首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study reports the isolation and characterization of a variant of the human CCRF-CEM leukemia cell line that overproduces the carrier protein responsible for the uptake of reduced folates and the folate analogue methotrexate. The variant was obtained by adapting CCRF-CEM cells for prolonged times to stepwise decreasing concentrations of 5-formyltetrahydrofolate as the sole folate source in the cell culture medium. From cells that were grown on less than 1 nM 5-formyl-tetrahydrofolate, a variant (CEM-7A) was isolated exhibiting a 95-fold increased Vmax for [3H]methotrexate influx compared to parental CCRF-CEM cells. The values for influx Km, efflux t0.5, and Ki for inhibition by other folate (analogue) compounds were unchanged. Affinity labeling of the carrier with an N-hydroxysuccinimide ester of [3H]methotrexate demonstrate an approximately 30-fold increased incorporation of [3H] methotrexate in CEM-7A cells. This suggests that the up-regulation of [3H]methotrexate influx is not only due to an increased amount of carrier protein, but also to an increased rate of carrier translocation or an improved cooperativity between carrier protein molecules. Incubation for 1 h at 37 degrees C of CEM-7A cells with a concentration of 5-formyltetrahydrofolate or 5-methyltetrahydrofolate in the physiological range (25 nM) resulted in a 7-fold decline in [3H]methotrexate influx. This down-regulation during incubations with 5-formyltetrahydrofolate or 5-methyltetrahydrofolate could be prevented by either the addition of 10-25 nM of the lipophilic antifolate trimetrexate or by preincubating CEM-7A cells with 25 nM methotrexate. The down-regulatory effect was specifically induced by reduced folates since incubation of CEM-7A cells with 25 nM of either methotrexate, 10-ethyl-10-deazaaminopterin, aminopterin, or folic acid, or a mixture of purines and thymidine, had no effect on [3H]methotrexate influx. Similarly, these down-regulatory effects on [3H]methotrexate transport by 5-formyltetrahydrofolate, and its reversal by trimetrexate or methotrexate, were also observed, though to a lower extent, for parental CCRF-CEM cells grown in folate-depleted medium rather than in standard medium containing high folate concentrations. These results indicate that mediation of reduced folate/methotrexate transport can occur at reduced folate concentrations in the physiological range, and suggest that the intracellular folate content may be a critical determinant in the regulation of methotrexate transport.  相似文献   

2.
We have isolated stable variants of the L1210 cell exhibiting increased transport inward of the folate analog, methotrexate. These variants show 3- to 14-fold increases in [3H]methotrexate influx compared to parental cells but are unaltered for [3H]methotrexate efflux. This increased influx in each variant is quantitatively reflected in corresponding elevations in intracellular exchangeable levels of drug at steady state, but there is no alteration in membrane potential. The increases in influx are associated with increased values for influx Vmax for a system normally transporting reduced folates and the same increase in the amount of a specific binding component at the cell surface. Otherwise, values for influx Km and specificity for various folate structures are unchanged. This alteration in [3H]methotrexate influx is biochemically and genetically stable, since it is expressed in isolated plasma membrane vesicles and is retained during growth in non-selective medium. Following addition of cycloheximide, the same rate of decay of this transport activity (t 1/2 = 126 +/- 24 to 137 +/- 26 min) was shown for parental and variant cells. From these results we conclude that turnover of this transport property occurs in these cells which is genetically regulated. Also, the elevated transport activity inward for this folate analog in these variant cells is probably the result of a genetic alteration up-regulating the rate of synthesis of the "putative" carrier protein itself. The absence of any effect on efflux of [3H]methotrexate in these variants in the face of evidence for increased synthesis of the carrier protein for the system mediating influx of this folate analog is construed as further evidence for the nonidentity of systems mediating each flux that we proposed on the basis of earlier kinetic studies.  相似文献   

