首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several cardiovascular disorders, including atherosclerosis and tolerance to the antianginal drug nitroglycerin (GTN), may be associated with the generation of superoxide anions, which react with nitric oxide (NO) to yield peroxynitrite. According to a widely held view, oxidation of tetrahydrobiopterin (BH4) by peroxynitrite causes uncoupling of endothelial NO synthase (eNOS), resulting in reduced NO bioavailability and endothelial dysfunction under conditions of oxidative stress. In this study we determined the levels of reduced biopterins and endothelial function in cultured cells exposed to peroxynitrite and GTN as well as in blood vessels isolated from GTN-tolerant guinea pigs and rats. BH4 was rapidly oxidized by peroxynitrite and 3-morpholino sydnonimine (SIN-1) in buffer, but this was prevented by glutathione and not observed in endothelial cells exposed to SIN-1 or GTN. Prolonged treatment of the cells with 0.1 mM GTN caused slow NG-nitro-l-arginine-sensitive formation of reactive oxygen species without affecting eNOS activity. Endothelial function and BH4/BH2 levels were identical in blood vessels of control and GTN-tolerant animals. Our results suggest that peroxynitrite-triggered BH4 oxidation does not occur in endothelial cells or GTN-exposed blood vessels. GTN seems to trigger minor eNOS uncoupling that is unrelated to BH4 depletion and without observable consequence on eNOS function.  相似文献   

2.
Decreased bioavailability of nitric oxide (NO) is a major contributor to the pathophysiology of severe falciparum malaria. Tetrahydrobiopterin (BH4) is an enzyme cofactor required for NO synthesis from L-arginine. We hypothesized that systemic levels of BH4 would be decreased in children with cerebral malaria, contributing to low NO bioavailability. In an observational study in Tanzania, we measured urine levels of biopterin in its various redox states (fully reduced [BH4] and the oxidized metabolites, dihydrobiopterin [BH2] and biopterin [B0]) in children with uncomplicated malaria (UM, n = 55), cerebral malaria (CM, n = 45), non-malaria central nervous system conditions (NMC, n = 48), and in 111 healthy controls (HC). Median urine BH4 concentration in CM (1.10 [IQR:0.55–2.18] μmol/mmol creatinine) was significantly lower compared to each of the other three groups — UM (2.10 [IQR:1.32–3.14];p<0.001), NMC (1.52 [IQR:1.01–2.71];p = 0.002), and HC (1.60 [IQR:1.15–2.23];p = 0.005). Oxidized biopterins were increased, and the BH4:BH2 ratio markedly decreased in CM. In a multivariate logistic regression model, each Log10-unit decrease in urine BH4 was independently associated with a 3.85-fold (95% CI:1.89–7.61) increase in odds of CM (p<0.001). Low systemic BH4 levels and increased oxidized biopterins contribute to the low NO bioavailability observed in CM. Adjunctive therapy to regenerate BH4 may have a role in improving NO bioavailability and microvascular perfusion in severe falciparum malaria.  相似文献   

3.
Biopterin     
Repeated intraventricular injections of 2,4-diamino-6-hydroxypyrimidine (DAOPyr), inhibitor ofd-erythro-q-dihydroneopterin triphosphate synthetase, inhibited q-BH2 synthesis from GTP, markedly increased accumulation of 2-amino-4-hydroxy-5(or-6)-formamido-6-triphosphoribosylaminopyrimidine (FPyd-P3) and brought about a 60% decrease in the in vivo of reduced biopterin (BH2 and BH4) pool in the brain. Nevertheless, there was no effect on the rate of hydroxylation ofl-tryptophan or on the 5-hydroxytryptamine level in rat brain. These data emphasized the significance of the rate of hydrogen transfer and the limitation of the concept of unsaturation (i.e., the absolute amount of the carrier pterin molecule) for the synthesis of neurotransmitters in vivo.  相似文献   

