首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Studies were carried out to determine the cellular and subcellular site of biosynthesis of components of fraction I, an alpha-globulin fraction containing acidic glycoproteins isolated from guinea-pig serum. l-[U-(14)C]Leucine or -valine and d-[1-(14)C]glucosamine were used as precursors. 2. A lag of about 10min. occurred before appreciable label appeared in fraction I of serum after injection of leucine or glucosamine. Label in fraction I after 60min. labelling with glucosamine was present almost entirely in hexosamine and sialic acid. 3. Site of synthesis was investigated by studies in vivo up to 17min. after injection of precursor. Particulate subcellular fractions isolated from liver, spleen and kidney or homogenates of the latter two tissues were extracted with Lubrol. Extracts were allowed to react by double diffusion with antisera to fraction I or to subfractions isolated from it, and gels were subsequently subjected to radioautography. With either amino acid or glucosamine as precursor, only extracts of the microsome fraction of liver formed precipitin lines that were appreciably radioactive. 4. The role of the microsome fraction of liver in the synthesis of these glycoproteins was confirmed by immunological studies after incubation of liver slices with leucine or glucosamine. Incorporation of leucine was also investigated in a cell-free microsome system. 5. Material was also precipitated from certain Lubrol extracts of liver microsomes by direct addition of antiserum and its radioactivity measured. Degradation of material thus precipitated and use of heterologous immune systems showed that labelling of precipitin lines represented biosynthesis. 6. A study of extraction procedures suggested that the substances present in the microsome fraction of liver that react with specific antisera are associated with membranous structures. 7. Most or all precipitin lines formed by Lubrol extracts of liver microsomes interacted with precipitin lines given by guinea-pig serum or fraction I, immunological identity being apparent with some lines. The microsome-bound substances thus represent serum glycoproteins or precursors of them. 8. The distribution of label in various tissues and in the protein of subcellular fractions of liver after administration of [(14)C]glucosamine to the guinea pig was also studied. Some variation in results obtained with liver was found depending on the fractionation medium used.  相似文献   

2.
Highly purified bilirubin UDP-glucuronyltransferase from Wistar-rat liver, when reconstituted with Gunn-rat liver microsomes (microsomal fraction), was able to catalyse the conversion of unesterified bilirubin into both bilirubin monoglucuronide and diglucuronide. Under zero-order kinetic conditions for monoglucuronide formation, the fraction of bilirubin diglucuronide formed by incubation of bilirubin with the reconstituted highly purified transferase accounted for 18% of total bilirubin glucuronides, which was only slightly lower than the fraction of diglucuronides (23% of total bilirubin glucuronides) formed by incubation with hepatic microsomes in the presence of UDP-N-acetylglucosamine or Lubrol. The reconstituted purified enzyme also catalysed the UDP-glucuronic acid-dependent conversion of bilirubin monoglucuronide into diglucuronide and, when bilirubin was incubated with UDP-glucose or UDP-xylose, the formation of bilirubin glucosides and xylosides respectively. These results suggest that a single microsomal bilirubin UDP-glycosyltransferase may be responsible for the formation of bilirubin mono- and di-glycosides.  相似文献   

3.
The content and composition of phospholipids is determined in beef microsomal and synaptosomal fractions and also in these fractions preparations solubilized with triton X-100 (0.1%) and digitonin (0.2%). It is shown that the microsomal fraction is richer in phospholipids. The solubilized fragments of microsomes have less or the same amount of phospholipids per protein unit than the initial fraction of microsomes, and the solubilized fragments of synaptosomes contain a higher quantity of phospholipids than the initial fraction. The content of phospholipids in "the riton" fragments of synaptosomes is higher than in "those" of microsomes. Contrary to digitonin which solubilizes the active Na+, K+-ATPase complex of microsomes and synaptosomes, triton X-100 solubilizes the active enzyme of microsomes only. A higher total content of phospholipids in "the triton" extracts of synaptosomes does not probably correlate with the presence of Na+, K+-ATPase activity in them. But these extracts are found to contain less phosphatidylserine whose addition recovers Mg2+, Na+, K+-ATPase activity in them. The effect of phosphatidylserine is not strictly specific for "the triton" extracts of synaptosomes, this lipid activates to a definite extent the extracts of microsomes as well. It is shown that at the first stages of bull brain Na+, K+-ATPase purification the total content of phospholipids and cholesterol in the preparations increases but the composition of phospholipids remains unchanged.  相似文献   