3.
The thiamin transporter encoded by SLC19A2 and the reduced folate carrier (RFC1) share 40% homology at the protein level, but the thiamin transporter does not mediate transport of folates. By using murine leukemia cell lines that express no, normal, or high levels of RFC1, we demonstrate that RFC1 does not mediate thiamin influx. However, high level RFC1 expression substantially reduced accumulation of the active thiamin coenzyme, thiamin pyrophosphate (TPP). This decreased level of TPP, synthesized intracellularly from imported thiamin, resulted from RFC1-mediated efflux of TPP. This conclusion was supported by the following observations. (i) Efflux of intracellular TPP was increased in cells with high expression of RFC1. (ii) Methotrexate inhibits TPP influx. (iii) TPP competitively inhibits methotrexate influx. (iv) Loading cells, which overexpress RFC1 to high levels of methotrexate to inhibit competitively RFC1-mediated TPP efflux, augment TPP accumulation. (v) There was an inverse correlation between thiamin accumulation and RFC1 activity in cells grown at a physiological concentration of thiamin. The modulation of thiamin accumulation by RFC1 in murine leukemia cells suggests that this carrier may play a role in thiamin homeostasis and could serve as a modifying factor in thiamin nutritional deficiency as well as when the high affinity thiamin transporter is mutated.  相似文献   

4.
Studies are reported on the characterization of a new isolate within a novel class of variants of the L1210 cell exhibiting markedly increased transport inward of folate analogues. This variant (L1210/R83), which was selected in the presence of the antifolate metoprine, exhibited a 40-fold increase in [3H]aminopterin influx compared to parental cells and a modest (4-5-fold) increase in [3H]aminopterin efflux. The increase in influx was associated with a comparable increase in influx Vmax for the one-carbon, reduced folate transport system and the same increase in the amount of specific binding of [3H]aminopterin on the cell surface. Values for influx Km for [3H]aminopterin and specificity for various folate structures were unchanged. The alteration in influx Vmax and more rapid efflux accounted for the different level of intracellular exchangeable level of drug at steady state in this variant compared with parental L1210 cells. Otherwise, membrane potential was unchanged. The N-hydroxysuccinimide ester of [3H]aminopterin was used to covalently label the specific binding protein for folate compounds in the plasma membrane of variant and parental L1210 cells. Incorporation of label into this protein was stable under a variety of conditions and accounted for 97 and 52% of total cellular labeling, respectively, for membrane derived from R83 and parental L1210 cells at a reagent concentration of 20 nM. Specific affinity labeling on the surface of parental and variant cells was decreased in the presence of aminopterin, methotrexate, or 5-formyltetrahydrofolate, but not in the presence of folic acid. Also, [3H]aminopterin influx in these cells was inhibited by the N-hydroxysuccinimide ester of aminopterin or methotrexate, but not the N-hydroxysuccinimide ester of folic acid. These findings, in addition to the increased affinity labeling of this variant, which corresponds to the increase in influx of [3H] aminopterin also seen, appears to identify the affinity labeled protein as a component of the "classical" one-carbon, reduced folate transport system in these cells. The affinity labeled protein from each cell type was solubilized in sodium dodecyl sulfate or extracted in detergent in the presence of proteinase inhibitors and was found to elute from Sephacryl S-300 and migrate during sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a single peak of Mr = 45,000-48,000. Recovery of labeled binding protein in these fractions from R83 variant cells was approximately 40 times greater than that from parental cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
CATs,a family of three distinct mammalian cationic amino acid transporters   总被引:2,自引:0,他引:2  
E. I. Closs 《Amino acids》1996,11(2):193-208
Summary Three related mammalian carrier proteins that mediate the transport of cationic amino acids through the plasma membrane have been identified in murine and human cells (CAT for cationic amino acid transporter). Models of the CAT proteins in the membrane suggest they have 12 or 14 transmembrane domains connected by short hydrophilic loops and intracellular N- and C-termini. The transport activity of the CAT proteins is sensitive to trans-stimulation and independent of the presence of sodium ions. These features agree with the behaviour of carrier proteins mediating facilitated diffusion. The three CAT proteins, CAT-1, CAT-2A and CAT-2(B) are encoded by two different genes (CAT-1 and CAT-2). CAT-1 and CAT-2(B) exhibit transport properties consistent with system y+, the principal mechanism for cellular uptake of cationic amino acids. In contrast, CAT-2A has tenfold lower substrate affinity, greater apparent maximal velocity and it is much less sensitive to trans-stimulation. In addition to structural and functional aspects, this review discusses the role of the CAT proteins for supplying substrate to NO synthases and the property of the rodent CAT-1 proteins to function as virus receptors.Abbreviations CAT cationic amino acid transporter - m mouse - h human - r rat - Tea T cell early activation protein - CAA cationic amino acids - TM transmembrane spanning domain - rBAT related to b0,+ amino acid transporter - 4F2hc 4F2 heavy chain cell surface antigen - MuLV murine leukemia viruses - Km Michaelis Menten constant  相似文献   

