature in spring and high early summer rainfall were positively related to nesting success. These effects may result from a reduction in egg predation rate when the density of nesting geese is high and when increased water availability allows females to stay close to their nest during incubation recesses. Summer brood loss and production of young at the end of the summer increased when values of the summer Arctic Oscillation (AO) index were either very positive (low temperatures) or very negative (high temperatures), indicating that these components of the breeding success were most influenced by the regional summer climate. Gosling mass and size near fledging were reduced in years with high spring temperatures. This effect is likely due to a reduced availability of high quality food in years with early spring, either due to food depletion resulting from high brood density or a mismatch between hatching date of goslings and the timing of the peak of plant quality. Our analysis suggests that climate warming should advance the reproductive phenology of geese, but that high spring temperatures and extreme values of the summer AO index may decrease their reproductive success up to fledging.  相似文献   

8.
1. Aquatic ecosystems in Northern Europe are expected to face increases in temperature and water colour (TB) in future. While effects of these factors have been studied separately, it is unknown whether and how a combination of them might affect phenological events and trophic interactions. 2. In a mesocosm study, we combined both factors to create conditions expected to arise during the coming century. We focused on quantifying effects on timing and magnitude of plankton spring phenological events and identifying possible mismatches between resources (phytoplankton) and consumers (zooplankton). 3. We found that the increases in TB had important effects on timing and abundance of different plankton groups. While increased temperature led to an earlier peak in phytoplankton and zooplankton and a change in the relative timing of different zooplankton groups, increased water colour reduced chlorophyll‐a concentrations. 4. Increased TB together benefitted cladocerans and calanoid copepods and led to stronger top‐down control of algae by zooplankton. There was no sign of a mismatch between primary producers and grazers as reported from other studies. 5. Our results point towards an earlier onset of plankton spring growth in shallow lakes in future with a stronger top‐down control of phytoplankton by zooplankton grazers.  相似文献   

9.
Climate change can induce phytoplankton blooms (PBs) in eutrophic lakes worldwide, and these blooms severely threaten lake ecosystems and human health. However, it is unclear how urbanization and its interaction with climate impact PBs, which has implications for the management of lakes. Here, we used multi-source remote sensing data and integrated the Virtual-Baseline Floating macroAlgae Height (VB-FAH) index and OTSU threshold automatic segmentation algorithm to extract the area of PBs in Lake Dianchi, China, which has been subjected to frequent PBs and rapid urbanization in its vicinity. We further explored long-term (2000–2021) trends in the phenological and severity metrics of PBs and quantified the contributions from urbanization, climate change, and also nutrient levels to these trends. When comparing data from 2011–2021 to 2000–2010, we found significantly advanced initiation of PBs (28.6 days) and noticeably longer duration (51.9 days) but an insignificant trend in time of disappearance. The enhancement of algal nutrient use efficiency, likely induced by increased water temperature and reduced nutrient concentrations, presumably contributed to an earlier initiation and longer duration of PBs, while there was a negative correlation between spring wind speed and the initiation of PBs. Fortunately, we found that both the area of the PBs and the frequency of severe blooms (covering more than 19.8 km2) demonstrated downward trends, which could be attributed to increased wind speed and/or reduced nutrient levels. Moreover, the enhanced land surface temperature caused by urbanization altered the thermodynamic characteristics between the land and the lake, which, in turn, possibly caused an increase in local wind speed and water temperature, suggesting that urbanization can differently regulate the phenology and severity of PBs. Our findings have significant implications for the understanding of the impacts of urbanization on PB dynamics and for improving lake management practices to promote sustainable urban development under global change.  相似文献   

10.
We investigated temporal and spatial variations in the zooplankton community structure in the Oyashio and Transition region of the subarctic western North Pacific from 1960 to 1999 using principal component analysis (PCA) and zooplankton samples from the historical Odate Collection. In particular, we examined the influence of Kuroshio and Oyashio decadal dynamics on geographical variations in the zooplankton community. The first principal component (PC1) closely represented the interannual variation in cold-water, large copepod species, while the second PC (PC2) represented the variation in warm-water, small copepod species. Using Rodionov's regime-shift method, we detected a significant increase in the PC score after 1976 and 1981 for PC1 and PC2, respectively. After the shift years, (1) warm-water species increased in the Transition zone, (2) the distribution center of the cold-water species shifted southward, and (3) copepod abundance and species diversity increased in the Transition zone as a result of (1) and (2). The timing of these shifts in the zooplankton community roughly coincided with the North Pacific climatic regime shift in 1976/1977. From the mid-1970s to the early 1980s, the southern boundary of the Oyashio shifted southward and increased geostrophic transport was observed in the Kuroshio, indicating spin up of the Kuroshio–Oyashio system. Change in atmospheric circulation during the 1976/1977 regime shift is thought to have caused the spin up of these currents, which subsequently affected the regional zooplankton community through advective processes.  相似文献   

