首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Proteolytic activity of 0-12 day old eggs, miracidium and adult worm of Fasciola gigantica was assessed and proteases were partially purified by DEAE-Sepharose and CM-cellulose columns. Four forms of protease were separated, PIa, PIb, PIc and PII. Purifications were completed for PIc and PII using Sephacryl S-200 chromatography. A number of natural and synthetic proteins were tested as substrates for F. gigantica PIc and PII. The two proteases had moderate activity levels toward azoalbumin and casein compared to azocasein, while gelatin, hemoglobin, albumin and fibrin had very low affinity toward the two enzymes. Amidolytic substrates are more specific to protease activity. PIc had higher affinity toward BAPNA-HCl (N-benzoyl-arginine-p-nitroanilide-HCl) and BTPNA-HCl (N-benzoyl-tyrosine-p-nitroanilide-HCl) at pH 8.0 indicating that the enzyme was a serine protease. However, PII had higher affinity toward BAPNA at pH 6.5 in the presence of sulfhydryl groups (beta-mercaptoethanol) indicating that the enzyme was a cysteine protease. The effect of specific protease inhibitors on these enzymes was studied. The results confirmed that proteases PIc and PII could be serine and cysteine proteases, respectively. The molecular weights of F. gigantica PIc and PII were 60,000 and 25,000, respectively. F. gigantica PIc and PII had pH optima at 7.5 and 5.5 and K(M) of 2 and 5 mg azocasein/mL, respectively. For amidolytic substrates, PIc had K(M) of 0.3 mM BAPNA/mL and 0.5 mM BTPNA/mL at pH 8.0 and PII had K(M) of 0.6 mM BAPNA/mL at pH 6.5 with reducing agent. F. gigantica PIc and PII had the same optimum temperature at 50 degrees C and were stable up to 40 degrees C. All examined metal cations tested had inhibitory effects toward the two enzymes. From substrate specificity and protease inhibitor studies, PIc and PII could be designated as serine PIc and cysteine PII, respectively.  相似文献   

2.
A hyperthermophilic archaeon strain, KOD1, was isolated from a solfatara at a wharf on Kodakara Island, Kagoshima, Japan. The growth temperature of the strain ranged from 65 to 100 degrees C, and the optimal temperature was 95 degrees C. The anaerobic strain was an S0-dependent heterotroph. Cells were irregular cocci and were highly motile with several polar flagella. The membrane lipid was of the ether type, and the GC content of the DNA was estimated to be 38 mol%. The 16S rRNA sequence was 95% homologous to that of Pyrococcus abyssi. The optimum growth pH and NaCl concentration of the strain KOD1 were 7.0 and 3%, respectively. Therefore, strain KOD1 was identified as a Pyrococcus sp. Strain KOD1 produced at least three extracellular proteases. One of the most thermostable proteases was purified 21-fold, and the molecular size was determined to be 44 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 45 kDa by gel filtration chromatography. The specific activity of the purified protease was 2,160 U/mg of protein. The enzyme exhibited its maximum activity at approximately pH 7.0 and at a temperature of 110 degrees with azocasein as a substrate. The enzyme activity was completely retained after heat treatment at 90 degrees C for 2 h, and the half-life of enzymatic activity at 100 degrees C was 60 min. The proteolytic activity was significantly inhibited by p-chloromercuribenzoic acid or E-64 but not by EDTA or phenylmethylsulfonyl fluoride. Proteolytic activity was enhanced threefold in the presence of 8 mM cysteine. These experimental results indicated that the enzyme was a thermostable thiol protease.  相似文献   

