首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A resting cell of Escherichia coli lacking thiamin kinase incorporated external thiamin with an energy-dependent counterflow efflux (C-efflux). This C-efflux could be separated from an energy-dependent exit by a selective inhibition of exit by 2 · 10?2M NaN3. The extracellular thiamin could be replaced by thiamin diphosphate, resulting in the same rate of C-efflux, but the rate of C-efflux of intracellular thiamin diphosphate against the external thiamin was markedly low. This low rate of C-efflux of thiamin diphosphate could explain the higher accumulation of the compound than that of free thiamin in the thiamin-kinase-defective mutant as well as in its wild-type parent. Basic characteristics of free thiamin uptake and exit in E. coli W mutant were compared with those reported in K 12 mutant: a marked difference existed in the rate of exit. The low rate of exit in E. coli W 70-23-102 was inferred as the reason for the absence of an overshoot phenomenon of thiamin uptake in this strain.  相似文献   

3.
4.
Aminoglycoside antibiotics exhibit a markedly reduced antibacterial activity under anaerobic conditions. Anaerobiosis or inhibitors of electron transport produced an extensive decrease in the uptake of dihydrostreptomycin in Escherichia coli K-12. Uptake of proline or putrescine were only slightly impaired under anaerobic conditions in the presence of glucose. Both the susceptibility to and the uptake of dihydrostreptomycin under anaerobic conditions were partially restored by addition of the alternative electron acceptor, nitrate. This stimulation required functional nitrate reductase activity. Abolition of uptake by 2,4-dinitrophenol under both aerobic and anaerobic conditions indicates that streptomycin uptake requires electron transport as well as a sufficient membrane potential. In addition, the initial rate of dihydrostreptomycin uptake was competitively and reversibly inhibited by added salts. The inhibition was relatively nonspecific with respect to the identity of salt added, being approximately dependent on the ionic strength. Although dihydrostreptomycin and polyamines mutually inhibited each other's uptake, several conditions (polyamine limitation, streptomycin uptake-deficient mutants) were found in which uptake of these two substrates was oppositely affected. Aminoglycosides thus do not appear to enter on one of the usual cellular transport systems, but perhaps utilize a component of the electron transport system.  相似文献   

5.
D. Zuber  M. Venturi  E. Padan  K. Fendler 《BBA》2005,1709(3):240-250
The Na+/H+ antiporter NhaA is the main Na+ extrusion system in E. coli. Using direct current measurements combined with a solid supported membrane (SSM), we obtained electrical data of the function of NhaA purified and reconstituted in liposomes. These measurements demonstrate NhaA's electrogenicity, its specificity for Li+ and Na+ and its pronounced pH dependence in the range pH 6.5-8.5. The mutant G338S, in contrast, presents a pH independent profile, as reported previously. A complete right-side-out orientation of the NhaA antiporter within the proteoliposomal membrane was determined using a NhaA-specific antibody based ELISA assay. This allowed for the first time the investigation of NhaA in the passive downhill uptake mode corresponding to the transport of Na+ from the periplasmic to the cytoplasmic side of the membrane. In this mode, the transporter has kinetic properties differing significantly from those of the previously investigated efflux mode. The apparent Km values were 11 mM for Na+ and 7.3 mM for Li+ at basic pH and 180 mM for Na+ and 50 mM for Li+ at neutral pH. The data demonstrate that in the passive downhill uptake mode pH regulation of the carrier affects both apparent Km as well as turnover (Vmax).  相似文献   

6.
Gluconate-resistant mutants were isolated from Escherichia coli strain DF 1070 deficient in phosphogluconate dehydrogenase (EC 1.1.1.44) and in phosphogluconate dehydrogenase (EC 4.2.1.12) which is inhibited by gluconate. Among the resistant mutants, AR 13 has been identified as a gluconate kinase (EC 2.7.1.12)-deficient strain.This mutant exhibits an inducible gluconate transport system capable of concentrating gluconate in the cytoplasm against a concentration gradient. The accumulated gluconate is subject to permanent turnover, and is not chemically modified.The kinetics of induction and deinduction indicate a single inducible component, rate limiting for the transport function, and the distribution of transport capacity among non-induced progeny of induced parents indicates that the inducible protein is membrane bound.  相似文献   

7.
Insulin action on Escherichia coli was studied using wild type E. coli B/r and K12 strains and a number of phosphoenolpyruvate phosphotranferase mutants. In vivo, the effects of insulin on the differential rate of tryptophanase synthesis, The rate of α-methyglucoside uptake and the rate of growth on glucose were determined in E. coli B/r. in vitro, the effect of insulin on the adenylate cyclase and the phosphotransferase activities was determined using toluenized cell preparations of E. coli B/r, E. coli K12 and phosphotransferase mutant strains. The specificity of insulin action on E. coli was determined using glucagon, vasopressin and somatropin as well as insulin antisera. Results show the specific action of insulin n E. coli, inhibiting tryptophanase induction and adenylate cyclase activity, while stimulating growth on glucose and uptake and phosphorylation of α-methylglucosode  相似文献   

