首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transbilayer movement of the fluorescent membrane probe TMA-DPH [1-[4-(trimethylammonio)phenyl]-6-phenyl-1,3,5-hexatriene] in the plasma membrane of human platelets was investigated by measuring fluorescence intensity and fluorescence decay. Labeling of unstimulated platelets by TMA-DPH results in a rapid increase in fluorescence intensity, leveling off within 1 min. Dilution of platelets into buffer without TMA-DPH leads to an almost complete rapid efflux of TMA-DPH, indicating that TMA-DPH labels only the outer leaflet of the plasma membrane. Transbilayer movement of the fluorescent probe in unstimulated platelets could be observed upon prolonged incubation and occurs with a t1/2 of 60-90 min. Stimulation of platelets with thrombin directly after the initial rapid uptake of TMA-DPH results in a fast increase in membrane-bound TMA-DPH, fully explained by the increase in plasma membrane caused by secretion of intracellular storage organelles. No indications for increased transbilayer movement of the probe were found, since dilution of thrombin-stimulated TMA-DPH-labeled platelets into buffer without TMA-DPH indicated no uptake of TMA-DPH by intracellular membranes. In contrast to thrombin, stimulation of TMA-DPH-labeled platelets with the Ca2(+)-ionophore ionomycin results in a much larger increase in fluorescence intensity. This process is accompanied by labeling of intracellular membranes as indicated by incomplete efflux of TMA-DPH after dilution of the stimulated platelets. Thus, stimulation of platelets by ionomycin gives rise to rapid and massive inward movement of TMA-DPH (t1/2 approximately 10-12 s). Prolonged incubation of platelets in the absence of any stimulus allows labeling of the total lipid pool, including intracellular membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Summary Membrane fluidity of bovine platelets was examined with diphenylhexatriene (DPH), its cationic trimethylammonium derivative (TMA-DPH) and anionic propionic acid derivative (DPH-PA). After addition of these probes to platelet suspensions at 37°C, the fluorescence intensity of DPH-PA reached equilibrium within 2 min, whereas those of DPH and TMA-DPH increased gradually. With increase in the fluorescence intensity of TMA-DPH, its fluorescence anisotropy decreased significantly, but the fluorescence anisotropies of DPH-PA and DPH did not change during incubation. The gradual increase of fluorescence intensity of TMA-DPH was due to its penetration into the cytoplasmic side of the platelet membrane, as shown quantitatively by monitoring decrease in its extractability with albumin. Transbilayer movement of TMA-DPH was markedly temperature-dependent, and was scarcely observed at 15°C. The fluorescence intensity of TMA-DPH was much higher in platelet membranes and vesicles of extracted membrane lipids than the initial intensity in intact platelets. Moreover, the fluorescence anisotropy of TMA-DPH was much lower in the former preparations than the initial value in intact platelets. These results suggest that binding sites for TMA-DPH in the cytoplasmic side of the platelet membrane are more fluid than those in the outer leaflet of the plasma membrane. Platelet activation by ionomycin induced specific change in the fluorescence properties of TMA-DPH without causing transbilayer incorporation of the probe.  相似文献   

3.
Fluorescence anisotropy measurements are widely used as sensitive indicators of cell membrane fluidity. 1-[4-(trimethylamino)phenyl]-6-phenyl hexa-1,3,5-triene (TMA-DPH) is a cationic fluorescent aromatic hydrocarbon that anchors at the lipid-water interface of membrane lipid bilayers. Its uptake into porcine pulmonary artery and aortic endothelial cells was monitored and the probe remained specifically localized on the cell surface for at least 4 h. It can therefore be recommended for use for specific plasma membrane lipid fluidity measurements in these cells. The effect of hyperoxia on plasma membrane fluidity was measured by using TMA-DPH. In both cell types, hyperoxic damage resulted in decreases in plasma membrane fluidity. Recovery was achieved 48 h after a 42-h hyperoxic exposure. These results indicate that TMA-DPH is a sensitive probe of plasma membrane lipid domains of pulmonary artery and aortic endothelial cells and that hyperoxia causes reversible changes in the physical state of superficial lipid domains of the plasma membrane of these cells.  相似文献   