3.
The major extracellular protease from Pseudomonas fluorescens strain AR-11 has been partially purified by a factor of 300 by a combination of DEAE-cellulose ion-exchange chromatography and gel filtration. The enzyme had a molecular weight of 38 400 and exhibited optimum activity with isoelectrically precipitated casein substrate at pH 6.5 with Km - 0.13 mM. The protease was strongly inhibited by a number of heavy metal ions at the 10 mM level and also inhibited by thiol agents, while 10 mM EDTA led to slight activation. Optimum activity was retained, amounting to 33% of the maximum activity at 4 degrees C and 72% at 20 degrees C. Heat inactivation studies in which the isolated protease was heated at high temperature before subsequent incubation at 35 degrees C with substrate showed that for 50% inactivation 25 s heating at 130 degrees C or 17 s at 140 degrees C of 8.5 s at 150 degrees C was requried. The combination of high stability to heat treatments and retention of considerable activity at low incubation temperatures indicates that such a protease might have considerable significance in the processing and subsequent storage of food and other products.  相似文献   

4.
Plants of the genus Dieffenbachia, very popular as indoor ornamental plants, are known for their toxic as well as therapeutic properties. Their toxic manifestations have been partly attributed to their proteolytic activity. The work described in the present paper shows that stem leaves and petiole of Dieffenbachia maculata Schott, a commonly grown species, contain significant proteolytic activity, different parts showing different types of protease activities. Stem showed the highest enzyme activity and this protease was purified about 55 fold by solvent precipitation, gel filtration and ion exchange chromatography. The enzyme has a relative molecular mass of 61 kDa as determined by SDS-PAGE and has an optimum pH of 8.0 and optimum temperature of 50 degrees C. Effects of various substrates, inhibitors and activators indicate that the enzyme is a cysteine protease with leucylpeptidase activity.  相似文献   

5.
A lipase was partially purified from the almond (Amygdalus communis L.) seed by ammonium sulfate fractionation and dialysis. Kinetics of the enzyme activity versus substrate concentration showed typical lipase behavior, with K(m) and V(max) values of 25 mM and 113.63 micromol min(-1) mg(-1) for tributyrin as substrate. All triglycerides were efficiently hydrolyzed by the enzyme. The partially purified almond seed lipase (ASL) was stable in the pH range of 6-9.5, with an optimum pH of 8.5. The enzyme was stable between 20 and 90 degrees C, beyond which it lost activity progressively, and exhibited an optimum temperature for the hydrolysis of soy bean oil at 65 degrees C. Based on the temperature activity data, the activation energy for the hydrolysis of soy bean oil was calculated as -5473.6 cal/mol. Soy bean oil served as good substrate for the enzyme and hydrolytic activity was enhanced by Ca(2+), Fe(2+), Mn(2+), Co(2+), and Ba(2+), but strongly inhibited by Mg(2+), Cu(2+), and Ni(2+). The detergents, sodiumdeoxicholate and Triton X-100 strongly stimulated enzyme activity while CTAB, DTAB, and SDS were inhibitors. Triton X-405 had no effect on lipase activity. The partially purified enzyme retained its activity for more than 6 months at -20 degrees C, beyond which it lost activity progressively.  相似文献   

6.
An alkaline protease was isolated from culture filtrate of B. subtilis NCIM 2713 by ammonium sulphate precipitation and was purified by gel filtration. With casein as a substrate, the proteolytic activity of the purified protease was found to be optimal at pH 8.0 and temperature 70 degrees C. The purified protease had molecular weight 20 kDa, Isoelectric point 5.2 and km 2.5 mg ml(-1). The enzyme was stable over the pH range 6.5-9.0 at 37 degrees C for 3 hr. During chromatographic separation this protease was found to be susceptible to autolytic degradation in the absence of Ca2+. Ca2+ was not only required for the enzyme activity but also for the stability of the enzyme above 50 degrees C. About 62% activity was retained after 60 min at pH 8.0 and 55 degrees C. DFP and PMSF completely inhibited the activity of this enzyme, while in the presence of EDTA only 33% activity remained. However, it was not affected either by sulfhydryl reagent, or by divalent metal cations, except SDS and Hg2+. The results indicated that this is a serine protease.  相似文献   

