首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
The allosteric properties of platelet actomyosin and myosin have been further studied. At pH 7.2, both exhibit sigmoid kinetics with at least two interacting ATP binding sites. At pH 8.9, the velocity versus substrate curve is shifted to the right and becomes more sigmoidal. In contrast, at pH 5.5, the enzyme appears to follow hyperbolic kinetics and the Km is reduced. In the presence of 1.4 m urea, the sigmoidicity is lost and the enzyme obeys Michaelis-Menten kinetics. The effect of ADP on the ATPase activity was also investigated. ADP shows characteristics of a competitive inhibitor; it increases Km (shifts sigmoid curve to the right) without affecting V. When the enzyme is desensitized by low pH (5.5) or urea (1.4 m), the allosteric interaction is abolished without impairing the catalytic activity and ADP is no longer inhibitory. These findings suggest that platelet myosin possesses two interacting sites and that ADP binds to the allosteric site which appears to be different from the catalytic site.  相似文献   

2.
The purine nucleotide derivative, 5′-p-fluorosulfonylbenzoyl adenosine (5′-FSO2BZAdo) functions as an affinity label for the allosteric sites of phosphofructokinase. The modified enzyme at pH 6.9 is insensitive to allosteric inhibition by ATP, activation by AMP, c-AMP, ADP and shows no sigmoidal kinetics for fructose-6-P. The reaction does not appear to occur at the catalytic site since modification of the enzyme does not significantly affect its specific activity nor its Michaelis constant at pH 8.2. ADP, and to a much lesser degree AMP and ATP, protects the enzyme from modification by the adenosine reagent. The modified enzyme essentially does not bind significant amounts of AMP, c-AMP, ADP, but still binds an analog of ATP, AppNHp. The adenosine affinity label will be of value in studies on the nature of the AMP-ADP allosteric sites.  相似文献   

3.
H+-FOF1-ATP synthase (F-ATPase, F-type ATPase, FOF1 complex) catalyzes ATP synthesis from ADP and inorganic phosphate in eubacteria, mitochondria, chloroplasts, and some archaea. ATP synthesis is powered by the transmembrane proton transport driven by the proton motive force (PMF) generated by the respiratory or photosynthetic electron transport chains. When the PMF is decreased or absent, ATP synthase catalyzes the reverse reaction, working as an ATP-dependent proton pump. The ATPase activity of the enzyme is regulated by several mechanisms, of which the most conserved is the non-competitive inhibition by the MgADP complex (ADP-inhibition). When ADP binds to the catalytic site without phosphate, the enzyme may undergo conformational changes that lock bound ADP, resulting in enzyme inactivation. PMF can induce release of inhibitory ADP and reactivate ATP synthase; the threshold PMF value required for enzyme reactivation might exceed the PMF for ATP synthesis. Moreover, membrane energization increases the catalytic site affinity to phosphate, thereby reducing the probability of ADP binding without phosphate and preventing enzyme transition to the ADP-inhibited state. Besides phosphate, oxyanions (e.g., sulfite and bicarbonate), alcohols, lauryldimethylamine oxide, and a number of other detergents can weaken ADP-inhibition and increase ATPase activity of the enzyme. In this paper, we review the data on ADP-inhibition of ATP synthases from different organisms and discuss the in vivo role of this phenomenon and its relationship with other regulatory mechanisms, such as ATPase activity inhibition by subunit ε and nucleotide binding in the noncatalytic sites of the enzyme. It should be noted that in Escherichia coli enzyme, ADP-inhibition is relatively weak and rather enhanced than prevented by phosphate.  相似文献   

4.
Papain was modified with the anhydrides of various monocarboxylic (acetic or propionic) and dicarboxylic (citraconic, maleic or succinic) acids. 7–10 of the 11 primary amino groups of the enzyme were modified. The organic solvent tolerances of the modified enzyme forms were increased (especially in the concentration range of 10–60%) in comparison with the unmodified enzyme. Acylation enhanced the catalytic activity and stability of papain both in buffer and in aqueous organic solvents (ethanol and acetonitrile). Decrease of the positive charges on the surface of papain resulted in a higher enzyme stability than when they were replaced by negative charges. The kinetic parameters revealed that in aqueous ethanol the maximum rates (Vmax) and Michaelis constants (KM) of the modified papain forms were increased, and higher catalytic efficiencies (kcat/KM) were detected as compared with the native enzyme. The results of near-UV circular dichroism and tryptophan fluorescence spectroscopic studies suggested that the modifications caused only local changes around the aromatic residues. The modified enzyme forms led to higher N-acetyl-l-tyrosine ethyl ester synthesis conversions in aqueous ethanol; acetyl and propionyl papain furnishing the highest productivity.  相似文献   