8.
A study has been made of the inhibition of growth caused by the addition of lactose or other galactosides to lac constitutive Escherichia coli growing in glycerol minimal medium. The effect was greater at pH 5.9 and pH 7.9 than at pH 7.0. Inhibition of growth by lactose was observed also in the case of a β-galactosidase negative mutant. However, a lacY mutant, which has a defect in the entry of protons normally coupled with galactoside transport, showed only slight inhibition of growth on the addition of galactosides. In the case of the parental strain the addition of lactose resulted in a sharp fall in ΔpH across the cell membrane and a reduction in intracellular ATP, and the recovery was slow. Under the same conditions the lacY mutant showed a smaller and only transient effect. It is postulated that the sudden entry of protons associated with lactose uptake lowers the protonmotive force, reducing the ATP levels and inhibiting growth of the cells. This hypothesis would account also for the selection of lacY mutants found when E. coli is grown in the presence of isopropyl-β-d-thiogalactoside.  相似文献   

9.
The mechanism of uridine transport in Escherichia coli B cells was studied using experimental approaches designed to limit possible ambiguities in interpretation of data obtained previously. For this purpose, the transport of [2-14C]uridine and [U-14C]uridine was determined in E. coli B and an E. coli B mutant which is resistant to the inhibitory effects of the nucleoside antibiotic, showdomycin.The majorty of the uridine transported as the intact nucleoside is cleaved to uracil and ribose l-phosphate. The uracil, in large part, is excreted, while ribose l-phosphate is retained. In addition, uridine is also rapidly cleaved to uracil and ribose l-phosphate in the periplasmic space. The uracil moiety may enter the cell, whereas ribose l-phosphate is not transported. The showdomycin-resistant mutant transports the intact nucleoside inefficiently, or not at all, but retains its ability to convert uridine to uracil in the periplasmic space.  相似文献   

10.
The site of the Escherichia coli envelope of the conversion of 1-acylglycero-3-phosphoethanolamine to diacylglycerophosphoethanolamine was explored, using two K12 strains with a wild-type phospholipid-degradative apparatus and a K12 mutant lacking detectable phospholipase A1 and A2 activity.Experiments with various radioactively labeled substrates show that acylation by crude envelope preparations as well as isolated inner and outer membranes of parent and mutant strains involves neither exogenous fatty acids nor a transacylation reaction with added monoacylglycerophosphoethanolamine. Furthermore, acylation exhibits no absolute requirement for added ATP and coenzyme A.Specific activity of acylating activity is the same in inner membrane preparations of parent and mutant strain and in outer membrane preparations of the mutant deficient in phospholipase A. Although clearly evident, net diacylglycerophosphoethanolamine formation by outer membranes of the parent strain, however, was about 6-fold less. This lower conversion may be attributed to activation during incubation of phospholipases A within the outer membrane, resulting in breakdown of the diacylcompound formed.Reacylation of lysophospholipids formed in the E. coli envelope by the action of endogenous or exogenous phospholipases A provides the organism with the potential of biochemically inexpensive repair and modification of the envelope phospholipids. Moreover, major phospholipids hydrolyzed in the outer membrane of E. coli can be resynthesized in the same location, without need for the transport of the products of hydrolysis to the lipid biosynthetic apparatus associated with the cytoplasmic membrane.  相似文献   

11.
Mutants of Escherichia coli, harbouring the uncA401 or uncB402 alleles, were found to take up streptomycin more rapidly than the coupled parent strains. The increased rate of uptake results in greater sensitivity of the uncoupled strains, compared to the parent strains, to low concentrations of streptomycin. Studies with unc+ revertants showed that hypersensitivity to streptomycin is attributable to the mutation causing uncoupling. The uptake of streptomycin in an unc? strain is abolished by addition of the chemical uncoupler carbonylcyanide m-chlorophenylhydrazone. The phenotype of hypersensitivity to streptomycin can be used as a selection procedure for the isolation of uncoupled strains. In an experiment reported here, nine out of 12 strains isolated as being sensitive to streptomycin (at 2.5 μg/ml), were found to be unable to grow on succinate as a sole source of carbon. Five of the nine Suc? strains were found to be uncoupled in oxidative phosphorylation, and two of the five uncoupled strains lacked Mg2+-ATPase activity. The mutations causing uncoupling were cotransducible with the ilv genes.  相似文献   