7.
A novel protease was purified to homogeneity from the latex of Pedilanthus tithymaloids by a simple purification procedure involving ammonium sulfate precipitation and cation-exchange chromatography. The molecular weight of the protease was estimated to be approximately 63.1 kDa and the extinction coefficient (epsilon(1%)(280nm)) was 28.4. The enzyme hydrolyzes denatured natural substrates like casein, azoalbumin and azocasein with a high specific activity but little activity towards synthetic substrates. The pH and temperature optima were pH 8.0-9.5 and 65-70 degrees C, respectively. The proteolytic activity of the enzyme was inhibited by different protease-specific inhibitors (e.g., thiol, serine, metallo, etc.) up to a certain extent but not completely by any class of inhibitors. The enzyme was relatively stable towards pH change, temperature, denaturants and organic solvents. The enzyme consists of five disulfide bridges compared to three observed in most plant cysteine proteases. Overall, the striking features of this protease are its high molecular weight, high cysteine content and only partial inhibition of activity by different classes of protease inhibitors contrary to known proteases from other plant sources. The enzyme is named as pedilanthin as per the protease nomenclature.  相似文献   

8.
Dehydroepiandrosterone sulfate is the most abundant sulfated steroid transformed in human tissues and serves as a precursor for steroid hormones. Recombinant human dehydroepiandrosterone sulfotransferase (DHEA-ST) expressed in glutathione sulfotransferase fusion form in E. coli was purified using glutathione sepharose 4B affinity adsorption chromatography, a Factor Xa cleavage step, and Q-sepharose fast flow column chromatography. The homogeneous preparation had an activity toward dehydroepiandrosterone (DHEA) of 150+/-40 nmol/min per mg of protein under the assay conditions at an overall yield of 38.4%. The recombinant human DHEA-ST was shown to have a subunit mass of 34 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis, while having a molecular mass of 67.2 kDa by Superose-12 gel filtration. Our results indicate that the active recombinant enzyme expressed in E. coli is a homodimer.Biochemical properties for purified DHEA-ST were studied using DHEA as a substrate. The optimum pH ranged from pH 7 to 8, and the optimum temperature 40-45 degrees C. Ninety percent of basal DHEA-ST activity remained even after the enzyme was treated at 45 degrees C for 15 min. The 50% inactivation concentration of NaCl for DHEA-ST activity was determined to be around 500 mM. The K(m) value for DHEA was 1.9+/-0.3 microM and V(max)=190+/-18 nmol/min per mg of protein at 37 degrees C, pH 7.5.  相似文献   

9.
A novel protease, hydrolyzing azocasein, was identified, purified, and characterized from the culture supernatant of the fish pathogen Yersinia ruckeri. Exoprotease production was detected at the end of the exponential growth phase and was temperature dependent. Activity was detected in peptone but not in Casamino Acid medium. Its synthesis appeared to be under catabolite repression and ammonium control. The protease was purified in a simple two-step procedure involving ammonium sulfate precipitation and ion-exchange chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the purified protein indicated an estimated molecular mass of 47 kDa. The protease had characteristics of a cold-adapted protein, i.e., it was more active in the range of 25 to 42 degrees C and had an optimum activity at 37 degrees C. The activation energy for the hydrolysis of azocasein was determined to be 15.53 kcal/mol, and the enzyme showed a rapid decrease in activity at 42 degrees C. The enzyme had an optimum pH of around 8. Characterization of the protease showed that it required certain cations such as Mg(2+) or Ca(2+) for maximal activity and was inhibited by EDTA, 1,10-phenanthroline, and EGTA but not by phenylmethylsulfonyl fluoride. Two N-methyl-N-nitro-N-nitrosoguanidine mutants were isolated and analyzed; one did not show caseinolytic activity and lacked the 47-kDa protein, while the other was hyperproteolytic and produced increased amounts of the 47-kDa protein. Azocasein activity, SDS-PAGE, immunoblotting by using polyclonal anti-47-kDa-protease serum, and zymogram analyses showed that protease activity was present in 8 of 14 strains tested and that two Y. ruckeri groups could be established based on the presence or absence of the 47-kDa protease.  相似文献   