4.
Abstract— The fraction that sediments between 2 × 105 g -min and 6 × 106 g -min from dilute dispersions of rat brain in 0.32 m -sucrose is a microsomal fraction with very little contamination by myelin. A crude microsomal fraction prepared in the same way from rat spinal cord contains more myelin than microsomes. Centrifugation of the crude microsomal fraction in 0.85 m -sucrose gave a floating fraction, an infranatant fraction (purified microsomes) and a small pellet. The purified microsomes contained very little myelin as judged by electron microscopy and polyacrylamide gel electrophoresis. The lipid composition resembled that of spinal cord myelin except that the purified microsomes contained relatively less cholesterol and ethanolamine plasmalogens. The content of galactolipids was much greater in spinal cord microsomes than in brain microsomes. The spinal cord CDP-ethanol-amine:diglyceride ethanolaminephosphotransferase activity (EC 2.7.8.1) was concentrated in the purified microsomes.
A spinal cord myelin fraction isolated from the 2 × 105 g -min pellet was quite pure as judged by electron microscopy, enzyme activities and polyacrylamide gel electrophoresis. No NADPH-cyto-chrome c reductase activity (EC 1.6.2.3) could be detected in the purified myelin. The ethanolaminephosphotransferase specific activity was about 5% of that found in the purified microsomal fraction. The protein content was 25% by weight for spinal cord myelin and 31% for brain myelin. Of the total spinal cord 2',3'-cyclic nucleotide-3'-phosphohydrolase activity, 16% was lost from the crude myelin during purification, 21% was recovered in the purified myelin, and 11% was found in the floating fraction from the crude microsomes. The purified myelin and microsomal fractions from spinal cord were relatively pure. Additional myelin was recovered in the floating fraction from the crude microsomes.  相似文献   

5.
Prostaglandin synthetase activity associated with the microsomal fraction from sheep vesicular glands has been solubilized by treatment with the non-ionic detergents Tween 20, Lubrol Px and Lubrol Wx. Approx.8 fold purification from microsomes is obtained and over 90% of the activity is recovered in the detergent solubilized fraction. The solubilized synthetase activity is stable at pH 5.0 but is gradually lost at pH 8.0; it is also heat and acid labile. The relative amounts of prostaglandins E2, D2 and F formed by the microsomal-bound synthetase and by the solubilized synthetase are similar. Also similar are the pH optima (7.9–8.5) of the two synthetase preparations. The solubilization process appears to yield a fully active enzymatic preparation which could be employed for further purification and characterization of the prostaglandin synthetase complex.  相似文献   

6.
Rat-liver microsomes were treated with two non-ionic detergents, Triton X-100 and Lubrol WX, with phospholipase A2, or with aqueous acetone solution. The activity of the membrane-bound UDP-glucoronosyltransferase (UDPGT, EC 2.4.1.17) was measured after the treatment with these perturbants. At the same time, modifications of the secondary structure of the microsomal proteins were followed and studied by circular dichroism (CD) spectroscopy. The detergents greatly activated UDPGT, maximally at a 1 mM concentration of either detergent. The maximally activating Triton X-100 treatment did not greatly change the ellipticity of the microsomes at 222 nm ((theta)222), whereas that with Lubrol WX affected the secondary structure of the membrane proteins more strongly. UDPGT activation also occurred in phospholipase A2-treated microsomes. Maximal activation was obtained after 1--5 min of incubation and was stable throughout the experiment. Phospholipase A2 at the ratio of microsomal protein to phospholipase 250 : 1 (w/w) slightly increased (theta)222 after 10 min of incubation and did not change it further even after 30 min of incubation. Treatment of liver microsomes with a 10 : 90 (v/v) aqueous acetone solution removed 90% of the total membrane phospholipids, particularly phosphatidylcholine and phosphatidylethanolamine. The UDPGT activity was decreased in lipid-depleted microsomes, and the enzyme was not reactivated when phosphatidylcholine-lysophosphatidylcholine liposomes were added at a low temperature. An even greater decrease was obtained when the lipid binding was carried out at 37 degree C. Lipid-depleted microsomes had a high (theta)222 associated with a red-shift of 2 nm, indicating partial aggregation of membrane proteins and an increase in the alpha-helical content of the protein after acetone extraction. However, this particular protein structure was partially reversible, since a binding of phospholipids to lipid-depleted microsomes gave a (theta)222 close to that found in control microsomes. The UDPGT activity was not dependent on the secondary structure of the membrane proteins.  相似文献   