11.
The decoupling of trophic interactions is potentially one of the most severe consequences of climate warming. In lakes and oceans the timing of phytoplankton blooms affects competition within the plankton community as well as food–web interactions with zooplankton and fish. Using Upper Lake Constance as an example, we present a model‐based analysis that predicts that in a future warmer climate, the onset of the spring phytoplankton bloom will occur earlier in the year than it does at present. This is a result of the earlier occurrence of the transition from strong to weak vertical mixing in spring, and of the associated earlier onset of stratification. According to our simulations a shift in the timing of phytoplankton growth resulting from a consistently warmer climate will exceed that resulting from a single unusually warm year. The numerical simulations are complemented by a statistical analysis of long‐term data from Upper Lake Constance which demonstrates that oligotrophication has a negligible effect on the timing of phytoplankton growth in spring and that an early onset of the spring phytoplankton bloom is associated with high air temperatures and low wind speeds.  相似文献   

12.
丛楠  沈妙根 《生态学杂志》2016,27(9):2737-2746
深入认识北半球植被物候在全球变暖背景下的动态变化特征,对于评估和预测生态系统结构和功能对气候变化的响应有重要的指示作用.遥感技术是获取北半球植被春季物候的最重要方法,但是由于物候提取算法的差异,目前还存在较大的不确定性.本文利用5种方法,基于卫星获取的归一化植被指数估算了北半球中高纬地区1982—2009年植被春季物候开始日期,分析了该日期的多年动态变化的时空特征,并探讨了气候变化对春季物候变化的影响.结果表明: 研究区植被春季物候开始日期呈现提前趋势,研究期间提前(4.0±0.8) d,其中,欧亚大陆提前速率为(0.22±0.04) d·a-1,显著高于北美大陆的变化速率(0.03±0.02 d·a-1);不同植被类型的变化趋势不同,5种方法都显示草地表现为显著提前趋势,而林地的提前趋势不显著.区域平均的植被春季物候开始日期的年际波动主要受春季温度的变化所驱动(r2 =0.61,P<0.001), 温度每上升1 ℃,可以导致春季物候提前(3.2±0.5) d,而春季降水影响不显著(P>0.05).  相似文献   

13.
北半球气候变暖导致植被春季物候开始日期显著提前,温度对春季物候的促进作用是一个过程事件而非瞬时事件,且存在空间差异。该研究在以前研究的基础上,进一步分析温度对植被物候的作用方式,并探讨春季物候温度敏感性的空间特征及影响因素。利用GIMMS3g卫星植被指数产品,采用5种方法提取1982–2009年植被春季物候,并结合格网气象数据计算植被春季物候的温度敏感性,着重分析自然植被春季物候温度敏感性与环境因素的关系。结果表明,温度是北半球植被春季物候的主要制约因素,54%的像元显示温度最大效应发生在物候开始当月和之前一个月。温度主导的春季物候的像元中,91.3%的像元指示早春温度对物候开始的促进作用。植被春季物候的温度敏感性存在空间异质性,随着区域环境因素的不同,年际温度标准差、累积降水量和辐射对植被春季物候温度敏感性都具有各自或协同的调控作用。  相似文献   

14.
15.
16.

Aim

Climate oscillations are known to influence the reproductive phenology of birds. Here, we quantify the effects of cyclic climatic variation, specifically El Niño Southern Oscillation (ENSO), on birds that breed opportunistically. We aim to show how inter‐decadal climate fluctuations influence opportunistic breeding. This knowledge is essential for tracking the phenological responses of birds to climate change.

Location

Temperate and arid Australia.

Methods

We assessed variation in egg‐laying (start, peak, conclusion, length) during the three phases of ENSO (El Niño, La Niña and Neutral) for 64 temperate and 15 arid region species using ~80,000 observations. Linear mixed‐effect models and analysis of variance were used to (1) determine if, on average within each region, egg‐laying dates differed significantly among species between Neutral‐El Niño and Neutral‐La Niña phases, and (2) assess how La Niña and El Niño episodes influence egg‐laying in birds which breed early in the year.