5.
We describe the catalytic voltammograms of the periplasmic arsenite oxidase (Aio) from the chemolithoautotrophic bacterium Rhizobium sp. str. NT-26 that oxidizes arsenite to arsenate. Electrochemistry of the enzyme was accomplished using its native electron transfer partner, cytochrome c552 (cyt c552), as a mediator. The protein cyt c552 adsorbed on a mercaptoundecanoic acid (MUA) modified Au electrode exhibited a stable, reversible one-electron voltammetric response at + 275 mV vs NHE (pH 6). In the presence of arsenite and Aio the voltammetry of cyt c552 is transformed from a transient response to an amplified sigmoidal (steady state) wave consistent with an electro-catalytic system. Digital simulation was performed using a single set of parameters for all catalytic voltammetries obtained at different sweep rates and various substrate concentrations. The obtained kinetic constants from digital simulation provide new insight into the kinetics of the NT-26 Aio catalytic mechanism.  相似文献   

6.
The reaction in the Alcaligenes faecalis system previously believed to be a stoichiometric ATP-forming process catalyzed by a high-energy intermediate of oxidative phosphorylation has been shown to be a catalytic ADP ? Pi exchange reaction, which incorporated Pi into the β position of ADP. Preincubation of the enzyme with Pi was partially inhibitory (10–20%), and this substrate-preconditioning effect was greatly enhanced (up to 80%) by divalent cations. DEAE-Sephadex profiles showed several peaks of activity while sucrose-gradient profiles showed only one. About 95% of the enzyme was soluble, while the remainder was compartmentalized in the membrane fraction; most of this small amount could be leached out slowly by successive washings. Low ionic strength reduced but did not eliminate the compartmentation. Incubating phosphorylating particles with DPNH resulted in a slight increase in the elution of coupling factors and exchange enzyme over that of the control system. This was explained in terms of small effects on the affinity of coupling factors for membranes and on the degree of compartmentation of the exchange enzyme. The identity of the enzyme was established as polynucleotide phosphorylase by the finding that it could form a trichloracetic acid-precipitable product which was RNase sensitive (ribopolynucleotide) from [3H] ADP. The concentration of divalent cations determined whether the enzyme would catalyze primarily ADP ? Pi exchange or synthesize polynucleotide.  相似文献   

7.
The physiological ligands for Na,K-ATPase (the Na,K-pump) are ions, and electrostatic forces, that could be revealed by their ionic strength dependence, are therefore expected to be important for their reaction with the enzyme. We found that the affinities for ADP3−, eosin2−, p-nitrophenylphosphate, and Vmax for Na,K-ATPase and K+-activated p-nitrophenylphosphatase activity, were all decreased by increasing salt concentration and by specific anions. Equilibrium binding of ADP was measured at 0–0.5 M of NaCl, Na2SO4, and NaNO3 and in 0.1 M Na-acetate, NaSCN, and NaClO4. The apparent affinity for ADP decreased up to 30 times. At equal ionic strength, I, the ranking of the salt effect was NaCl ≈ Na2SO4 ≈ Na-acetate < NaNO3 < NaSCN < NaClO4. We treated the influence of NaCl and Na2SO4 on K diss for E·ADP as a “pure” ionic strength effect. It is quantitatively simulated by a model where the binding site and ADP are point charges, and where their activity coefficients are related to I by the limiting law of Debye and Hückel. The estimated net charge at the binding site of the enzyme was about +1. Eosin binding followed the same model. The NO3 effect was compatible with competitive binding of NO3 and ADP in addition to the general I-effect. K diss for E·NO3 was ∼32 mM. Analysis of Vmax/K m for Na,K-ATPase and K+-p-nitrophenylphosphatase activity shows that electrostatic forces are important for the binding of p-nitrophenylphosphate but not for the catalytic effect of ATP on the low affinity site. The net charge at the p-nitrophenylphosphate-binding site was also about +1. The results reported here indicate that the reversible interactions between ions and Na,K-ATPase can be grouped according to either simple Debye-Hückel behavior or to specific anion or cation interactions with the enzyme.  相似文献   