4.
Endothelial dysfunction is associated with increase in oxidative stress and low NO bioavailability. The endothelial NO synthase (eNOS) uncoupling is considered an important factor in endothelial cell oxidative stress. Under increased oxidative stress, the eNOS cofactor tetrahydrobiopterin (BH4) is oxidized to dihydrobiopterin, which competes with BH4 for binding to eNOS, resulting in eNOS uncoupling and reduction in NO production. The importance of the ratio of BH4 to oxidized biopterins versus absolute levels of total biopterin in determining the extent of eNOS uncoupling remains to be determined. We have developed a computational model to simulate the kinetics of the biochemical pathways of eNOS for both NO and O2•− production to understand the roles of BH4 availability and total biopterin (TBP) concentration in eNOS uncoupling. The downstream reactions of NO, O2•−, ONOO, O2, CO2, and BH4 were also modeled. The model predicted that a lower [BH4]/[TBP] ratio decreased NO production but increased O2•− production from eNOS. The NO and O2•− production rates were independent above 1.5 μM [TBP]. The results indicate that eNOS uncoupling is a result of a decrease in [BH4]/[TBP] ratio, and a supplementation of BH4 might be effective only when the [BH4]/[TBP] ratio increases. The results from this study will help us understand the mechanism of endothelial dysfunction.  相似文献   

5.
6.
Biopterin     
The active synthesis of [14C]7,8-dihydrobiopterin (BH2) from intraventricularly administered U-[14C]GTP was demonstrated in rat brain. The identity of [14C]BH2 isolated from brain was confirmed by mass fragmentography. Evidence is presented that [14C]BH2 in brain was not synthesized in the peripheral organs. The rate of cerebral synthesis of [14C]BH2 from [14C]GTP was maximal at 2 h; it was 0.53 nmol/g per h, which is consistent with the estimated turnover rate of cerebral BH2 (0.43 nmol/g per h). Intraventricularly injected 2,4-diamino-6-hydroxypyrimidine (DAOPyr) and 6-thioguanosine were effective inhibitors of the synthesis. U-[14C]dGTP and 8-[14C]GTP, when given intraventricularly, did not yield [14C]BH2. Simultaneous intraventricular injection of U-[14C]GTP and DAOPyr resulted in the accumulation of a compound with properties identical to a formamidopyrimidine derivative isolated from the nonenzymatic hydrolysis of GTP. The data from preliminary experiments demonstrated the synthesis of [14C]BH2 from U-[14C]GTP incubated with 12,000g supernatants of rat brain homogenates.  相似文献   

7.
Inducible NOS (iNOS) is induced in diseases associated with inflammation and oxidative stress, and questions remain regarding its regulation. We demonstrate that reactive oxygen/nitrogen species (ROS/RNS) dose-dependently regulate iNOS function. Tetrahydrobiopterin (BH4)-replete iNOS was exposed to increasing concentrations of ROS/RNS and activity was measured with and without subsequent BH4 addition. Peroxynitrite (ONOO) produced the greatest change in NO generation rate, ∼95% decrease, and BH4 only partially restored this loss of activity. Superoxide () greatly decreased NO generation, however, BH4 addition restored this activity. Hydroxyl radical (OH) mildly decreases NO generation in a BH4-dependent manner. iNOS was resistant to H2O2 with only slightly decreased NO generation with up to millimolar concentrations. In contrast to the inhibition of NO generation, ROS enhanced production from iNOS, while ONOO had the opposite effect. Thus, ROS promote reversible iNOS uncoupling, while ONOO induces irreversible enzyme inactivation and decreases both NO and production.  相似文献   

8.
9.

Background

Blood brain barrier (BBB) dysfunction is a common facet of cerebral ischemia, and the alteration of drug transporter, P-glycoprotein (P-gp), has been documented.

Aims

This study explores influence of damaged BBB and elevated P-gp on cerebral verapamil penetration after ischemia both in vivo and in vitro.

Methods

Middle cerebral artery occlusion (MCAO) induced ischemia/reperfusion (I/R) of rats, and Na2S2O4 induced hypoxia/reoxygenation (H/R) damage of rat brain mirovessel endothelial cells (RBMECs) respectively, served as BBB breakdown model in vivo and in vitro. Evans-Blue (EB) extravagation and 125I-albumin were used to quantify BBB dysfunction; UPLC–MS/MS analytical method was performed to determine accurately the concentration of verapamil in brain tissue and cell. Flow cytometry, immunohistochemistry and western blotting were applied to evaluate transport function and protein expression of P-gp.