6.
Two biochemically distinct systems, the high affinity folate receptor and the lower affinity reduced-folate carrier, have each been implicated in mediating the transport of folates and antifolates into cells. Previous studies from our laboratory have shown that methotrexate accumulation into wild type (WT) ZR-75-1 human breast cancer cells involves a system with characteristics of the reduced-folate carrier, that this system is deficient in methotrexate resistant (MTXR) ZR-75-1 cells in which methotrexate transport is undetectable and that neither breast cancer cell line expresses folate receptors. In this report we examined the possible interaction of the reduced-folate carrier with folate receptors by stably transfecting both WT ZR-75-1 and MTXR ZR-75-1 cells with an expression vector containing a folate receptor cDNA. Clones of stably transfected MTXR ZR-75-1 and WT ZR-75-1 cells expressing comparable levels of folate receptors were studied and compared to the nontransfected cell lines. Although nontransfected WT and MTXR ZR-75-1 cell lines require concentrations > or = 100 nM folic acid for growth, the expression of folate receptors in transfected WT and MTXR ZR-75-1 cells permitted the growth of both cell lines in low concentrations (1 nM) of folic acid. While the defect in the reduced-folate carrier system in MTXR ZR-75-1 cells inhibits their growth in medium containing low concentrations of folinic acid (< or = 1 microM), MTXR ZR-75-1 cells expressing folate receptors display uninhibited growth in 1 nM folinic acid. The accumulation of folic acid, folinic acid, and methotrexate is enhanced in folate receptor-transfected WT ZR-75-1 cells and MTXR ZR-75-1 cells. Furthermore, the accumulation of folates and antifolate was similar in both transfected WT and MTXR ZR-75-1 cell lines that expressed folate receptors. This suggests that alterations in the reduced-folate carrier do not affect folate receptor function. We also examined the effect of folate receptor expression on the sensitivity of WT and MTXR ZR-75-1 cells to methotrexate and to the lipophillic antifolate trimetrexate. Increased folate receptor expression decreased the sensitivity of WT ZR-75-1 cells toward the antifolate trimetrexate, presumably through increased uptake of reduced folates. Although the expression of the folate receptor enhanced the growth of both cell lines in low folate concentrations, it did not affect the sensitivity of either WT or MTXR ZR-75-1 cells to methotrexate.  相似文献   

7.
We report on membrane protein changes in an L1210 leukemia cell line with a highly specific defect in the function of the methotrexate (MTX)-tetrahydrofolate cofactor transport carrier. This clonal line, MTXrA, made 100-fold resistant to MTX, was derived in a single step and exhibited stable resistance over 120 generations in the absence of drug. The transport defect was associated with a 10-fold decrease in influx Vmax without a change in influx Km. There was no difference between the MTXrA and parent lines in the levels or affinities of specific cell surface binders for MTX nor in the labeling of the 44-kDa membrane protein upon treatment with the specific affinity label, N-hydroxysuccinimide ester of tritiated MTX. Consistent with impaired carrier function was the observation that trans-stimulation of MTX influx by intracellular 5-formyltetrahydrofolate observed in the parent line was not demonstrated in the MTXrA line. The transport defect was highly specific for the MTX-tetrahydrofolate cofactor transport carrier. Initial uptake rates for 5-fluoro-2'-deoxyuridine and 2-deoxyglucose were unchanged and influx and net transport of alpha-aminoisobutyric acid were, in fact, increased. There was no cross-resistance of this line to phenylalanine mustard or cytosine arabinoside, agents that utilize specific amino acid and nucleoside transport carriers, respectively. SDS-polyacrylamide gel electrophoresis of purified plasma membrane preparations stained with Coomassie Blue revealed several protein differences between the parental and MTXrA lines. Most prominent is a band at approximately 190 kDa which ran with slightly greater mobility than a lesser staining band in the parent line. [3H]Borohydride labeling of cells also identified a distinct protein peak in the MTXrA line at approximately 190 kDa eliminated by prior treatment of cells with neuraminidase. Absence of expression of protein or mRNA related to the multidrug resistance gene as well as lack of cross-resistance to daunorubicin or trimetrexate indicate that this mechanism of resistance to MTX is completely unrelated to the multidrug resistance phenomenon observed with high molecular weight heterocyclic compounds. These data represent the first demonstration of membrane protein differences in a highly resistant L1210 murine leukemia cell line with a marked unique defect in MTX transport which appears to be related to impaired mobility of the tetrahydrofolate-cofactor carrier. Further studies are now required to elucidate the possible role of one or more of these proteins in the transport defect.  相似文献   