8.
5-Formyltetrahydrofolate is a compound that is administered as a rescue agent in methotrexate chemotherapy and in 5-fluorouracil chemotherapy for synergistic effects. It has also recently been suggested to play a role in bacterial resistance to antifolate therapy. 5,10-methenyltetrahydrofolate synthetase (MTHFS) is the only enzyme known to catalyze the conversion of this compound to 5,10-methenyltetrahydrofolate along with the hydrolysis of ATP to ADP. To better understand the roles of specific amino acids in the ATP binding pocket of this enzyme, we used site-directed mutagenesis to create 10 modified forms of the Mycoplasma pneumoniae ortholog. The Michaelis constant (Km) for each substrate and the turnover number (kcat) was determined for each mutant to help elucidate the role of individual amino acids. Data were compared to crystal structures of human and M. pneumoniae orthologs of MTHFS. Results were largely consistent with a simple coulombic and proximity model; the larger the predicted charges of an interaction and the closer those interactions were to the phosphate transferred between the substrates, the greater the reduction in ATP binding and catalytic activity of the enzyme.  相似文献   

9.
Park YJ  Yoon SJ  Lee HB 《Journal of bacteriology》2008,190(24):8086-8095
A novel thermostable arylesterase, a 35-kDa monomeric enzyme, was purified from the thermoacidophilic archaeon Sulfolobus solfataricus P1. The optimum temperature and pH were 94°C and 7.0, respectively. The enzyme displayed remarkable thermostability: it retained 52% of its activity after 50 h of incubation at 90°C. In addition, the purified enzyme showed high stability against denaturing agents, including various detergents, urea, and organic solvents. The enzyme has broad substrate specificity besides showing an arylesterase activity toward aromatic esters: it exhibits not only carboxylesterase activity toward tributyrin and p-nitrophenyl esters containing unsubstituted fatty acids from butyrate (C4) to palmitate (C16), but also paraoxonase activity toward organophosphates such as p-nitrophenylphosphate, paraoxon, and methylparaoxon. The kcat/Km ratios of the enzyme for phenyl acetate and paraoxon, the two most preferable substrates among all tested, were 30.6 and 119.4 s−1·μM−1, respectively. The arylesterase gene consists of 918 bp corresponding to 306 amino acid residues. The deduced amino acid sequence shares 34% identity with that of arylesterase from Acinetobacter sp. strain ADP1. Furthermore, we successfully expressed active recombinant S. solfataricus arylesterase in Escherichia coli. Together, our results show that the enzyme is a serine esterase belonging to the A-esterases and contains a catalytic triad composed of Ser156, Asp251, and His281 in the active site.  相似文献   

10.
AMP-deaminase was purified to homogeneity from white skeletal muscle of control (resting) and exercised (1 min burst swimming) rainbow trout, Oncorhynchus mykiss. The enzyme showed a subunit molecular weight of 71,600 ± 550 kD, a Km AMP of 1.6–1.8 mM at pH 7, and was affected by allosteric inhibitors (GTP, IMP) amd activators (ADP, ATP). AMP-deaminase was inhibited by MgSO4 but activated by low concentrations of NaCl and KCl (100–150 mM); higher KCl was inhibitory. Exercise resulted in a stable modification of some properties (possibly via reversible phosphorylation); I50 values for IMP decreased by 65% and activation energies (from Arrhenius plots) changed significantly. Other properties were affected by assay pH: Km AMP decreased by 50% and Ka, ADP decreased by 70% when pH was lowered from pH 7.3 (typical of resting muscle) to pH 6.6 (muscle pH after exhaustive exercise). The data suggest that a stable modification of AMP-deaminase during exercise, coupled with effects of reduced cytosolic pH, could enhance enzyme function in the rapid conversion of AMP to IMP in working fish muscle.  相似文献   