7.
S K Yang  K Liu  F P Guengerich 《Chirality》1990,2(3):150-155
Rates of hydrolysis of racemic and enantiomeric oxazepam 3-acetates (OXA) by esterases in human and rat liver microsomes and rat brain S9 fraction were compared. When rac-OXA was the substrate, esterases in human and rat liver microsomes were highly enantioselective toward (R)-OXA. In contrast, esterases in rat brain S9 fraction were highly enantioselective toward (S)-OXA. Hydrolysis rates of rac-OXA were highly dependent on the amount of esterases used. At 0.05 mg protein equivalent of esterases and 150 nmol of rac-OXA per ml of incubation mixture, the (R)-OXA was hydrolyzed 3.6-fold and 18.5-fold faster than (S)-OXA by rat and human liver microsomes, respectively. The specific activities (nmol of OXA hydrolyzed/mg microsomal protein/min) of liver microsomes in the hydrolysis of enantiomerically pure (R)-OXA were approximately 120 (rat) and 1,980 (human), and in the hydrolysis of enantiomerically pure (S)-OXA were 4 (rat) and 7 (human), respectively. In the incubation of rac-OXA with rat brain S9 fraction, (S)-OXA was hydrolyzed approximately 6-fold faster than (R)-OXA. Results also indicated an enantiomeric interaction in the hydrolysis of rac-OXA by esterases in rat and human liver microsomes; the presence of (R)-OXA stimulated the hydrolysis of (S)-OXA, whereas the presence of (S)-OXA inhibited the hydrolysis of (R)-OXA. In rat brain S9 fraction, the presence of (R)-OXA inhibited the hydrolysis of (S)-OXA, whereas the presence of (S)-OXA appeared to have stimulated the hydrolysis of (R)-OXA.  相似文献   

8.
Slices of rat livers were incubated with 14C amino acids, homogenized, and subjected to differential centrifugation. The microsomes were further extracted with the non-ionic detergent Lubrol W and with EDTA. These extracts and the microsome free "cell sap," freed from the pH 5 precipitable fraction, were subsequently reacted with antisera using agar diffusion techniques. The antisera employed were obtained from rabbits injected with different subcellular fractions of rat liver or with rat serum proteins. When the agar diffusion plates were autoradiographed it was found that some of the precipitates were radioactive while others were not. Control experiments indicated that this labeling was due to the specific incorporation of 14C amino acids into various rat liver antigens during incubation of the slices rather than to a non-specific adsorption of radioactive material to the immunological precipitates. When the slices were incubated with the isotope for up to 30 minutes, the serum proteins which could be extracted from the microsomes with the detergent were strongly labeled, as were a number of additional microsomal antigens of unknown significance. In contrast, the serum proteins present in the cell sap were only weakly labeled. Most of the typical cell sap proteins, both those precipitable and those soluble at pH 5, seemed to remain unlabeled. No consistently reproducible results were obtained with the EDTA extracts of the ribosomal residues remaining after extraction of the microsomes with the detergent. Incubation of the liver slices for longer periods (up to 120 minutes) led to a strong labeling of the serum proteins in the cell sap as well as to the appearance of labeling in additional cell sap proteins. The results are discussed with regard to the subcellular site of synthesis and the metabolism of the different antigens.  相似文献   

9.
Solubilized rhesus monkey liver microsomes were used as the starting material for the purification of epoxide (cis-stilbene oxide) hydrolase. Successive chromatography over DEAE-Sephacel followed by CM-cellulose resulted in two peaks of activity, CM A and CM B. Passage of these two eluates over separate hydroxyapatite columns resulted in two peaks of activity from CM A, HA A1, and HA A2, and one peak from CM B and HA B, with respective recoveries of 1, 7, and 0.2% of cis-stilbene oxide hydrolase activities. A similar recovery was found for benzo[a]pyrene-4,5-oxide hydrolase, while trans-stilbene oxide hydrolase activity coeluted only in HA A2. Fraction HA A1 was homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunoblots of the three eluates and solubilized microsomes incubated with anti-HA A1 demonstrated a single band at 49 kDa in each fraction. The three eluates were differentially affected by the inhibitors of epoxide hydrolase, trichloropropene oxide and 4-phenylchalcone oxide, and addition of Lubrol PX and phospholipid. Immunoprecipitation of HA A2 resulted in coprecipitation of cis- and trans-stilbene oxide hydrolase activity. Upon immunoprecipitation of solubilized microsomes, all the cis-stilbene oxide and benzo[a]pyrene-4,5-oxide, but only 50-60% of trans-stilbene oxide hydrolase activity was precipitated. These studies support findings with other species that (i) an immunochemically distinct cytosolic-like epoxide hydrolase exists in microsomes, and (ii) microsomal epoxide hydrolase activity can be separated during ion-exchange chromatography giving proteins with similar molecular weights and immunochemical cross-reactivity. The precipitation of cis- and trans-stilbene oxide hydrolase activity in eluate HA A2 provides convincing evidence that these isozymes are not structurally identical.  相似文献   