8.
9.
Summary Interaction of positively charged liposomes with Ehrlich ascites tumor cells increases the bidirectional transmembrane fluxes of the anionic folic acid analog, methotrexate. Negative liposomes reduce methotrexate influx. Stimulation of methotrexate influx by positively charged liposomes is time and concentration dependent, requiring at least a 5-min incubation with 2.5mm phosphatidylcholine containing 20% stearylamine for maximum effect. Stimulation is not appreciably reversed by washing the cells. Similar increases are observed for influx and efflux so that there is no change in the steady-state methotrexate electrochemical-potential difference across the cell membrane. The increase in influx appears to be a stimulation of the carrier-mediated transport process for methotrexate since both control and stimulated influx are abolished by the competitive inhibitor, 5-formyltetrahydrofolate or the sulfhydryl group inhibitor,p-chloromercuriphenylsulfonic acid and the Q10 of the system remains unchanged. Influx of 5-methyltetrahydrofolate, which shares the same transport carrier as methotrexate, is also stimulated. However, the transport of folic acid, which is structurally similar to methotrexate but does not utilize the carrier, is unaffected. The kinetic change induced by positively charged liposomes is an increase in theV ma in , while theK t in remains unchanged. Trans-stimulation of methotrexate influx by 5-formyltetrahydrofolate occurs to the same extent in the presence or absence of positively charged liposomes. The liposomes have no apparent effect on the intracellular water, the extracellular space, or the chloride distribution ratio. The data suggest that interaction of positively charged liposomes with Ehrlich ascites tumor cells accelerates the rate of transposition of the membrane carrier system for methotrexate, altering the kinetics of transport without a change in transport thermodynamics.  相似文献   

10.
This report details the effects of methotrexate on the intracellular folate pools of the MCF-7 human breast cancer cell line. To achieve this goal, we designed a high-pressure liquid chromatography system capable of separating the physiologic folates. The folate pools were quantitated following growth and equilibration in 2.25 microM radiolabeled folic acid. Each of the intracellular folates was identified by coelution with standard folates and by chemical/biochemical tests unique to each of the various folates. The 10-formyl-H4PteGlu (where H4PteGlu represents dl-tetrahydrofolic acid) pool accounted for 20.5% of the total intracellular folate pool in untreated cells, whereas 5-formyl-H4PteGlu and H4PteGlu accounted for 6.5 and 10.6%, respectively. The levels of these three folates remained stable throughout cell growth. The 5-methyl-H4PteGlu pool accounted for less than 10% in early growth phase cells but assumed greater than 60% of the total pool by the mid- and late-log phases of cell growth. When the MCF-7 cells were exposed to 1 microM methotrexate, de novo purine synthesis and de novo thymidylate synthesis were rapidly inhibited to less than 20% of control within 3 h. During this time period, rapid alterations in the folate pools also occurred such that dihydrofolic acid levels rose from less than 1% in untreated cells to greater than 30% of the total pool. This rise was accompanied by a parallel fall in 5-methyl-H4PteGlu. H4PteGlu and 5-formyl-H4PteGlu were undetectable following 2 h of methotrexate exposure, but 10-formyl-H4PteGlu, the required cosubstrate for de novo purine synthesis, was preserved at greater than 80% of pretreatment values following a 1 microM methotrexate exposure of up to 21 h. The rapid inhibition of de novo purine synthesis in these cells following methotrexate exposure coupled with a relatively preserved 10-formyl-H4PteGlu pool suggests direct inhibition of this synthetic pathway by the temporally coincident accumulation of dihydrofolic acid and/or methotrexate polyglutamates. This inhibition cannot be ascribed to depletion of the folate cofactor 10-formyl-H4PteGlu.  相似文献   