11.
《Process Biochemistry》2014,49(4):668-672
Porcine pancreatic lipase (PPL) was chemically modified with various functional ionic liquids (ILs) to increase its catalytic performance in water-miscible IL. Catalytic activity and thermostability were tested with a p-nitrophenyl palmitate (pNPP) hydrolysis reaction. The native enzyme lost 18% of its initial activity in 0.4 M [MMIm][MeSO4], whereas the activities of all the modified enzymes increased. The [HOOCBMIm][Cl] modification led to a 2-fold increase in activity in 0.3 M [MMIm][MeSO4] than in aqueous. All the modified enzymes exhibited higher thermostability compared with the native enzyme at high temperature. In particular, the [HOOCBMIm][Cl] modification led to a 6-fold increase in thermostability at 60 °C. Conformational changes were confirmed by fluorescence spectroscopy and circular dichroism spectroscopy to elucidate the mechanism of catalytic performance alteration.  相似文献   

12.
D. Bar-Zvi  N. Shavit 《BBA》1982,681(3):451-458
Inactivation of the chloroplast ATPase upon tight nucleotide binding was studied with several adenine nucleotide analogs. Compared with ADP, the other nucleoside diphosphates were less effective in the follwing order: IDP >?-ADP > 1-oxido-ADP > GDP. The nucleotide analogs compete with ADP for binding to the tight nucleotide-binding site(s) on the ATPase and also prevent further inactivation by ADP. AdoPP[NH]P also causes inactivation but has a lower affinity than ADP. [3H]GDP binds tightly to the ATPase, but the resulting enzyme-GDP complex is more readily dissociable than the enzyme-ADP complex. Although both nucleotides appear to bind to the same site, the catalytic and binding properties of the coresponding nucletide-enzyme complexes differ. Binding of GDP also decreases the rate and extent of the sontaneous decay of the activated enzyme. PPi decreases the rate of inacivation caused by ADP and also the level of tigthly buond ADP. Based on these results, we suggest that two different confomations of the ATPase exist which contain tigthly bound ADP. The active conformation is conveted to the inactive conformation in the absence of a continued supply of energy by illumination or ATP hydrolysis.  相似文献   

13.
Raimund Noske  Flemming Cornelius 《BBA》2010,1797(8):1540-1545
Isothermal titration microcalorimetry (ITC) is shown here to be a sensitive and accurate method for assaying the steady-state enzyme activity of the Na+,K+-ATPase. Single ATP injection experiments yield an apparent enthalpy change for the ATP hydrolysis reaction catalyzed by the enzyme of −51 (± 1) kJ mol1. This value is independent of the amount of ADP accumulated in the sample cell, which indicates that under the experimental conditions studied here (saturating Na+ and K+ concentrations) ADP does not inhibit enzyme activity by reversal of the phosphorylation reaction and resynthesizing ATP. Multiple ATP injection titration experiments in which varying concentrations of ADP were initially included in the sample cell could be adequately explained by a Michaelis-Menten kinetic model incorporating noncompetitive inhibition. This suggests that ADP inhibits the enzyme by binding to more than one enzyme intermediate and inhibiting forward reactions of the enzyme. Values of Km and KI obtained for the fits agree with literature values obtained by other methods. Because ITC is a direct method of continually monitoring enzyme activity, it is a valuable supplement to less direct or noncontinuous methods such as colorimetric, enzyme-coupled or radioactivity-based assays.  相似文献   

14.
5′-Nucleotidase (EC 3. 1. 3. 5) from alkalophilic Bacillus no. C-3 was purified to homogeneity. The molecular weight of the enzyme was 80,000 by gel filtration. The optimum pH for the activity was 9.5, and the enzyme was stable at pH 9.5–10.5 in a buffer containing 10 mM 2-mercaptoethanol. Substrate specificity study revealed that the enzyme acted on 5′-AMP strongly, on several 5′-nucleotides and ADP to a certain extent, but not on 3′-nucleotides, 2′-nucleotides, p-nitrophenyl phosphate, or ATP. The Km value for 5′-AMP was 3.0 × 10−4 M. The enzyme required no divalent cation for its activity. The enzyme was inhibited by borate and arsenite ions but not by 1 mM EDTA.  相似文献   