4.
The lipophilic fluorescent probe trimethylamino-diphenylhexatriene (TMA-DPH) has been shown previously to behave as a marker of plasma membrane in living cell systems, and it has therefore been widely used in membrane fluidity studies via fluorescence anisotropy measurements. However, progressive internalization of this probe in cells could lead to unsuitable interferences, when long incubations times were required. The mechanism of this internalization had not yet been elucidated. We present here fluorescence-intensity kinetic results and fluorescence micrographic data on L929 cells and on mouse bone-marrow macrophages, which allow us to identify the mechanism as fluid-phase pinocytosis: the probe remains associated with the plasma membrane throughout its internalization-recycling flow and it is finally concentrated in lysosomes. The study was facilitated by the partition equilibrium property of TMA-DPH between plasma membranes and the external aqueous medium, which allowed to immediately distinguish the internalized fraction of the probe from the peripheral labelling, by simply washing cells. This conclusion is confirmed by the features of the influence of temperature on TMA-DPH internalization.  相似文献   

5.
The effect of magnesium on the phospholipid order parameter and not the conformation of purified pig kidney outer medulla (Na+ + K+)-ATPase was investigated by fluorescence techniques. Measurements with a fluorescent probe TMA-DPH and its sensitized fluorescence with tryptophan residues as donors revealed that magnesium increased the order of the membrane phospholipids both in the lipid annulus and in the bulk phase. Changes in the lipid order induced by Mg2+ can be closely referred to the protein arrangement followed by the steady-state anisotropy of FITC-labeled (Na+ + K+)-ATPase.  相似文献   

6.
A simple, flexible and sensitive fluorescence method is described, which, from the same experiment, provides coupled quantitative informations on membrane fluidity changes and exocytosis, and reliable kinetic analyses of these effects, in intact cell suspensions. The method is based on the features peculiar to trimethylammonio-diphenylhexatriene (TMA-DPH), a fluorescent hydrophobic probe, which, in intact cells, is incorporated specifically into the plasma membranes, according to an instantaneous partition equilibrium. The method was tested on human platelets upon stimulation with various agents, such as human alpha-thrombin, adenosine diphosphate (ADP), adrenaline and ionomycin, which act through different types of mechanism. The experimental conditions were chosen to allow platelet shape change and exocytosis, but no aggregation. The kinetics and the dose-dependence of the changes in TMA-DPH fluorescence intensity and anisotropy were compared to the simultaneous physiological responses of platelets to the same stimuli, under the same conditions. Quantitative correlations were established between serotonin secretion and the increase in fluorescence intensity, whereas fluorescence anisotropy, which monitors membrane fluidity changes was associated with platelet shape change. The specificity of the effects was confirmed with appropriate antagonistic or modulating agents.  相似文献   

7.
The effects of three short-chain alkyl alcohols and benzyl alcohol on the membrane fluidity of bovine blood platelets were investigated by studies on the fluorescence anisotropies of diphenylhexatriene (DPH), its cationic trimethylammonium derivative (TMA-DPH) and its anionic propionic acid derivative (DPH-PA). These alcohols decreased the fluorescence anisotropy of DPH, which is thought to be located within the hydrophobic core of the membrane, in concentration ranges that inhibited platelet aggregation. On the other hand, they had little or no effects on the fluorescence anisotropy of DPH-PA which is thought to be located in the interfacial region of the lipid bilayer. Likewise, they had little or no effects on the fluorescence anisotropy of TMA-DPH, which is also thought to be located in the interfacial region of the lipid bilayer, either when the probe was located in the outer layer of the plasma membrane or when the probe was located in the inner membrane compartment. These results suggest that alcohols mainly increase the fluidity in the central region of the lipid bilayer. Consistent with their effects on the fluorescence anisotropy of DPH, these alcohols increased the intracellular cyclic AMP concentration. Thus alcohols may inhibit platelet function due to stimulation of adenylate cyclase, which is mediated by perturbation of the central region of the membrane lipid bilayer.  相似文献   