10.
A serine protease secreted by the haloalkaliphilic archaeon Natrialba magadii at the end of the exponential growth phase was isolated. This enzyme was purified 83 fold with a total yield of 25% by ethanol precipitation, affinity chromatography, and gel filtration. The native molecular mass of the enzyme determined by gel filtration was 45 kDa. Na. magadii extracellular protease was dependent on high salt concentrations for activity and stability, and it had an optimum temperature of 60°C in the presence of 1.5 M NaCl. The enzyme was stable and had a broad pH profile (6–12) with an optimum pH of 8–10 for azocasein hydrolysis. The protease was strongly inhibited by diisopropyl fluorophosphate (DFP), phenylmethyl sulfonylfluoride (PMSF), and chymostatin, indicating that it is a serine protease. It was sensitive to denaturing agents such as SDS, urea, and guanidine HCl and activated by thiol-containing reducing agents such as dithiotreitol (DTT) and 2-mercaptoethanol. This protease degraded casein and gelatin and showed substrate specificity for synthetic peptides containing Phe, Tyr, and Leu at the carboxyl terminus, showing that it has chymotrypsin-like activity. Na. magadii protease presented no cross-reactivity with polyclonal antibodies raised against the extracellular protease of Natronococcus occultus, suggesting that although these proteases share several biochemical traits, they might be antigenically unrelated. Received: October 1, 1999 / Accepted: February 1, 2000  相似文献   

11.
A metalloprotease secreted by the moderately halophilic bacterium Salinivibrio sp. strain AF-2004 when the culture reached the stationary growth phase. This enzyme was purified to homogeneity by acetone precipitation and subsequent Q-Sepharose anion exchange and Sephacryl S-200 gel filtration chromatography. The apparent molecular mass of the protease was 31 kDa by SDS-PAGE, whereas it was estimated as approximately 29 kDa by Sephacryl S-200 gel filtration. The purified protease had a specific activity of 116.8 mumol of tyrosine/min per mg protein on casein. The optimum temperature and salinity of the enzyme were at 55 degrees C and 0-0.5 M NaCl, although at salinities up to 4 M NaCl activity still remained. The protease was stable and had a broad pH profile (5.0-10.0) with an optimum of 8.5 for casein hydrolysis. The enzyme was strongly inhibited by phenylmethyl sulfonylfluoride (PMSF), Pefabloc SC, chymostatin and also EDTA, indicating that it belongs to the class of serine metalloproteases. The protease in solutions containing water-soluble organic solvents or alcohols was more stable than that in the absence of organic solvents. These characteristics make it an ideal choice for applications in industrial processes containing organic solvents and/or salts.  相似文献   

12.
Two of the six esterases identified in Cucurbita pepo cv. "Eskandrani" were purified to homogeneity using two chromatography steps: anion exchange and gel filtration. The molecular weights of C. pepo esterases EIc and EII were 50,000 +/- 1500 and 68,000 +/- 1900 Da from gel filtration and 47,000 and 66,000 Da from SDS/PAGE, respectively, suggesting a monomeric structure for both enzymes. Esterases EIc and EII had K(m) values of 1.22 and 1.56 mM and pH optima at 9.0 and 8.0, respectively. The substrate specificity of C. pepo esterases EIc and EII were determined for a number of p-nitrophenyl esters, where their affinity toward these substrates were decreased as carbon atom number increased. Esterases EIc and EII had the same temperature optima, 40 degrees C. Thermal stability studies of esterases EIc and EII indicated that half maximal activities of EIc and EII esterases were reached at 55 degrees C and 50 degrees C, while they lost 45%, 51% and 70%, 77% of their activities after 30 and 90 min of incubation at 40 degrees C, respectively. The effect of different metal cations and inhibitors were examined. The inhibition studies revealed that the active sites of the two esterases contain serine and cysteine residues. The characteristics of C. pepo esterases are closely similar to those of microbial esterases used in food processing and food industry.  相似文献   