12.
Escherichia coli strain AN710 possesses only the PIT system for phosphate transport. Membrane vesicles from this strain, which contain phosphate internally, perform exchange and active transport of phosphate. The energy for active transport is supplied by the respiratory chain with ascorbate-phenazine methosulphate as electron donor. To a lesser extent also the oxidation of d-lactate energizes phosphate transport; the oxidation of succinate is only marginally effective. Phosphate transport is driven by the proton-motive force and in particular by the pH gradient across the membrane. This view is supported by the observation that phosphate transport is stimulated by valinomycin, inhibited by nigericin and abolished by the uncoupler carbonyl cyanide m-chlorophenylhydrazone. Neither inhibitor affects phosphate exchange. The phosphate analogue arsenate inhibits both the exchange reaction and active transport. Both processes are stimulated by K+ and Mg2+, the highest activities being observed with both ions present.Membrane vesicles have also been isolated from Escherichia coli K10, a strain which possesses only a functional PST phosphate transport system. These vesicles perform neither exchange nor active transport of phosphate, although active transport of amino acids is observed in the presence of ascorbate-phenazine methosulphate or d-lactate.  相似文献   

13.
Uptake studies with [14C]picolinate and 55Fe3+ have provided an explanation for the change in streptonigrin killing on adaptation of Escherichia coli to picolinate, in terms of the available iron within the cell. When picolinic acid is added to a growing culture of E. coli an interval of bacteriostasis ensues; this adaptation period is followed by resumption of exponential growth. Addition of picolinate (4 mM) to a log phase culture of strain W3110 gave protection from the lethal action of streptonigrin (30 μM) when the two agents were added simultaneously. In contrast streptonigrin killed cells that had adapted to picolinate; however, a preincubation of adapted W3110 with phenethyl alcohol protected the cells from streptonigrin lethality. [14C]Picolinate uptake studies showed that initially picolinate entered the cells, but that it was excluded from adapted cells; addition of phenethyl alcohol permitted the entry of picolinate into adapted W3110. The changes in streptonigrin killing parallel the changes in concentration of intracellular picolinate, which can chelate the iron required by streptonigrin for its bactericidal action. 55Fe3+ uptake studies showed that initially picolinate prevented iron accumulation by strain W3110, whereas adapted cells did take up iron in the presence of picolinate. Addition of phenethyl alcohol prevented any observed uptake of iron by adapted W3110. This modulation of iron transport by picolinate also affects streptonigrin lethality. Experiments with iron transport mutants showed that picolinate acted on both the enterochelin and citrate routes of uptake. Therefore picolinate affects the concentration of available iron within the cell both by (a) its intracellular presence resulting in chelation of iron and (b) its action on iron uptake; these effects explain the change in streptonigrin killing on adaptation of E. coli to picolinate.  相似文献   

14.
Cytoplasmic membrane vesicles isolated from Escherichia coli take up dansyl-galactoside, a fluorescent competitive inhibitor of lactose transport, to much lower levels than lactose. An initial interpretation, based on the study of the fluorescent changes accompanying the energy-dependent uptake, was that it represented a one-to-one specific binding to the lac carrier protein which was not followed by transport. Recently, on the basis of a new estimation of the number of lac carrier in the membrane, it has been advanced that the uptake of dansyl-galactoside represents a nonspecific binding on the inner surface of the membrane following transport. We discriminate between the two interpretations by comparing the effects of lactose and dansyl-galactoside uptake on the electrochemical gradient of protons (Δ\?gmH+), generated by the oxidation of substrates, and on the uptake of proline. Indeed, it is known that the rate of lactose transport is such that it leads, as a consequence of the lactose/H+ symport, to an observable decrease of Δ\?gmH+, and secondary to this decrease to an inhibition of the uptake of proline transported at much lower rate. We show that the rates of uptake of lactose and dansyl-galactoside by the membrane vesicles are similar; yet the uptake of dansyl-galactoside does not lead to the uncoupling effects which are associated with the uptake of lactose. We discuss the possible reasons for the absence of this uncoupling effect, and we conclude that our data are incompatible with the notion that the energy-dependent uptake of dansyl-galactoside is associated with an active transport involving a dansyl-galactoside/H+ symport. On the contrary, the data substantiate the initial interpretation that the energy-dependent uptake of dansyl-galactoside reflects the binding to the lac carrier not followed by transport.  相似文献   