8.
The fluorescent hydrophobic plasma membrane probe, trimethylamino-diphenylhexatriene (TMA-DPH) was previously shown to follow the plasma membrane throughout its internalization and recycling process and thus to behave as a marker for endo- and exocytosis in living cell systems. In this paper, we made use of these properties to investigate membrane fluidity effects associated with endocytosis in L929 cells. For that purpose we performed TMA-DPH fluorescence anisotrophy measurements which showed that endocytosis starts from particularly rigid regions of the plasma membrane (probably coated pits). The fluorescence anisotropy then continuously decreases to a lower limit corresponding to the membrane fluidity of the probe in the lysosomial membrane. Strikingly, the value of this limit is identical to the average anisotropy value in the peripheral membrane, which suggests that lysosomes and plasma membrane may have a similar phospholipidic composition and a possible common origin.  相似文献   

9.
Kunes J  Devynck MA  Zicha J 《Life sciences》2000,67(8):959-967
Lipid metabolism disorders were proposed to mediate numerous cell membrane alterations in various forms of hypertension. Elevated plasma triglycerides were found to be associated with changes in membrane structure and function related to altered microviscosity in particular domains of the cell membrane. The aim of our study was to determine if an abnormal triglyceride metabolism might play a causal role in these alterations of membrane dynamics. Using genetically hypertensive rats of the Prague hereditary hypertriglyceridemic (HTG) strain we investigated whether the elevation of circulating triglycerides induced by high fructose intake and/or their lowering by chronic gemfibrozil treatment (for 10 weeks starting at the age of 6 weeks) are followed by reciprocal changes in membrane microviscosity. Two different fluorescent probes exploring either the outer membrane leaflet (TMA-DPH anisotropy) or the membrane lipid core (DPH anisotropy) were used in platelets of HTG rats. DPH (diphenylhexatriene) fluorescence anisotropy was decreased in platelets of fructose-treated HTG animals with highly elevated plasma triglyceride levels, whereas it was increased in gemfibrozil-treated HTG rats in which triglyceride levels were almost normalized. On the contrary, TMA-DPH (trimethylamino-diphenylhexatriene) anisotropy was not substantially altered in platelets from HTG rats by the above modifications of circulating triglycerides. No changes of plasma cholesterol or blood pressure were associated with the triglyceride-dependent modifications of membrane core microviscosity. Our interventional study demonstrates a major causal role of circulating triglycerides in the control of the microviscosity of membrane lipid core.  相似文献   

10.
Trimethylammoniumdiphenylhexatriene (TMA-DPH) is a hydrophobic fluorescent probe with a high quantum yield, which was shown earlier to have specific localization properties in the plasma membranes of whole living cells. This probe was used in aqueous suspensions of L929 mouse fibroblasts, rat mast cells and ReH6 leukemic lymphocytes for determining plasma membrane fluidity from fluorescence stationary anisotropy measurements. TMA-DPH was only partially incorporated into the membranes, most of it remained as a stable form in the buffer solution; the distribution was governed by an equilibrium. The measurements were influenced by unavoidable parasitic scattered light and an appropriate correction is described. A set of precautions for the proper use of the probe is proposed. The results indicated that the fluidity was considerably lower in whole cells than in isolated membranes from the same system.  相似文献   

11.
Exogenous gangliosides readily associate with the cell membranes and produce marked effects on cell growth and differentiation. We have studied the effect of bovine brain gangliosides (BBG) on the membrane dynamics of intact cells. The structural and dynamic changes in the cell membrane were monitored by the fluorescence probes DPH, TMA-DPH and laurdan. Incorporation of BBG into the cell membrane decreased the fluorescence intensity, lifetime and the steady state anisotropy of TMA-DPH. Analysis of the time resolved anisotropy decay by wobbling in the cone model revealed that BBG decreased the order parameter, and increased the cone angle without altering the rotational relaxation rate. The fluorescence intensity and lifetime of DPH were unaffected by BBG incorporation, however, a modest increase was observed in the steady state anisotropy. BBG incorporation reduced the total fluorescence intensity of laurdan with pronounced quenching of the 440-nm band. The wavelength sensitivity of generalized polarization of laurdan manifested an ordered liquid crystalline environment of the probe in the cell membrane. BBG incorporation reduced the GP values and augmented the liquid crystalline behavior of the cell membrane. BBG incorporation also influenced the permeability of cell membranes to cations. An influx of Na+ and Ca2+ and an efflux of K+ was observed. The data demonstrate that incorporation of gangliosides into the cell membrane substantially enhances the disorder and hydration of the lipid bilayer region near the exoplasmic surface. The inner core region near the center of the bilayer becomes slightly more ordered and remains highly hydrophobic. Such changes in the structure and dynamics of the membrane could play an important role in modulation of transmembrane signaling events by the gangliosides.  相似文献   