Results

Overexpressed ICAM-1 and MMP-9 mediated BBB dysfunction after ischemia, which induced EB leakage and 125I-albumin uptake increase. Enhanced accumulation of verapamil in brain tissue, but intracellular concentration reduced evidently after H/R injury. Transcellular transportation of verapamil elevated when P-gp function or expression was inhibited after H/R injury.

Conclusion

These data indicated that BBB penetration of verapamil under ischemia condition was not only depending on BBB breakdown, but also regulated by P-gp.  相似文献   

10.
By using two structurally unrelated hydrogen sulfide (H2S) donors 5‐(4‐methoxyphenyl) ‐3H‐1, 2‐dithiole‐3‐thione (ADT) and sodium hydrosulfide (NaHS), this study investigated if H2S protected blood–brain barrier (BBB) integrity following middle cerebral artery occlusion (MCAO). ICR mice underwent MCAO and received H2S donors at 3 h after reperfusion. Infarction, neurological scores, brain edema, Evans blue (EB) extravasation, and tight junction protein expression were examined at 48 h after MCAO. We also investigated if ADT protected BBB integrity by suppressing post‐ischemic inflammation‐induced Matrix Metalloproteimase‐9 (MMP9) and Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX). ADT increased blood H2S concentrations, decreased infarction, and improved neurological deficits. Particularly, ADT reduced EB extravasation, brain edema and preserved expression of tight junction proteins in the ischemic brain. NaHS also increased blood H2S levels and reduced EB extravasation following MCAO. Moreover, ADT inhibited expression of pro‐inflammatory markers induced Nitric Oxide Synthase (iNOS) and IL‐1β while enhanced expression of anti‐inflammatory markers arginase 1 and IL‐10 in the ischemic brain. Accordingly, ADT attenuated ischemia‐induced expression and activity of MMP9. Moreover, ADT reduced NOX‐4 mRNA expression, NOX activity, and inhibited nuclear translocation of Nuclear Factor Kappa‐B (NF‐κB) in the ischemic brain. In conclusion, H2S donors protected BBB integrity following experimental stroke possibly by acting through NF‐κB inhibition to suppress neuroinflammation induction of MMP9 and NOX4‐derived free radicals.

  相似文献   


11.
A.D. Sherman  E.M. Gál 《Life sciences》1978,23(16):1675-1679
Using 2-amino-6-(5'-2'-deoxyphosphoribosyl)-amino-5- or -6-formamido-6-hydroxypyrimidine (dFPyd-P3), a specific inhibitor of tetrahydrobiopterin (BH4) synthesis, cerebral pools of BH4 were reduced to half of that of controls; while, simultaneously, the biosynthesis de novo of L-erythrodihydroniopterin (BH2) from GTP was inhibited by about 98%. Nevertheless, there was no effect on the cerebral levels of serotonin, dopamine, norepinephrine or on the biosynthesis of prostaglandin E2 or F1. The data are presented in evidence that the absolute level of the cofactor (BH4) is not regulatory of amine or protaglandin biosynthesis in vivo. Amine and prostaglandin biosynthesis proceeded even at cofactor concentrations of 9×107 M nsuggesting that their biosynthesis is dependent on the rate of H+ + e shuttle between BH2 and BH4.  相似文献   

12.
Tetrahydrobiopterin attenuates homocysteine induced endothelial dysfunction   总被引:4,自引:0,他引:4  
Homocysteine is an independent risk factor for atherosclerotic vascular disease. It impairs endothelial function via increasing superoxide production and quenching nitric oxide (NO) release. Tetrahydrobiopterin (BH4) is a critical cofactor that couples nitric oxide synthase and facilitates the production of nitric oxide (vs. superoxide anions). In the first study, the effects of hyperhomocysteinemia (0.1 mM, 3 h) on endothelium-dependent vasorelaxation to ACh and A23187 were examined in isolated segments of rat aortae in the presence or absence of BH4 (0.1 mM). In the second study, the effects of hyperhomocysteinemia (24 h) on nitric oxide production and superoxide release (using lucigenin chemiluminescence) were studied in human umbilical vein endothelial cells in the absence or presence of BH4 (10 M). Homocysteine incubation impaired receptor-dependent and -independent endothelial function to ACh and A23187. This effect was attenuated by BH4. Furthermore, homocysteine exposure increased superoxide production and impaired agonist-stimulated nitric oxide release. These effects were attenuated by BH4 (p < 0.05). Hyperhomocysteinemia impairs endothelial function, in part due to a diminished bioavailability of BH4 with resultant uncoupling of nitric oxide synthase. BH4 may represent an important target for strategies aimed at improving endothelial dysfunction secondary to hyperhomocysteinemia.  相似文献   