11.
Proton-coupled folate transporter (PCFT) mediates folate intestinal absorption and transport across the choroid plexus, processes defective in subjects with hereditary folate malabsorption (HFM). PCFT is also widely expressed in human solid tumors where it contributes to the transport of pemetrexed and other antifolates. This study defines the basis for the functional changes due to a P425R mutation detected in a subject with HFM. Among various substitutions, only positively charged mutants (P425R and P425K) lost function but in a highly selective manner. Transport of reduced folates mediated by P425R-PCFT was virtually abolished; the methotrexate influx K(t) was increased fivefold (from 2 to 10 μM). In contrast, the pemetrexed influx K(t) mediated by P425R-PCFT was decreased 30% compared with wild-type (WT)-PCFT. Methotrexate inhibition of pemetrexed influx was competitive with a K(i) for WT-PCFT comparable to its influx K(t). However, the methotrexate influx K(i) for P425R-PCFT was ~15-fold higher than the WT-PCFT influx K(t) and threefold higher than the methotrexate influx K(t) for the P425R-PCFT mutant. The confirmed secondary structure and homology modeling place the P425 residue at the junction of the 6th external loop and 12th transmembrane domain, remote from the aqueous translocation pathway, a prediction confirmed by the failure to label P425C-PCFT with N-biotinylaminoethyl methanethiosulfonate-biotin and the absence of inhibition of P425C-PCFT function by water-soluble sulfhydryl reagents. Hence, despite its location, the P425R-PCFT mutation produces a conformational change that fully preserves pemetrexed binding but markedly impairs binding of methotrexate and other folates to the carrier.  相似文献   

12.
Sanchez CP  Stein W  Lanzer M 《Biochemistry》2003,42(31):9383-9394
The mechanism underpinning chloroquine drug resistance in the human malarial parasite Plasmodium falciparum has remained controversial. Currently considered models to explain the resistance phenotype include acquisition of a chloroquine efflux pump, changes in intracellular chloroquine partitioning, diminished binding affinity of chloroquine to its intracellular target, heme, and changes in heme crystallization. To challenge these different models, we have investigated chloroquine accumulation under trans-stimulation conditions and in the presence and absence of glucose. We show that, in chloroquine-sensitive strains, labeled chloroquine accumulation is steadily reduced as the pre-equilibrated chloroquine concentration is raised. In the resistant cells, the extent of accumulation is, strikingly, raised at the lower levels of preloading, in comparison with resistant controls in the absence of chloroquine. The trans-stimulation effect observed in chloroquine-resistant cells is strictly energy-dependent. The data are interpreted in terms of a model in which chloroquine is bound to intracellular binding sites, not different as between sensitive and resistant cells, but where, in resistant cells, there exists an energy-dependent carrier that moves chloroquine out of this intracellular compartment. A mathematical model describing the kinetics of these processes is presented.  相似文献   

13.
Mammalian cationic amino acid transporters (CAT) differ in their substrate affinity and sensitivity to trans-stimulation. The apparent Km values for cationic amino acids and the sensitivity to trans-stimulation of CAT-1, -2B, and -3 are characteristic of system y+. In contrast, CAT-2A exhibits a 10-fold lower substrate affinity and is largely independent of substrate at the trans-side of the membrane. CAT-2A and -2B demonstrate such divergent transport properties, even though their amino acid sequences differ only in a stretch of 42 amino acids. Here, we identify two amino acid residues within this 42-amino acid domain of the human CAT-2A protein that are responsible for the apparent low affinity of both the extracellular and intracellular substrate-binding sites. These residues are located in the fourth intracellular loop, suggesting that they are not part of the translocation pathway. Rather, they may be responsible for the low affinity conformation of the substrate-binding sites. The sensitivity to trans-stimulation is not determined by the same amino acid residues as the substrate affinity and must involve a more complex interaction between individual amino acid residues. In addition to the 42-amino acid domain, the adjacent transmembrane domain X seems to be involved in this function.  相似文献   