10.
NADPH:cytochrome c (cytochrome P-450) reductase (Fp) from hamster liver microsomes has been purified to near homogeneity using a simple and rapid method. Microsomes were treated with the detergent Chaps (3-[(3-cholamidopropyl)dimethylammonio]propanesulfonic acid) in combination with 0.07% protamine sulfate and then centrifuged to pellet insoluble material. While over 60% of the total microsomal protein was solubilized, all Fp activity remained in the pellet. Fp was extracted from the Chaps-insoluble material using a combination of the detergents sodium cholate and Lubrol PX. This treatment resulted in a fivefold increase in Fp specific activity and allowed direct processing of the enriched Fp fraction by 2',5'-ADP agarose affinity chromatography. The purified Fp had a total flavin content of 23 nmol/mg protein (flavin adenine dinucleotide:flavin mononucleotide ratio = 1:1), a specific activity of 26,000 units/mg protein at 22 degrees C using cytochrome c as electron acceptor, and migrated as a single band on sodium-dodecyl sulfate-polyacrylamide gel electrophoresis with a relative molecular weight of 76,000. The purity, specific activity, and yield were nearly identical to results obtained when the flavoprotein was purified by conventional methods. This procedure eliminates the need for anion-exchange chromatography and allows for the rapid purification of large amounts of Fp suitable for use in studies concerning cytochrome P-450-mediated drug metabolism. Importantly, this method is equally effective when used to purify Fp from rat liver microsomes.  相似文献   

11.
NADPH-dependent reduction of cytochrome c is catalyzed both by microsomes and the cytosolic fraction isolated from Trypanosoma cruzi homogenates. About one-third of the activity is microsomal and two-thirds is cytosolic. The microsomal activity is increased by Lubrol and sodium cholate, but pretreatment with phenobarbital has negligible effect. On the other hand, detergents do not affect the cytosolic activity but it is increased by phenobarbital. From these observations, it is concluded that the NADPH-dependent reduction of cytochrome c by microsomes and the cytosol corresponds to two distinct enzymes. The cytosolic enzyme has been purified to a single SDS-PAGE band of about 53,000 da and partially characterized.  相似文献   

12.
The carboxylesterase (carboxylic-ester hydrolase, EC 3.1.1.1) and monoacylglycerol lipase (glycerol-monoester acylhydrolase, EC 3.1.1.23) activities, measured against ethyl butyrate and emulsified monooleoylglycerol respectively, were determined for chicken liver microsomes and highly purified chicken liver carboxylesterase. The activity ratio (ethyl butyrate activity/monooleoylglycerol activity) was approx. 5 for microsomes and approx. 400 for carboxylesterase. Homogenization of microsomes in 0.1 M Tris-HCl buffer (pH 7.92) released all of the ethyl butyrate activity and about half of the monooleoylglycerol activity into a soluble form. Both activities eluted from a Sephadex G-200 column with the same elution volume as that of pure carboxylesterase. This fraction (fraction B) had an activity ratio of approx. 15, an average pI of 5.01 (cf. 4.75 for carboxylesterase), and ran on polyacrylamide gel electrophoresis at pH 8.6 as a number of closely spaced esterase bands with mobilities considerably less than those of the esterase bands present in the carboxylesterase. Fraction B activities against both substrates were completely inhibited by diethyl p-nitrophenyl phosphate and completely precipitated by antibody to carboxylesterase. The remaining half of the monoacylglycerol lipase activity of microsomes was solubilized by treatment with 1.5% (w/v) Triton X-100. This solubilized monoacylglycerol lipase was completely inhibited by diethyl p-nitrophenyl phosphate, showing it to be a serine-dependent enzyme like the carboxylesterases. However, it had no detectable activity against ethyl butyrate, indicating that it is not closely related to the carboxylesterases.  相似文献   