13.
Resolution of inflammation is an emerging new strategy to reduce damage following ischemic stroke. Lipoxin A4 (LXA4) is an anti‐inflammatory, pro‐resolution lipid mediator with high affinity binding to ALX, the lipoxin A4 receptor. Since LXA4 is rapidly inactivated, potent analogs have been created, including the ALX agonist BML‐111. We hypothesized that post‐ischemic intravenous administration of BML‐111 would provide protection to the neurovascular unit and reduce neuroinflammation in a rat stroke model. Animals were subjected to 90 min of middle cerebral artery occlusion (MCAO) and BML‐111 was injected 100 min and 24 h after stroke onset and animals euthanized at 48 h. Post‐ischemic treatment with BML‐111 significantly reduced infarct size, decreased vasogenic edema, protected against blood–brain barrier disruption, and reduced hemorrhagic transformation. Matrix metalloproteinase‐9 and matrix metalloproteinase‐3 were significantly reduced following BML‐111 treatment. Administration of BML‐111 dramatically decreased microglial activation, as seen with CD68, and neutrophil infiltration and recruitment, as assessed by levels of myeloperoxidase and intracellular adhesion molecule‐1. The tight junction protein zona occludens‐1 was protected from degradation following treatment with BML‐111. These results indicate that post‐ischemic activation of ALX has pro‐resolution effects that limit the inflammatory damage in the cerebral cortex and helps maintain blood–brain barrier integrity after ischemic stroke.

  相似文献   


14.
Transgenic expression of human amyloid β (Aβ) peptide in body wall muscle cells of Caenorhabditis elegans has been used to better understand aspects of Alzheimer disease (AD). In human aging and AD, Aβ undergoes post-translational changes including covalent modifications, truncations, and oligomerization. Amino truncated Aβ is increasingly recognized as potentially contributing to AD pathogenesis. Here we describe surface-enhanced laser desorption ionization-time of flight mass spectrometry mass spectrometry of Aβ peptide in established transgenic C. elegans lines. Surprisingly, the Aβ being expressed is not full-length 1–42 (amino acids) as expected but rather a 3–42 truncation product. In vitro analysis demonstrates that Aβ3–42 self-aggregates like Aβ1–42, but more rapidly, and forms fibrillar structures. Similarly, Aβ3–42 is also the more potent initiator of Aβ1–40 aggregation. Seeded aggregation via Aβ3–42 is further enhanced via co-incubation with the transition metal Cu(II). Although unexpected, the C. elegans model of Aβ expression can now be co-opted to study the proteotoxic effects and processing of Aβ3–42.Numerous studies support a role for aggregating Aβ3 in mediating the toxicity that underlies AD (1, 2). However, several key questions remain central to understanding how AD and Aβ pathology are related. What is the connection between Aβ aggregation and toxicity? Is there a specific toxic Aβ conformation or species? How and why does aging impact on Aβ precipitation? Significant effort to address these questions has been invested in the use of vertebrate and simple invertebrate model organisms to simulate neurodegenerative diseases through transgenic expression of human Aβ (3). From these models, several novel insights into the proteotoxicity of Aβ have been gained (47).Human Aβ (e.g. in brain, cerebrospinal fluid, or plasma) is not found as a single species but rather as diverse mixtures of various modified, truncated, and cross-linked forms (810). Specific truncations, covalent modifications, and cross-linked oligomers of Aβ have potentially important roles in determining Aβ-associated neurotoxicity. For example, N-terminal truncations of Aβ have increased abundance in AD, rapidly aggregate, and are neurotoxic (9, 11). Furthermore, the N-terminal glutamic acid residue of Aβ3–42 can be cyclized to pyroglutamate (Aβ3(pE)-42) (12), which may be particularly important in AD pathogenesis (13, 14). Aβ3(pE)-42 is a significant fraction of total Aβ in AD brain (15), accounting for more than 50% of Aβ accumulated in plaques (16). Aβ3(pE)-42 seeds Aβ aggregation (17), confers proteolytic resistance, and is neurotoxic (13). Recently, glutaminyl cyclase (QC) has been proposed to catalyze, in vivo, pyroglutamate formation of Aβ3(pE)-40/42 (14, 18). Aβ1–42 itself cannot be cyclized by QC to Aβ3(pE)-42 (19), unlike Aβ that commences with an N-terminal glutamic acid-residue (e.g.3–42 and Aβ11–42) (20). QC has broad expression in mammalian brain (21, 22), and its inhibition attenuates accumulation of Aβ3(pE)-42 into plaques and improves cognition in a transgenic mouse model of AD that overexpresses human amyloid precursor protein (14). N-terminal truncations at position 3 have been reported in senile plaques (23, 24); however, the process that generates Aβ3–42 is unknown. Currently there are no reported animal models of Aβ3–42 expression.Advances in surface-enhanced laser desorption ionization-time of flight mass spectrometry (SELDI-TOF MS) analysis now facilitate accurate identification of particular Aβ species. Using this technology, we examined well characterized C. elegans transgenic models of AD that develop amyloid aggregates (25, 26) to see whether the human Aβ they express is post-translationally modified.  相似文献   