15.
Staphylococcin 1580 increased the relative amount of diphosphatidylglycerol and decreased the amount of phosphatidylglycerol in cells of Staphlococcus aureus, while the amounts of lysylphosphatidylglycerol, phosphatidic acid and total phospholipid remained constant.Treatment of cells of Escherichia coli and S. aureus with colicin A and staphylococcin 1580, respectively, did not affect proton impermeability but subsequent addition of carbonylcyanide-m-chlorophenylhydrazone resulted in a rapid influx of protons into the cells.Bacteriocin-resistant and -tolerant mutants of E. coli and S. aureus were isolated. The bacteriocins caused leakage of amino acids preaccumulated into membrane vesicles of resistant mutants and had no significant effect on membrane vesicles of tolerant mutants.The uptake of amino acids into membrane vesicles was inhibited by both bacteriocins, irrespective of the electron donors applied. The bacteriocin inhibition was noncompetitive. The bacteriocins did not affect oxygen consumption and dehydrogenases in membrane vesicles.Both bacteriocins suppressed the decrease in the fluorescence of 1-anilino-8-naphthalene sulfonate caused by d-lactate or α-glycerol phosphate when added to membrane vesicles.It is concluded that the bacteriocins uncouple the transport function from the electron transport system.  相似文献   

16.
ATP-binding cassette (ABC) transporters are integral membrane proteins that actively transport molecules across cell membranes. In Escherichia coli they consist primarily of import systems that involve in addition to the ABC transporter itself a substrate binding protein and outer membrane receptors or porins, and a number of transporters with varied functions. Recent crystal structures of a number of ATPase domains, substrate binding proteins, and full-length transporters have given new insight in the molecular basis of transport. Bioinformatics approaches allow an approximate identification of all ABC transporters in E. coli and their relation to other known transporters. Computational approaches involving modeling and simulation are beginning to yield insight into the dynamics of the transporters. We summarize the function of the known ABC transporters in E. coli and mechanistic insights from structural and computational studies.  相似文献   

17.
Efficient use of xylose is necessary for economic production of biochemicals and biofuels from lignocellulosic materials. Current studies on xylose uptake for various microorganisms have been hampered by the lack of a facile assay for xylose transport. In this work, a rapid in vivo, label-free method for measuring xylose transport in Escherichia coli was developed by taking advantage of the Bacillus pumilus xylosidase (XynB), which cleaved a commercially available xylose analog, p-nitrophenyl-β-d-xylopyranoside (pNPX), to release a chromogenic group, p-nitrophenol (pNP). XynB was expressed alone or in conjunction with a Zymomonas mobilis glucose facilitator protein (Glf) capable of transporting xylose. This XynB-mediated transport assay was demonstrated in test tubes and 96-well plates with submicromolar concentrations of pNPX. Kinetic inhibition experiments validated that pNPX and xylose were competitive substrates for the transport process, and the addition of glucose (20 g/L) in the culture medium clearly diminished the transmembrane transport of pNPX and, thus, mimicked its inhibitory action on xylose uptake. This method should be useful for engineering of the xylose transport process in E. coli, and similar assay schemes can be extended to other microorganisms.  相似文献   

18.
19.
Escherichia coli can uptake and utilize many common natural sugars to form biomass or valuable target bio-products. Carbon catabolite repression (CCR) will occur and hamper the efficient production of bio-products if E. coli strains are cultivated in a mixture of sugars containing some preferred sugar, such as glucose. Understanding the transport and metabolism mechanisms of the common and inexpensive sugars in E. coli is important for further improving the efficiency of sugar bioconversion and for reducing industrial fermentation costs using the methods of metabolic engineering, synthetic biology and systems biology. In this review, the transport and mediation mechanisms of glucose, fructose, sucrose, xylose and arabinose are discussed and summarized, and the hierarchical utilization principles of these sugars are elucidated.  相似文献   

20.
Auxotrophic mutants of Escherichia coli W or K12 blocked before shikimic acid in the aromatic biosynthetic pathway grew poorly on shikimic acid as sole aromatic supplement. This poort growth response was correlated with a relatively poor ability to transport shikimic acid. If citrate was present in the growth medium (as it is in some commonly used basal media) the growth of some of the E. coli K12 mutants on shikimate was further reduced.Mutants were derived from pre-shikimate auxotrophs which grew rapidly on media containing shikimic acid. These derivatives all had an increased ability to transport shikimic acid. Thus, it is proposed that the growth on shikimate observed in the parent cells is restricted by their relatively poor uptake of shikimate from the medium and that this restriction may be removed by a mutation which enhances shikimate transport.Transduction analysis of the mutations which enhanced utilization and transport of shikimic acid by E. coli K12 strains indicated at least two classes. Class 1 was about 20% contransduced with the histidine region of the E. coli K12 chromosome and appeared to be coincident with a known shikimate transport locus, shiA. Class 2 was not contransduced with his. The locus (or loci) of this class is unknown. Kinetic measurements suggested that bot classes had shikimate uptake systems derived from the wild-type system. Two class 1 mutants had increased levels of otherwise unaltered wild-type transport while one class 2 mutant had an altered Michaelis constant (Km) for shikimate transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号