14.
Everted sacs of rat intestine were used to observe the efflux of preloaded folic acid in the presence and absence of external folic acid and related compounds. Pteroyl-L-glutamic acid, 10-formyl folic acid and methotrexate were found to significantly stimulate efflux, whereas pteroyl-D-glutamic acid was significantly less effective and pteroic acid gave zero stimulation. These results suggest either the presence of intracellular binding sites for folic acid, or a specific membrane carrier system.  相似文献   

15.
Human oxyhemoglobin reacted with 4-isothiocyanatobenzoic acid shows a decreased oxygen affinity that does not change with increasing chloride concentration indicating that all of the oxygen-linked chloride binding sites are blocked in the modified protein. By contrast, reaction of oxyhemoglobin with 4-isothiocyanatobenzenesulfonamide produces a modified protein with increased oxygen affinity below pH 7.3 that shows the expected decrease in oxygen affinity with increasing chloride concentration. The latter result demonstrates the importance of the negatively charged moiety in producing both the decrease in oxygen affinity and the effect on the oxygen-linked chloride binding sites produced by 4-isothiocyanatobenzoic acid. Reduction in the alkaline Bohr effect by 50% in the protein modified by 4-isothiocyanatobenzoic acid indicates that contribution to the alkaline Bohr effect is evenly divided between chloride dependent and chloride independent groups.  相似文献   

16.
Binding of 125I-labelled epidermal growth factor (EGF) to C3H/2K cells and the effect of a tumor promotor, 12-O-tetradecanoyl phorbol-13-acetate (TPA) and of a tumor promotor antagonist, retinoic acid, on the binding was studied. Scatchard plot analysis of the binding showed the presence of two type of binding sites with different affinity to EGF. Treatment of the cells with retinoic acid for 1 h resulted in elevation of the affinity of both sites without changing their number per cell. Prolonged exposure to retinoic acid abrogated this elevation of the affinity and caused cycloheximide-sensitive increase of the number of the binding sites of both types. TPA inhibited binding of EGF to the cells by abolishing the binding to the high affinity sites, whereas retinoic acid, in the presence of TPA, enhanced it by increasing the number of the low affinity sites.  相似文献   

17.
Reduced folates such as 5-methyl tetrahydrofolate and classical antifolates such as methotrexate are actively transported into mammalian cells by the reduced folate carrier (RFC). RFC is characterized by 12 stretches of mostly hydrophobic, alpha-helix-promoting amino acids, internally oriented N and C termini, and a large central linker connecting transmembrane domains (TMDs) 1-6 and 7-12. Previous studies showed that deletion of the majority of the central loop domain between TMDs 6 and 7 abolished transport, but this segment could be replaced with mostly non-homologous sequence from the SLC19A2 thiamine transporter to restore transport function. In this report, we expressed RFC from separate TMD1-6 and TMD7-12 RFC half-molecule constructs, each with a unique epitope tag, in RFC-null K562 cells to restore transport activity. Restored transport exhibited characteristic transport kinetics for methotrexate, a capacity for trans-stimulation by pretreatment with leucovorin, and inhibition by N-hydroxysuccinimide methotrexate, a documented affinity inhibitor of RFC. The TMD1-6 half-molecule migrated on SDS gels as a 38-58 kDa glycosylated species and was converted to 27 kDa by N-glycosidase F or tunicamycin treatments. The 40 kDa TMD7-12 half-molecule was unaffected by these treatments. Using transfected cells expressing both TMDs 1-6 and TMDs 7-12 as separate polypeptides, the TMD7-12 half-molecule was covalently radiolabeled with N-hydroxysuccinimide [(3)H]methotrexate. No radioactivity was incorporated into the TMD1-6 half-molecule. Digestion with endoproteinase GluC decreased the size of the radiolabeled 40 kDa TMD7-12 polypeptide to approximately 20 kDa. Our results demonstrate that a functional RFC can be reconstituted with RFC half-molecules and localize a critical substrate binding domain to within TMDs 7-12.  相似文献   