12.
Platelets maintain a low cytosolic free Ca2+ concentration by limiting Ca2+ influx from plasma and promoting Ca2+ efflux. The present studies examine the role of the plasma membrane Na+ gradient in these processes. The Na+ gradient in intact unstimulated platelets was altered by incubating the platelets with ouabain or by replacing extracellular Na+ with N-methyl-D-glucamine or choline. Ca2+ flux across the plasma membrane and the amount of exchangeable Ca2+ in the platelet cytosol were measured by observing 45Ca2+ influx and efflux under steady-state conditions. The cytosolic free Ca2+ concentration was measured with the fluorescent probe quin2. At extracellular Na+ concentrations below 50 mM, the size of the cytosolic exchangeable Ca2+ pool increased by 48%. The size of the exchangeable Ca2+ pool sequestered in the dense tubular system increased by 356%. Ca2+ flux across the plasma membrane increased by 38%. There was, however, no change in total platelet Ca2+ and little, if any, change in the cytosolic free Ca2+ concentration. Similar effects were produced by incubating platelets with ouabain. These observations demonstrate a marked influence of the plasma membrane Na+ gradient on Ca2+ homeostasis in platelets. The nature of the changes, however, suggests that Na+/Ca2+ exchange cannot be sole basis for Ca2+ efflux from platelets.  相似文献   

13.
A fluorescence method is presented for quantitatively analyzing exocytosis phenomena and monitoring their kinetics. The method is based on the particular properties of a hydrophobic fluorescent probe, 1-[4-(trimethylammonio)phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH) [Prendergast, F.G., Haugland, R.P., & Callahan, P.J. (1981) Biochemistry 20, 7333-7338; Kuhry, J.G., Fonteneau, P., Duportail, G., Maechling, C., & Laustriat, G. (1983) Cell Biophys. 5, 129-140; Kuhry, J.G., Duportail, G., Bronner, C., & Laustriat, G. (1985) Biochim. Biophys. Acta 845, 60-67]. When this probe is interacted with intact resting cells in aqueous suspensions, it labels solely the membranes that are in contact with the external medium and is incorporated into them according to a partition equilibrium; i.e., the amount of the probe incorporated is proportional to the available membrane surface. TMA-DPH is highly fluorescent in membranes and not at all in water. Thus, a measurement of the TMA-DPH fluorescence intensity provides a signal proportional to the membrane surface. In secretory cells, the membrane surface available for the probe is increased upon fusion of the membrane of the secretory granules with the cell plasma membranes, directly or via intergranule fusion. Thus, when these cells are stimulated, more TMA-DPH is incorporated than in resting cells since the probe is allowed to also interact with the granule membranes now connected with the external medium by pores. This process results in a proportional increase in the TMA-DPH fluorescence intensity. The response was found to be very rapid and able to follow accurately the exocytosis kinetics.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Flavonoids are ubiquitous polyphenolic compounds, found in vascular plants, which are endowed with a large variety of biological effects. Some of these effects have been assumed to result from interactions with the cell plasma membrane. In order to investigate the nature of these interactions a fluorescence study was performed with two flavonoids, currently used in one of the laboratories: apigenin and its homologous dimer amentoflavone. After preliminary assays with DPH in several types of phospholipid liposomes, the effects of these flavonoids on the membrane of mouse L929 fibroblasts were compared, using the non-permeant probe TMA-DPH. Amentoflavone, unlike apigenin, induced a static quenching effect, which denoted an important, but reversible, association of the molecule with the plasma membrane. In addition, amentoflavone treatment induced a dose-dependent increase in TMA-DPH fluorescence anisotropy, which could be interpreted as an increase in membrane lipidic order. For apigenin, the effect was much less important. Moreover, exploiting the capacity of TMA-DPH to label endocytic compartments, it was shown that, after association with the membrane, amentoflavone is not internalized into the cell. Possible correlations of these membrane effects with other biological properties are discussed.  相似文献   