13.
1. The alkaline proteinase showing pH optimum 8.0 from white croaker (Sciaena schlegeli) skeletal muscle was purified electrophoretically homogeneously (2000-fold) using a combination of DEAE-cellulose chromatography, hydroxylapatite chromatography and Ultrogel AcA 34 gel filtration. 2. It was stable for 1 hr at 50 degrees C. The molecular weight of the enzyme was estimated to be 430,000 by gel filtration, with the enzyme composed of four kinds of subunits, the chain molecular weights of which were 45,000, 48,000, 51,000 and 57,000. 3. From the effects of inhibitors, the enzyme was identified as cysteine proteinase. ATP and Cu2+ inhibited the activity 50% at 10 mM and 70% at 0.1 mM, respectively. 4. Thus the enzyme was characterized as a high molecular weight, heat-stable, alkaline cysteine proteinase (HAP). 5. The enzyme showed hardly any activity below 50 degrees C but considerable activity at around 60 degrees C against myofibrils, digesting myosin heavy chain, actin and tropomyosin. With the addition of 5 M urea the enzyme hydrolyzed myofibrils well at around 30 degrees C.  相似文献   

14.
Cathepsin L-like proteinase was purified approximately 1708-fold with 40% activity yield to an apparent electrophoretic homogeneity from goat brain by homogenization, acid-autolysis at pH 4.2, 30-80% (NH4)2SO4 fractionation, Sephadex G-100 column chromatography and ion-exchange chromatography on CM-Sephadex C-50 at pH 5.0 and 5.6. The molecular weight of proteinase was found to be approximately 65,000 Da, by gel-filtration chromatography. The pH optima were 5.9 and 4.5 for the hydrolysis of Z-Phe-Arg-4mbetaNA (benzyloxycarbonyl-L-phenylalanine-L-arginine-4-methoxy-beta-naphthylamide) and azocasein, respectively. Of the synthetic chromogenic substrates tested, Z-Phe-Arg-4mbetaNA was hydrolyzed maximally by the enzyme (Km value for hydrolysis was 0.06 mM), followed by Z-Val-Lys-Lys-Arg-4mbetaNA, Z-Phe-Val-Arg-4mbetaNA, Z-Arg-Arg-4mbetaNA and Z-Ala-Arg-Arg-4mbetaNA. The proteinase was activated maximally by glutathione in conjunction with EDTA, followed by cysteine, dithioerythritol, thioglycolic acid, dithiothreitol and beta-mercaptoethanol. It was strongly inhibited by p-hydroxymercuribenzenesulphonic acid, iodoacetic acid, iodoacetamide and microbial peptide inhibitors, leupeptin and antipain. Leupeptin inhibited the enzyme competitively with Ki value 44 x 10(-9) M. The enzyme was strongly inhibited by 4 M urea. Metal ions, Hg(2+), Ca(2+), Cu(2+), Li(2+), K(+), Cd(2+), Ni(2+), Ba(2+), Mn(2+), Co(2+) and Sn(2+) also inhibited the activity of the enzyme. The enzyme was stable between pH 4.0-6.0 and up to 40 degrees C. The optimum temperature for the hydrolysis of Z-Phe-Arg-4mbetaNA was approximately 50-55 degrees C with an activation energy Ea of approximately 6.34 KCal mole(-1).  相似文献   