18.
Summary o-Phthalate is actively transported into L1210 cells and the primary route for cell entry is the same transport system which mediates the influx of methotrexate and other folate compounds. The identity of the influx route has been established by the following observations: (A) Phthalate influx is competitively inhibited by methotrexate and the inhibition constant (K i ) is comparable to theK i for half-maximal influx of methotrexate; (B) Various anions inhibit the influx of phthalate and methotrexate with comparableK i values; (C) The influx of phthalate and methotrexate both fluctuate in parallel with changes in the anionic composition of the external medium; and (D) A specific covalent inhibitor of the methotrexate transport system (NHS-methotrexate) also blocks the transport of phthalate. In contrast, the efflux of phthalate does not occur via the methotrexate influx carrier, but rather by two separate processes which can be distinguished by their sensitivities to bromosulfophthalein. Efflux via the bromosulfophthalein-sensitive route constitutes 75% of total efflux and is enhanced by glucose and inhibited by oligomycin. The inability of phthalate to exit via the methotrexate influx carrier is due to competing intracellular anions which prevent phthalate from interacting with the methotrexate binding site at the inner membrane surface.  相似文献   

19.
Studies of the binding of four folate derivatives to the cell surface of Dictyostelium discoideum indicate the existence of five types of sites. About 99% of the total number of binding sites (160 000 per cell) belongs to the ‘non-selective’ type, which recognizes folate, 2-deaminofolate and methotrexate with equal affinity. As judged by the kinetics of association and dissociation this class consists of two distinct subtypes; a high-affinity site, designated by AH, and a low-affinity site AL. Upon addition of ligand a number of the low-affinity sites is converted to the high-affinity state. Prolonged dissociation revealed the presence of extremely slowly dissociating sites. While the A-sites released bound ligand within 5 s, the slow (B) type yielded a half-time of about 6 min. This class (550 sites per cell) showed a clear selectivity for the four folates, with N10-methylfolate being the best ligand. From the kinetics of association and dissociation it is concluded that the B-sites are interconvertible with another binding type. In addition a class of sites was detected, which binds N10-methylfolate and folate with high affinity but 2-deaminofolate and methotrexate with approx. 100-fold lower affinity. Kinetic studies reveal that this C-class is also composed of two subtypes; a fast equilibrating site (within 1 s) designated as CF, and a slower site CS. It is proposed that before binding of ligand only CF exists, while after binding this binding type is converted into CS. At equilibrium more than 90% of the C-sites have attained the CS state.  相似文献   

20.
The reduced folate carrier (RFC) is the major transport system for folates in mammals. We previously demonstrated the existence of human RFC (hRFC) homo-oligomers and established the importance of these higher order structures to intracellular trafficking and carrier function. In this report, we examined the operational significance of hRFC oligomerization and the minimal functional unit for transport. In negative dominance experiments, multimeric transporters composed of different ratios of active (either wild type (WT) or cysteine-less (CLFL)) and inactive (either inherently inactive (Y281L and R373A) due to mutation, or resulting from inactivation of the Y126C mutant by (2-sulfonatoethyl) methanethiosulfonate (MTSES)) hRFC monomers were expressed in hRFC-null HeLa (R5) cells, and residual WT or CLFL activity was measured. In either case, residual transport activity with increasing levels of inactive mutant correlated linearly with the fraction of WT or CLFL hRFC in plasma membranes. When active covalent hRFC dimers, generated by fusing CLFL and Y126C monomers, were expressed in R5 cells and treated with MTSES, transport activity of the CLFL-CLFL dimer was unaffected, whereas Y126C-Y126C was potently (64%) inhibited; heterodimeric CLFL-Y126C and Y126C-CLFL were only partly (27 and 23%, respectively) inhibited by MTSES. In contrast to Y126C-Y126C, trans-stimulation of methotrexate uptake by intracellular folates for Y126C-CLFL and CLFL-Y126C was nominally affected by MTSES. Collectively, these results strongly support the notion that each hRFC monomer comprises a single translocation pathway for anionic folate substrates and functions independently of other monomers (i.e. despite an oligomeric structure, hRFC functions as a monomer).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号