15.
Flavonoids are ubiquitous polyphenolic compounds, found in vascular plants, which are endowed with a large variety of biological effects. Some of these effects have been assumed to result from interactions with the cell plasma membrane. In order to investigate the nature of these interactions a fluorescence study was performed with two flavonoids, currently used in one of the laboratories: apigenin and its homologous dimer amentoflavone. After preliminary assays with DPH in several types of phospholipid liposomes, the effects of these flavonoids on the membrane of mouse L929 fibroblasts were compared, using the non-permeant probe TMA-DPH. Amentoflavone, unlike apigenin, induced a static quenching effect, which denoted an important, but reversible, association of the molecule with the plasma membrane. In addition, amentoflavone treatment induced a dose-dependent increase in TMA-DPH fluorescence anisotropy, which could be interpreted as an increase in membrane lipidic order. For apigenin, the effect was much less important. Moreover, exploiting the capacity of TMA-DPH to label endocytic compartments, it was shown that, after association with the membrane, amentoflavone is not internalized into the cell. Possible correlations of these membrane effects with other biological properties are discussed.  相似文献   

16.
The properties of Na-Ca-K exchange current through the plasma membrane of intact rod outer segments (ROS) isolated from bovine retinas were studied with the optical probe neutral red. Small cellular organelles such as bovine ROS do not offer an adequate collecting area to measure Na-Ca-K exchange currents with electrophysiological techniques. This study demonstrates that Na-Ca-K exchange current in bovine ROS can be measured with the dye neutral red and dual-wavelength spectrophotometry. The binding of neutral red is sensitive to transport of cations across the plasma membrane of ROS by the effect of the translocated cations on the surface potential of the intracellular disk membranes (1985. J. Membr. Biol. 88: 249-262). Electrogenic Na+ fluxes through the ROS plasma membrane were measured with a resolution of 10(5) Na+ ions/ROS per s, equivalent to a current of approximately 0.01 pA; maximal electrogenic Na-Ca-K exchange flux in bovine ROS was equivalent to a maximal exchange current of 1-2 pA. Electrogenic Na+ fluxes were identified as Na-Ca-K exchange current based on a comparison between electrogenic Na+ flux and Na(+)-stimulated Ca2+ release with respect to flux rate, Na+ dependence, and ion selectivity. Neutral red monitored the net entry of a single positive charge carried by Na+ for each Ca2+ ion released (i.e., monitored the Na-Ca-K exchange current). Na-Ca-K exchange in the plasma membrane of bovine ROS had the following properties: (a) Inward Na-Ca-K exchange current required internal Ca2+ (half-maximal stimulation at a free Ca2+ concentration of 0.9 microM), whereas outward Na-Ca-K exchange current required both external Ca2+ (half-maximal stimulation at a free Ca2+ concentration of 1.1 microM) and external K+. (b) Inward Na-Ca-K exchange current depended in a sigmoidal manner on the external Na+ concentration, identical to Na(+)-stimulated Ca2+ release measured with Ca(2+)-indicating dyes. (c) The neutral red method was modified to measure Ca(2+)-activated K+ fluxes (half-maximal stimulation at 2.7 microM free Ca2+) via the Na-Ca-K exchanger in support of the notion that the rod Na-Ca exchanger is in effect a Na-Ca-K exchanger. (d) Competitive interactions between Ca2+ and Na+ ions on the exchanger protein are described.  相似文献   

17.
TMA-DPH (1-(4-trimethylammonium)-6-phenyl-1,3,5-hexatriene), a hydrophobic fluorescent membrane probe, interacts with living cells by instantaneous incorporation into the plasma membrane, where it becomes fluorescent. It then follows the intracellular constitutive membrane traffic and acts as a bulk membrane marker of the endocytic pathway (Illinger, D., P. Poindron, P. Fonteneau, M. Modolell, and J. G. Kuhry. 1990. Biochim. Biophys. Acta. 1030:73-81; Illinger, D., P. Poindron, and J. G. Kuhry. 1991. Biol. Cell. 73:131-138). As such, TMA-DPH displays particular properties mainly due to partition between membranes and aqueous media. From these properties, original arguments can be inferred in favor of the maturation model for the endocytic pathway, against that of pre-existing compartments, in L929 cultured mouse fibroblasts. (a) TMA-DPH labeling is seen to progress from the cell periphery to perinuclear regions during endocytosis without any noticeable loss in fluorescence intensity; with a vesicle shuttle model this evolution would be accompanied by probe dilution with a decrease in the overall intracellular fluorescence intensity, and the labeling of the inner (late) compartments could in no way become more intense than that of the peripheral (early) ones. (b) From TMA-DPH fluorescence anisotropy assays, it is concluded that membrane fluidity is the same in the successive endocytic compartments as in the plasma membrane, which probably denotes a similar phospholipidic membrane composition, as might be expected in the maturation model. (c) TMA-DPH internalization and release kinetics are more easily described with the maturation model.  相似文献   