Results

During La Niña phases, which are characterized by mild/wet conditions, most bird species in the temperate and arid regions exhibited longer egg‐laying periods relative to Neutral phases. However, there was substantial variation across species. This effect was strongly seasonal; species breeding in spring experienced the greatest increases in egg‐laying periods during La Niña. Further, we found only small differences in peak egg‐laying dates during Neutral and La Niña in the arid region; suggesting that hot temperatures may constrain breeding regardless of rainfall. The effects of El Niño on breeding phenology were not consistent in the temperate and arid regions and may be confounded by highly mobile species opportunistically moving and breeding with localized rainfall during dry periods.

Main conclusions

In both arid and temperate regions, increased rainfall associated with La Niña phases positively influences avian breeding, and likely recruitment. However, dry El Niño phases may not have the dramatic impacts on breeding phenology that are commonly assumed.
  相似文献   

17.
18.
Autumn senescence regulates multiple aspects of ecosystem function, along with associated feedbacks to the climate system. Despite its importance, current understanding of the drivers of senescence is limited, leading to a large spread in predictions of how the timing of senescence, and thus the length of the growing season, will change under future climate conditions. The most commonly held paradigm is that temperature and photoperiod are the primary controls, which suggests a future extension of the autumnal growing season as global temperatures rise. Here, using two decades of ground‐ and satellite‐based observations of temperate deciduous forest phenology, we show that the timing of autumn senescence is correlated with the timing of spring budburst across the entire eastern United States. On a year‐to‐year basis, an earlier/later spring was associated with an earlier/later autumn senescence, both for individual species and at a regional scale. We use the observed relationship to develop a novel model of autumn phenology. In contrast to current phenology models, this model predicts that the potential response of autumn phenology to future climate change is strongly limited by the impact of climate change on spring phenology. Current models of autumn phenology therefore may overpredict future increases in the length of the growing season, with subsequent impacts for modeling future CO2 uptake and evapotranspiration.  相似文献   

19.
据预测,人为气候变化将季节性地增加平均温度和降雨。热带雨林物种将如何应对这种气候变化仍不确定。本研究分析了对澳大利 亚昆士兰北部丹特里雨林的一种澳大利亚特有棕榈(Normambya normanbyi)进行4年降雨实验的影响,目的是了解模拟降雨减少对物种生理 过程和果实物候的影响。我们考察了这种本地丰富的棕榈的果实物候和生理生态学特性,以确定该物种对干旱的生态响应。2015年5月, 通过排涝实验,降低了约30%的土壤水分有效性。我们总共监测了8年(2009–2018年)的月度果实活性,包括排涝实验开始之前的4年。在最 近几年的研究中,我们测量了干、湿两季幼嫩和成熟叶片的光合速率、气孔导度和碳稳定同位素等生理参数。研究结果表明,所有棕榈树 的月度果实活性主要受光周期、平均太阳辐射和平均温度的驱动。然而,暴露于较低土壤水分的植株,其果实活性、光合速率和气孔导度 均显著下降。我们还发现这些生理表现受到排涝实验、季节以及两者的相互作用的影响。2018年观察到排涝实验的棕榈的果实活力有所恢复,土壤浅层水分也有所增加(与前几年相比)。我们的研究结果表明,像N. normanbyi 这样的棕榈树对未来的气候变化非常敏感,建议对其 进行长期监测,以确定其对种群规模的影响。  相似文献   

20.
1. Increases in global temperatures have created concern about effects of climatic variability on populations, and climate has been shown to affect population dynamics in an increasing number of species. Testing for effects of climate on population densities across a species' distribution allows for elucidation of effects of climate that would not be apparent at smaller spatial scales. 2. Using autoregressive population models, we tested for effects of the North Atlantic Oscillation (NAO) and the El Ni?o Southern Oscillation (ENSO) on annual population densities of a North American migratory landbird, the yellow-billed cuckoo Coccyzus americanus, across the species' breeding distribution over a 37-year period (1966-2002). 3. Our results indicate that both the NAO and ENSO have affected population densities of C. americanus across much of the species' breeding range, with the strongest effects of climate in regions in which these climate systems have the strongest effects on local temperatures. Analyses also indicate that the strength of the effect of local temperatures on C. americanus populations was predictive of long-term population decline, with populations that were more negatively affected by warm temperatures experiencing steeper declines. 4. Results of this study highlight the importance of distribution-wide analyses of climatic effects and demonstrate that increases in global temperatures have the potential to lead to additional population declines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号