15.
Human epidermal transglutaminase. Preparation and properties.   总被引:3,自引:0,他引:3  
A transglutaminase from human hair follicle-free epidermis was purified to homogeneity using gel filtration and ion exchange chromatography. The enzyme had an apparent Mr = 51,000 +/- 2,000 by sodium dodecyl sulfate electrophoresis, 100,000 +/- 5,000 by discontinuous gel electrophoresis, and 50,000 +/- 2,000 by gel filtration in Bio-Gel A-0.5m agarose. The enzyme cross-linked Factor XIII-free fibrinogen forming gamma dimers and alpha polymers. Either calcium or strontium was necessary for enzyme activity. In the presence of calcium, enzyme activity was increased by heating at 56 degrees or by treating with dimethylsulfoxide. Activation required calcium and occurred in the presence of serine protease inhibitors. The activated and native enzyme had apparently identical mobilities in acrylamide disc electrophoresis and sodium dodecyl sulfate electrophoresis. The Km values for two substrates in the reaction, casein and putrescine, were very similar for the native and the activated enzyme. The activated enzyme had a larger elution volume on Bio-Gel A-0.5m in the presence of calcium than did the native enzyme. The detailed mechanism of activation remains to be determined.  相似文献   

16.
Rhodanese was isolated and purified from the cytosolic fraction of liver tissue homogenate of the fruit bat, Eidolon helvum, by using ammonium sulphate precipitation and CM-Sephadex C-50 ion exchange chromatography. The specific activity was increased 130-fold with a 53% recovery. The K(m) values for KCN and Na(2)S(2)O(3) as substrates were 13.5 +/- 2.2mM and 19.5 +/- 0.7 mM, respectively. The apparent molecular weight was estimated by gel filtration on a Sephadex G-100 column to be 36,000 Da. The optimal activity was found at a high pH (pH 9.0) and the temperature optimum was 35 degrees C. An Arrhenius plot of the heat stability data consisted of two linear segments with a break occurring at 35 degrees C. The apparent activation energy values from these slopes were 11.5 kcal/mol and 76.6 kcal/mol. Inhibition studies on the enzyme with a number of cations showed that Mg(2+), Mn(2+), Ca(2+), and Co(2+) did not affect the activity of the enzyme, but Hg(2+) and Ba(2+) inhibited the enzyme.  相似文献   

17.
Protease activities of rumen protozoa.   总被引:3,自引:1,他引:2       下载免费PDF全文
Intact, metabolically active rumen protozoa prepared by gravity sedimentation and washing in a mineral solution at 10 to 15 degrees C had comparatively low proteolytic activity on azocasein and low endogenous proteolytic activity. Protozoa washed in 0.1 M potassium phosphate buffer (pH 6.8) at 4 degrees C and stored on ice autolysed when they were warmed to 39 degrees C. They also exhibited low proteolytic activity on azocasein, but they had a high endogenous proteolytic activity with a pH optimum of 5.8. The endogenous proteolytic activity was inhibited by cysteine proteinase inhibitors, for example, iodoacetate (63.1%) and the aspartic proteinase inhibitor, pepstatin (43.9%). Inhibitors specific for serine proteinases and metalloproteinases were without effect. The serine and cysteine proteinase inhibitors of microbial origin, including antipain, chymostatin, and leupeptin, caused up to 67% inhibition of endogenous proteolysis. Hydrolysis of casein by protozoa autolysates was also inhibited by cysteine proteinase inhibitors. Some of the inhibitors decreased endogenous deamination, in particular, phosphoramidon, which had little inhibitory effect on proteolysis. Protozoal and bacterial preparations exhibited low hydrolytic activities on synthetic proteinase and carboxypeptidase substrates, although the protozoa had 10 to 78 times greater hydrolytic activity (per milligram of protein) than bacteria on the synthetic aminopeptidase substrates L-leucine-p-nitroanilide, L-leucine-beta-naphthylamide, and L-leucinamide. The aminopeptidase activity was partially inhibited by bestatin. It was concluded that cysteine proteinases and, to a lesser extent, aspartic proteinases are primarily responsible for proteolysis in autolysates of rumen protozoa. The protozoal autolysates had high aminopeptidase activity; low deaminase activity was observed on endogenous amino acids.  相似文献   