13.
5-lipoxygenase (EC 1.13.11.12) oxidizes polyunsaturated fatty acids by molecular oxygen. The enzyme acts in close contact with the cell membranes, which main components are ionic and non-ionic lipids. In order to investigate the kinetic parameters of 5-lipoxygenase reaction in vitro, extremely hydrophobic fatty acid substrate (linoleic acid) should be solubilized in the reaction mixture. We used Lubrol PX ("Sigma" Chem. Co), as a non-ionic detergent consisted of oligoethylene glycol and fatty alcohol. Linoleic acid and Lubrol PX formed mixed micelles thus solubilizing the fatty acid substrate in a buffer with appropriate pH. We have studied the sizes and shapes of mixed micelles Lubrol PX/linoleic acid (aggregates type 1) and Lubrol PX/linoleic acid/SDS (aggregates type 2; SDS was an effective activator of potato tuber 5-lipoxygenase) by means of gel-filtration and laser light scattering techniques. The parameters under investigation were molecular weights, Stocks radii and shapes of the mixed micelles. The average molecular weights and Stocks radii of the mixed micelles type 1 determined by mean of gel-filtration on Sephadex G-200 were 95,142 +/- 5184 Da and 3.45 +/- 0.11 nm, respectively. The same parameters for the mixed micelles type 2 were 73,694 +/- 893 Da and 3.02 +/- 0.02 nm, respectively. The strong similarity in physicochemical parameters for both types of mixed micelles indicated that SDS did not influence the size and shape of mixed micelles of Lubrol PX and linoleic acid. The activatory action of SDS on potato tuber lipoxygenase may be a result of electrostatic effect or direct participation of SDS in enzymatic catalysis. The laser light scattering technique allowed to determine two main fraction of particles in type 1 system with hydrodynamic diameters 2.6 and 5.7 nm and relative contribution to light scattering 13 and 87%, respectively. The particles with d = 5.7 nm were interpreted as the mixed micelles. The particles with d = 2.6 nm were interpreted as isolated molecules of Lubrol PX, linoleic acid and (or) their premicellar aggregates. The data obtained are to be used in creation of reliable physical and mathematical models of 5-lipoxygenase.  相似文献   

14.
Microsomal epoxide hydrolase was purified from rat liver, and different fractions of the purified enzyme, which varied in their contents of phospholipid, were obtained by ion-exchange chromatography. One fraction (A), which did not bind to CM-cellulose, had a high phospholipid content, and a second fraction (B), which was eluted from CM-cellulose at high ionic strength, had a low phospholipid content. Removal of most of the phospholipid from fraction A altered its chromatographic behaviour. When the delipidated material was re-applied to CM-cellulose, most of the enzyme bound to the cation-exchanger. The specific activities of all the fractions described (with styrene epoxide [(1,2-epoxyethyl)benzene] as substrate) were altered by adding the non-ionic detergent Lubrol PX or phospholipid. Lubrol PX inhibited enzyme activity, and phospholipid reversed this inhibition. The various enzyme fractions isolated appeared to be different forms of the same protein, as judged by their minimum Mr values and immunochemical properties. These results indicate that different fractions of epoxide hydrolase isolated by ion-exchange chromatography probably are not different isoenzyme forms.  相似文献   

15.
Non-ionic detergents stimulated particulate guanylate cyclase activity in cerebral cortex of rat 8- to 12-fold while stimulation of soluble enzyme was 1.3- to 2.5-fold. Among various detergents, Lubrol PX was the most effective one. The subcellular distribution of guanylate cyclase activity was examined with or without 0.5% Lubrol PX. Without Lubrol PX two-thirds of the enzyme activity was detected in the soluble fraction. In the presence of Lubrol PX, however, two-thirds of guanylate cyclase activity was recovered in the crude mitochondrial fraction. Further fractionation revealed that most of the particulate guanylate cyclase activity was associated with synaptosomes. The sedimentation characteristic of the particulate guanylate cyclase activity was very close to those of choline acetyltransferase and acetylcholine esterase activities, two synaptosomal enzymes. When the crude mitochondrial fraction was subfractionated after osmotic shock, most of guanylate cyclase activity as assayed in the absence of Lubrol PX was released into the soluble fraction while the rest of the enzyme activity was tightly bound to synaptic membrane fractions. The total guanylate cyclase activity recovered in the synaptosomal soluble fraction was 6 to 7 times higher than that of the starting material. The specific enzyme activity reached more than 1000 pmol per min per mg protein, which was 35-fold higher than that of the starting material. The membrane bound guanylate cyclase activity was markedly stimulated by Lubrol PX. Guanylate cyclase activity in the synaptosomal soluble fraction, in contrast, was suppressed by the addition of Lubrol PX. The observation that most of guanylate cyclase activity was detected in synaptosomes, some of which was tightly bound to the synaptic membrane fraction upon hypoosmotic treatment, is consistent with the concept that cyclic GMP is involved in neural transmission.  相似文献   