15.
Neutral palladium(IV) complexes containing the bis(pyrazol-1-yl)borate ligand, PdMe3{(pz)2BH2}(L) [L=py-d5 (4), PMe2Ph (6)], are generated in solution by oxidative addition of iodomethane to [PdMe2{(pz)2BH2}] at −70 °C followed by addition of L; the Pd(IV) complexes reductively eliminate ethane above 0 °C. Stable Pt(IV) analogues of 4 and 6 have been isolated, and comparison of NMR spectra for Pd(IV) and Pt(IV) species support structural assignments for the unstable Pd(IV) complexes. The complex PtMe3{(pz)2BH2}(py) (1a) has been characterised by X-ray diffraction, together with Pt(mq)Me2{(pz)2BH2} (2) (mq=8-methylquinolinyl); both complexes show a fac-PtC3 configuration for Pt(IV), and for 2 the PtN distances are ∼0.03 Å shorter than in the isostructural Pd(IV) complex.  相似文献   

16.
New lantibiotic cinnamycin B was isolated from the extract of Actinomadura atramentaria NBRC 14695T, based on genome mining and chemical investigation. The partial structure of cinnamycin B was established by 2D NMR experiments, which indicated that cinnamycin B had same methyl lanthionine bridging pattern with cinnamycin. The reduction with NaBH4-NiCl2 afforded the reduced cinnamycin B, and MS/MS experiment indicated the presence of hydroxy asparatic acid in the molecule. Cinnamycin B showed an antibacterial activity against Streptomyces antibioticus with dosage of 5 μg (0.5μL, 10 mg/mL solution) at spot-on-lawn testing method. The gene cluster of cinnamycin B on the genome of A. atramentaria was identified and discussed in comparison with that of cinnamycin.  相似文献   

17.
The populations of Pseudomonas sp. B4, Escherichia coli, Klebsiella pneumoniae, Micrococcus flavus, and Rhizobium leguminosarum biovar phaseoli declined rapidly in lake water. The initially rapid decline of the two pseudomonads and R. phaseoli was followed by a period of slow loss of viability, but viable cells of the other species were not found after 10 days. The rapid initial phase of decline was not a result of Bdellovibrio spp., bacteriophages, or toxins in the water since Bdellovibrio spp. were not present and passage of the lake water through filters that should not have removed bacteriophages or soluble toxins led to the elimination of the rapid phase of decline. The addition of 250 g of cycloheximide and 30 g of nystatin per ml eliminated viable protozoa form the lake water, and the population of Pseudomonas sp. B4 did not fall and the decline of E. coli and K. pneumoniae was delayed or slowed under these conditions. Pseudomonas sp. L2 proliferated rapidly in lake water amended with glucose, phosphate, and NH4NO3, but its numbers subsequently fell abruptly; however, in water amended with cycloheximide and nystatin, which killed indigenous protozoa, the population density was higher and the fall in numbers was delayed. Of the nutrients, the chief response was to carbon, but when glucose was added, phosphorus and nitrogen stimulated growth further. Removing other bacteria by filtering the lake water before inoculation with Pseudomonas sp. L2 suggested that competition reduced the extent of response of the pseudomonad to added nutrients. We suggest that the decline in lake water of bacteria that are resistant to starvation may be a result of protozoan grazing and that the extent of growth of introduced species may be limited by the supply of available carbon and sometimes of nitrogen and phosphorus, and by predation by indigenous protozoa.  相似文献   