18.
Membrane and protein properties of freeze-dried mouse platelets   总被引:5,自引:0,他引:5  
Membrane properties and the overall protein secondary structure of freeze-dried trehalose-loaded mouse platelets were studied using steady state fluorescence anisotropy and Fourier transform infrared spectroscopy (FTIR). FTIR results showed that fresh control mouse platelets have a main phase transition at approximately 14 degrees C, whereas, freeze-dried platelets exhibited a main phase transition approximately 12 degrees C. However, the cooperativity of the transition of the rehydrated platelets was greatly enhanced compared to that of control platelets. Anisotropy experiments performed with 1,6 diphenyl-1,3,5 hexatriene (DPH) complemented FTIR results and showed that the lipid order in the core of the membrane was affected by freeze-drying procedures. Similar experiments with trimethyl ammonium 1,6 diphenyl-1,3,5 hexatriene (TMA-DPH), a membrane surface probe, indicated that membrane properties at the membrane/water interface were less affected by freeze-drying procedures than the core of the membrane. Lyophilization did not result in massive protein denaturation, but the overall protein secondary structure was altered, based on in situ assessment of the amide-I and amide-II band profiles. Lyophilization-induced changes to endogenous platelet proteins were further investigated by studying the protein's heat stability. In fresh control platelets, proteins denatured at 42 degrees C, whereas proteins in the rehydrated platelets denatured at 48 degrees C.  相似文献   

19.
Interaction of primycin antibiotic with plasma membrane, and its indirect biological effects were investigated in this study. The antifungal activity of primycin against 13 human pathogenic Candida ATCC and CBS reference species and 74 other Candida albicans clinical isolates was investigated with a microdilution technique. No primycin-resistant strain was detected. Direct interaction of primycin with the plasma membrane was demonstrated for the first time by using an ergosterol-producing strain 33erg+ and its ergosterol-less mutant erg-2. In growth inhibition tests, the 33erg+ strain proved to be more sensitive to primycin than its erg-2 mutant, indicating the importance of the plasma membrane composition in primycin-induced processes. The 64 μg ml-1 (56.8 nM) primycin treatment induced an enhanced membrane fluidity and altered plasma membrane dynamics, as measured by steady-state fluorescence anisotropy applying a trimethylammonium-diphenylhexatriene (TMA-DPH) fluorescence polarization probe. The following consequences were detected. The plasma membrane of the cells lost its barrier function, and the efflux of 260-nm-absorbing materials from treated cells of both strains was 1.5-1.8 times more than that for the control. Depending on the primycin concentration, the cells exhibited unipolar budding, pseudohyphae formation, and a rough cell surface visualized by scanning electron microscopy.  相似文献   

20.
The effect of cetirizine on plasma membrane fluidity and heterogeneity of human eosinophils, neutrophils, platelets and lymphocytes was investigated using a fluorescence technique. Membrane fluidity and heterogeneity were studied by measuring the steady-state fluorescence anisotropy and fluorescence decay of 1-(4- trimethylammonium-phenyl)-6-phenyl-1, 3, 5-hexatriene (TMA-DPH) incorporated in the membrane. The results demonstrate that cetirizine (1 mug/ml) induced a significant increase in the Hpid order in the exterior part of the membrane and a decrease in membrane heterogeneity in eosinophils, neutrophils and platelets. Moreover, cetirizine blocked the PAF induced changes in membrane fluidity in these cells. Cetirizine did not influence significantly the plasma membrane of lymphocytes. These data may partially explain the effect ofcetirizine on inflammatory cell activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号