15.
In a previous paper from this laboratory it was shown that EC.F1 ATPase exhibits a temperature dependent transition between two stable states, called L (low activity) and H (high activity). They differ three-fold in specific activity. I report here the effects of ADP and ATP on this transition. Both nucleotides were found to shift the equilibrium between the two states in the direction of the L state. Further, the velocity of conversion from one state to the other was accelerated by the presence of the nucleotides. It was shown that the two states of the enzyme exhibit different kinetic properties in that: (i) the L state gives a hyperbolic curve when specific activity is plotted against substrate concentration, and ADP produces an immediate competitive inhibition and (ii) the H state exhibits negative cooperativity when such a curve is plotted, and shows a delayed competitive inhibition by ADP. Furthermore, when enzyme in the H state is loaded with ATP its complex kinetic behavior disappears; ADP does not have this effect. The data are interpreted to mean that the H state depleted of ATP may act as an enzyme bearing two alternative catalytic sites.  相似文献   

16.
Irpex lacteus is a white rot basidiomycete proposed for a wide spectrum of biotechnological applications which presents an interesting, but still scarcely known, enzymatic oxidative system. Among these enzymes, the production, purification, and identification of a new dye-decolorizing peroxidase (DyP)-type enzyme, as well as its physico-chemical, spectroscopic, and catalytic properties, are described in the current work. According to its N-terminal sequence and peptide mass fingerprinting analyses, I. lacteus DyP showed high homology (>95%) with the hypothetical (not isolated or characterized) protein cpop21 from an unidentified species of the family Polyporaceae. The enzyme had a low optimal pH, was very stable to acid pH and temperature, and showed improved activity and stability at high H2O2 concentrations compared to other peroxidases. Other attractive features of I. lacteus DyP were its high catalytic efficiency oxidizing the recalcitrant anthraquinone and azo dyes assayed (kcat/Km of 1.6 × 106 s-1 M-1) and its ability to oxidize nonphenolic aromatic compounds like veratryl alcohol. In addition, the effect of this DyP during the enzymatic hydrolysis of wheat straw was checked. The results suggest that I. lacteus DyP displayed a synergistic action with cellulases during the hydrolysis of wheat straw, increasing significantly the fermentable glucose recoveries from this substrate. These data show a promising biotechnological potential for this enzyme.  相似文献   

17.
Nucleotide pyrophosphatase of mung bean seedlings has earlier been isolated in our laboratory in a dimeric form (Mr 65,000) and has been shown to be converted to a tetramer by AMP and to a monomer by p-hydroxymercuribenzoate. All the molecular forms were enzymatically active with different kinetic properties. By a modified procedure using blue-Sepharose affinity chromatography, we have now obtained a dimeric form of the enzyme which is desensitized to AMP interaction. The molecular weight of the desensitized form of the enzyme was found to be the same as that of the native dimeric enzyme. However, the desensitized enzyme functioned with a linear time course, contrary to the biphasic time course exhibited by the native enzyme. In addition, it was not converted to a tetramer on the addition of AMP, had only one binding site for adenine nucleotides, and p-hydroxy-mercuribenzoate had no effect on the time course of the reaction or on the molecular weight of the enzyme. The temperature optimum of the desensitized enzyme was found to be 67 °C in contrast to the optimum of 49 °C for the native dimer. Fifty percent of the tryptophan residues of the desensitized enzyme were not accessible for quenching by iodide. Fluorescence studies gave Kd values of 0.34, 2.2, and 0.8 mm for AMP, ADP, and ATP, which were close to the Ki values of 0.12, 2.2, and 0.9 mm, respectively, for these nucleotides. The binding and inhibition studies with AMP and its analogs showed that the 6-amino group and the 5′-phosphate group were essential for the inhibition of the enzyme activity.  相似文献   