18.
Blood-brain barrier transport ofL-[l-14C]pipecolic acid was studied in the rat by single intracarotid injection using3H2O as a diffusible internal standard. Brain uptake index (BUI) forL-[14C]pipecolic acid (0.036 mM) was found to be 18.1, 10.5, and 12.6 for the cerebral cortex, brain stem, and cerebellum, respectively which was substantially higher than that reported for its analogL-proline in the whole brain. Influx ofL-pipecolic acid into the brain was concentration dependent and differed significantly between the cerebral cortex and the brain stem, and between the cerebral cortex and the cerebellum, but not between the brain stem and the cerebellum. Kinetic study ofL-pipecolic acid influx revealed a low- and a high-capacity uptake mechanisms. The low-capacity saturable component hasK m values ranging from 38 to 73 μM, andV max values ranging from 10 to 13 nmol/g/min for the three brain regions. The nonsaturable component has aK m of 4 mM, aV max of 200 nmol/g/min and similar diffusion constant (K d) (0.03 to 0.06 mlg?1 min?1) for all three brain regions. A possible role of the two-component brain uptake mechanism in the regulation of the neuronal function ofL-pipecolic acid was suggested.  相似文献   

19.
[VIVO(acac)2] reacts with the methanol solution of tridentate ONO donor hydrazone ligands (H2L1-4, general abbreviation H2L; are derived from the condensation of benzoyl hydrazine with 2-hydroxyacetophenone and its 5-substituted derivatives) in presence of neutral monodentate alkyl amine bases having stronger basicity than pyridine e.g., ethylamine, diethylamine, triethylamine and piperidine (general abbreviation B) to produce BH+[VO2L] (1-16) complexes. Five of these sixteen complexes are structurally characterized revealing that the vanadium is present in the anionic part of the molecule, [VO2L] in a distorted square pyramidal environment. The complexes 5, 6, 15 and 16 containing two H-atoms associated with the amine-N atom in their cationic part (e.g., diethylammonium and piperidinium ion) are involved in H-bonding with a neighboring molecule resulting in the formation of centrosymmetric dimers while the complex 12 (containing only one hydrogen atom in the cationic part) exhibits normal H-bonding. The nature of the H-bonds in each of the four centrosymmetric dimeric complexes is different. These complexes have potential catalytic activity in the aerial oxidation of l-ascorbic acid and are converted into the [VO(L)(hq)] complexes containing VO3+ motif on reaction with equimolar amount of 8-hydroxyquinoline (Hhq) in methanol.  相似文献   

20.

Background and purpose

Male-female differences may significantly impact stroke prevention and treatment in men and women, however underlying mechanisms for sexual dimorphism in stroke are not understood. We previously found in males that cerebral ischemia upregulates contractile receptors in cerebral arteries, which is associated with lower blood flow. The present study investigates if cerebral arteries from men and women differ in cerebrovascular receptor upregulation.

Experimental approach

Freshly obtained human cerebral arteries were placed in organ culture, an established model for studying receptor upregulation. 5-hydroxtryptamine type 1B (5-HT1B), angiotensin II type 1 (AT1) and endothelin-1 type A and B (ETA and ETB) receptors were evaluated using wire myograph for contractile responses, real-time PCR for mRNA and immunohistochemistry for receptor expression.

Key results

Vascular sensitivity to angiotensin II and endothelin-1 was markedly lower in cultured cerebral arteries from women as compared to men. ETB receptor-mediated contraction occurred in male but not female arteries. Interestingly, there were similar upregulation in mRNA and expression of 5-HT1B, AT1, and ETB receptors and in local expression of Ang II after organ culture.

Conclusions and Implications

In spite of receptor upregulation after organ culture in both sexes, cerebral arteries from women were significantly less responsive to vasoconstrictors angiotensin II and endothelin-1 as compared to arteries from men. This suggests receptor coupling and/or signal transduction mechanisms involved in cerebrovascular contractility may be suppressed in females. This is the first study to demonstrate sex differences in the vascular function of human brain arteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号