18.
A thermostable carboxypeptidase, which we named carboxypeptidase Taq, was purified from Thermus aquaticus YT-1 and characterized. The molecular weight of the enzyme was estimated to be about 56,000 and 58,000 on SDS-polyacrylamide gel electrophoresis and gel filtration, respectively, indicating that the enzyme has a monomeric structure. The optimum pH of the enzyme was 8.0, and the optimum temperature for the reaction was 80 degrees C. The enzyme activity was dependent on cobalt ion and was inhibited by metal-chelating reagents, indicating that the enzyme is a metalloenzyme. The enzyme had high thermostability independent of cobalt ion; about 90% of its activity remained even after treatment at 80 degrees C for 5 h. The enzyme showed broad substrate specificity, although proline at the C-terminus of peptides was not cleaved. The enzyme released amino acids sequentially from the C-terminus.  相似文献   

19.
Extensive rapeseed protein hydrolysate obtained sequentially with Alcalase and Flavourzyme showed inhibitory activity towards Alcalase. Inhibitory activity decreased as the hydrolytic process progressed probably by heat denaturation and/or partial protease degradation. Alcalase rapeseed inhibitors were purified by gel filtration and subsequent ion exchange chromatography. They are composed of peptides of 8.4 and 6.1 kDa linked by interchain disulphide bonds, as observed by reducing SDS-PAGE, with a native molecular weight of 18 kDa. Aminoacid composition of the inhibitors was characterized by the high proportion of methionine (4.2%) and cysteine (4.6%). Alcalase inhibitors were partially resistant to heat treatment; after heating at 70 degrees C for 45 minutes more than 50% of the original inhibitory activity remained in the purified protein but after heating at 90 degrees C for 5 minutes, inhibitory activity decreased very fast to a basal level. The possible relation of these protease inhibitors with the 2S albumin storage proteins is discussed.  相似文献   

20.
Intact, metabolically active rumen protozoa prepared by gravity sedimentation and washing in a mineral solution at 10 to 15 degrees C had comparatively low proteolytic activity on azocasein and low endogenous proteolytic activity. Protozoa washed in 0.1 M potassium phosphate buffer (pH 6.8) at 4 degrees C and stored on ice autolysed when they were warmed to 39 degrees C. They also exhibited low proteolytic activity on azocasein, but they had a high endogenous proteolytic activity with a pH optimum of 5.8. The endogenous proteolytic activity was inhibited by cysteine proteinase inhibitors, for example, iodoacetate (63.1%) and the aspartic proteinase inhibitor, pepstatin (43.9%). Inhibitors specific for serine proteinases and metalloproteinases were without effect. The serine and cysteine proteinase inhibitors of microbial origin, including antipain, chymostatin, and leupeptin, caused up to 67% inhibition of endogenous proteolysis. Hydrolysis of casein by protozoa autolysates was also inhibited by cysteine proteinase inhibitors. Some of the inhibitors decreased endogenous deamination, in particular, phosphoramidon, which had little inhibitory effect on proteolysis. Protozoal and bacterial preparations exhibited low hydrolytic activities on synthetic proteinase and carboxypeptidase substrates, although the protozoa had 10 to 78 times greater hydrolytic activity (per milligram of protein) than bacteria on the synthetic aminopeptidase substrates L-leucine-p-nitroanilide, L-leucine-beta-naphthylamide, and L-leucinamide. The aminopeptidase activity was partially inhibited by bestatin. It was concluded that cysteine proteinases and, to a lesser extent, aspartic proteinases are primarily responsible for proteolysis in autolysates of rumen protozoa. The protozoal autolysates had high aminopeptidase activity; low deaminase activity was observed on endogenous amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号