18.
Regulated family II pyrophosphatases (CBS-PPases) contain a nucleotide-binding insert comprising a pair of cystathionine β-synthase (CBS) domains, termed a Bateman module. By binding with high affinity to the CBS domains, AMP and ADP usually inhibit the enzyme, whereas ATP activates it. Here, we demonstrate that AMP, ADP, and ATP bind in a positively cooperative manner to CBS-PPases from four bacteria: Desulfitobacterium hafniense, Clostridium novyi, Clostridium perfringens, and Eggerthella lenta. Enzyme interaction with substrate as characterized by the Michaelis constant (Km) also exhibited positive catalytic cooperativity that decreased in magnitude upon nucleotide binding. The degree of both types of cooperativity increased with increasing concentration of the cofactor Mg2+ except for the C. novyi PPase where Mg2+ produced the opposite effect on kinetic cooperativity. Further exceptions from these general rules were ADP binding to C. novyi PPase and AMP binding to E. lenta PPase, neither of which had any effect on activity. A genetically engineered deletion variant of D. hafniense PPase lacking the regulatory insert was fully active but differed from the wild-type enzyme in that it was insensitive to nucleotides and bound substrate non-cooperatively and with a smaller Km value. These results indicate that the regulatory insert acts as an internal inhibitor and confers dual positive cooperativity to CBS domain-containing PPases, making them highly sensitive regulators of the PPi level in response to the changes in cell energy status that control adenine nucleotide distribution. These regulatory features may be common among other CBS domain-containing proteins.  相似文献   

19.
Native chicken liver fructose-1,6-bisphosphatase (Fru-P2ase) can bind to blue dextranSepharose affinity column and is not displaced by its sugar-phosphate substrate; however; it is readily eluted by the inhibitor 5′-AMP. Treatment of Fru-P2ase with pyridoxal 5′-phosphate (pyridoxal-P) in the presence of the substrate, fructose 1,6-bisphosphate, followed by reduction with NaBH4 leads to the formation of active pyridoxal-P derivatives of the enzyme showing diminished sensitivity to AMP inhibitor. The modified enzyme does not bind to the affinity column. On the other hand, in the presence of AMP modification of Fru-P2ase with pyridoxal-P occurs at the catalytic site; this modification does not alter its binding behavior toward the dye ligand. Blue dextran can also protect Fru-P2ase against AMP inhibition, and it is a competitive desensitizer for the nucleotide ligand. The results establish that blue dextran binds specifically to the allosteric site of the enzyme, and that the structure of this site may resemble that of the dinucleotide fold in other enzymes. Like native Fru-P2ase, digestion of pyridoxal-P-Fru-P2ase (with regulatory properties altered) with subtilisin causes a severalfold increase in the catalytic activity measured at pH 9.2, without significant change in the activity at pH 7.5, and produces a peptide with 56 amino acids. The residual subunit, Mr ~ 30,000, was found to contain all of the incorporated pyridoxal-P.  相似文献   

20.
The H+-ATPase of tonoplast vesicles isolated from red beet (Beta vulgaris L.) storage tissue was studied with respect to the kinetic effects of Cl and NO3. N-Ethylmaleimide (NEM) was employed as a probe to investigate substrate binding and gross conformational changes of the enzyme. Chloride decreased the Km of the enzyme for ATP but caused relatively little alteration of the Vmax. Nitrate increased Km only. Michaelis-Menten kinetics applied throughout with respect to ATP concentration. Nitrate yielded similar kinetics of inhibition in both the presence and absence of Cl. Other monovalent anions that specifically increased the Km of the ATPase for ATP were, in order of increasing Ki, SCN, ClO4, and ClO3. Sulfate, although inhibitory, manifested noncompetitive kinetics with respect to ATP concentration. ADP, like NO3, was a competitive inhibitor of the ATPase but ADP and NO3 did not interact cooperatively nor did either interfere with the inhibitory action of the other. It is concluded that NO3 does not show competitive kinetics because of its stereochemical similarity to the terminal phosphoryl group of ATP. NEM was an irreversible inhibitor of the tonoplast ATPase. Both Mg·ADP and Mg·ATP protected the enzyme from inactivation by NEM but Mg·ADP was the more potent of the two. Chloride and NO3 exerted little or no effect on the protective actions of Mg·ADP and Mg·ATP suggesting that neither Cl nor NO3 are involved in substrate binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号