16.
An (Na+-K+)-ATPase preparation, consisting of NaI-treated microsomes from cattle brain, was incubated with a phosphatidylserine decarboxylase preparation from Escherichia coli. This led to a reduction in the phosphatidylserine content from 10.1 % to less than 0.1%, accompanied by an equimolar formation of phosphatidylethanolamine. Since the (Na+-K+)-ATPase activity was not reduced, it can be concluded that phosphatidylserine is not essential for the Na+-K+)-ATPase activity.  相似文献   

17.
Rat liver phospholipids were radioactively labeled in vivo before purification of UDP-glucuronyltransferase to homogeneity. The pure enzyme contained very little phospholipid (approx. 0.7 mol of phospholipid/mol of protein). The solubilization detergent Lubrol 12A9 appeared to act as a phospholipid substitute, capable of supporting UDP-glucuronyltransferase activity. Phospholipase C did not inhibit the pure enzyme activity and pure UDP-glucuronyltransferase was stimulated by 40--100% by the addition of phospholipid dispersions.  相似文献   

18.
The microsomal fraction of rabbit liver contains an endopeptidase that cleaves synthetic peptides that mimic the amino acid sequences of the processing sites of many proproteins, including the vitamin K-dependent proteins. The endopeptidase (M(r) 69,000) was extracted from liver microsomes with 1% Lubrol and purified about 2,700-fold. The substrate employed for isolation and characterization of the enzyme was the decapeptide acetyl-Ala-Arg-Val-Arg-Arg-Ala-Asn-Ser-Phe-Leu (prothrombin peptide), in which hydrolysis occurred on the carboxyl side of the paired Arg-Arg residues. The purified enzyme, whose activity was enhanced 1.8-fold by 0.1 mM CoCl2, has a Km = 80 microM and Vmax = 21,000 nmol.min-1.mg-1 and a pH optimum of 8.7. Proteolytic cleavage of decapeptide substrates was dependent on an arginine residue at positions P1 and P4. The enzyme was completely inhibited by EDTA and 1,10-phenanthroline as well as by p-chloromercuriphenylsulfonic acid and Hg2+. Inhibitors of serine proteases and cysteine proteases had no effect. Based on the substrate preference, the endopeptidase appears to be a good candidate for the enzyme responsible for the precursor processing of the vitamin K-dependent proteins and a number of other proproteins that are synthesized via the secretory pathway in liver and other tissues.  相似文献   

19.
M W Hamm  V Chan    G Wolf 《The Biochemical journal》1987,245(3):907-910
Rat liver microsomes (microsomal fraction) were isolated from vitamin A-deficient and -sufficient rats and analysed for membrane lipid characteristics. Membrane fluidity was found to be significantly decreased in microsomes from the vitamin A-deficient rats, but not in liposomes prepared from lipid extracts. Microsomes from vitamin A-deficient animals showed a significant decrease in C18:2, omega 6 and an increase in C22:5, omega 6 fatty acids.  相似文献   

20.
Hepatic microsomal glucose-6-phosphatase activity was rendered extremely unstable by a variety of techniques: (a) incubation at pH 5.0; (b) extraction of the microsomal fraction in the presence of 1% Lubrol; (c) various purification procedures. These techniques all result in the removal of a 21 kDa polypeptide from the fraction containing glucose-6-phosphatase activity. The 21 kDa protein was purified to apparent homogeneity by solubilization in the detergent Lubrol 12A-9 and chromatography on Fractogel TSK DEAE-650(S) and centrifugation at 105 000 g. The 21 kDa protein stabilizes glucose-6-phosphatase activity, whereas other purified hepatic microsomal proteins do not. The 21 kDa protein appears to be a potential regulator of glucose-6-phosphatase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号