首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The methyl viologen (MV)-dependent, linear electron flow fromPS II to PS I was severely blocked in intact or broken, uncoupledchloroplasts when oxygen was removed from the suspension medium,as revealed by measurements of chlorophyll fluorescence andthe rate of photoreduction of MV. Kinetics of the reductionof pre-oxidized P700 by a saturating light pulse showed thatreduced MV in the absence of oxygen re-reduces P700+ via theintersystem electron transport chain. Since the re-reductionof P700+ was inhibited by 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone,the MV-mediated cyclic electron flow, in contrast to the phenazinemethosulphate-catalyzed one, involves the plastoquinone pool.However, 2-n-heptyl-4-hydro-xyquinoline-N-oxide, 2-n-nonyl-4-hydroxyquinoline-N-oxideand antimycin A did not inhibit the MV-mediated flow. Thus,the inhibition of the linear electron flow in chloroplasts underanaerobic conditions suggested the overreduction of the plastoquinonepool as a result of the MV-mediated cyclic flow (Received February 13, 1990; Accepted March 31, 1990)  相似文献   

2.
利用从菠菜(Spinacia oleracea L.)叶绿体分离、纯化出的缺失膜脂的细胞色素b6f蛋白复合体(Cyt b6f)制剂与从菠菜类囊体分离、纯化的膜脂进行体外重组,检测了不同膜脂对Cyt b6f催化电子传递活性的影响.结果表明:被检测的5种膜脂,即单半乳糖基甘油二酯(MGDG)、双半乳糖基甘油二酯(DGDG)、磷脂酰胆碱(PC)、磷脂酰甘油(PG)和硫代异鼠李糖基甘油二酯(SQDG)对Cyt b6f催化电子传递的活性均有明显的促进作用,但促进的程度各不相同,这可能与这些膜脂分子的带电性质密切相关.不带电荷的MGDG和DGDG及分子整体呈电中性的PC对促进Cyt b6f催化电子传递的活性非常有效,可分别使其活性提高89%、75%和77%;而带负电荷的PG和SQDG对活性的促进作用则相对较弱,仅可使其活性分别提高43%和26%.  相似文献   

3.
Barr R  Crane FL 《Plant physiology》1977,60(3):433-436
The effect of three different stable radicals-2,2-diphenyl-1-picrylhydrazyl, 1,3,5-triphenyl-verdazyl, and galvinoxyl-was studied in photosystem II of spinach (Spinacia oleracea) chloroplasts. Inhibition by the three was noted on dimethylbenzoquinone reduction in presence of 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) and on silicomolybdate reduction in presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) in photosystem II and on the H2O → methylviologen reaction encompassing both photosystems. Inhibition of all photosystem II reactions except silicomolybdate reduction could be partially restored by α-tocopherol or by 9-ethoxy-α-tocopherone but not by other quinones or radical chasers. On this basis, a functional role for α-tocopherol in the electron transport chain of spinach chloroplasts between the DCMU and DBMIB inhibition sites is postulated.  相似文献   

4.
This study examines the capacity of intact spinach (Spinacia oleracea L.) chloroplasts to fix 14CO2 when supplied with Benson-Calvin cycle intermediates in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Under these conditions, substantial 14CO2 fixation occurred in the light but not in the dark when either dihydroxyacetone phosphate, ribulose 5-phosphate, fructose 6-phosphate, or fructose bisphosphate was added. The highest rate of 14CO2 fixation (20-40 micromoles per milligram chlorophyll per hour) was obtained with dihydroxyacetone phosphate. In contrast, no 14CO2 fixation occurred when 3-phosphoglycerate was used. 14CO2 fixation in the presence of dihydroxyacetone phosphate and DCMU was inhibited by carbonylcyanide m-chlorophenylhydrazone, dl-glyceraldehyde, and pyridoxal 5′-phosphate. Low concentrations of O2 (25-50 micromolar) stimulated 14CO2 fixation, but the activity decreased with increasing O2 concentrations. The fixation of 14CO2 in the presence of DCMU and dihydroxyacetone phosphate was also observed in maize bundle sheath cells. These results provide direct evidence for cyclic photophosphorylation in intact chloroplasts. The activity measured is adequate to support all the extra ATP requirements for maximum rates of photosynthesis in these intact chloroplasts.  相似文献   

5.
Singh KK  Chen C  Gibbs M 《Plant physiology》1992,100(1):327-333
The role of an electron transport pathway associated with aerobic carbohydrate degradation in isolated, intact chloroplasts was evaluated. This was accomplished by monitoring the evolution of 14CO2 from darkened spinach (Spinacia oleracea) and Chlamydomonas reinhardtii chloroplasts externally supplied with [14C]fructose and [14C]glucose, respectively, in the presence of nitrite, oxaloacetate, and conventional electron transport inhibitors. Addition of nitrite or oxaloacetate increased the release of 14CO2, but it was shown that O2 continued to function as a terminal electron acceptor. 14CO2 evolution was inhibited up to 30 and 15% in Chlamydomonas and spinach, respectively, by 50 μm rotenone and by amytal, but at 500- to 1000-fold higher concentrations, indicating the involvement of a reduced nicotinamide adenine dinucleotide phosphate-plastoquinone oxidoreductase. 14CO2 release from the spinach chloroplast was inhibited 80% by 25 μm 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone. 14CO2 release was sensitive to propylgallate, exhibiting approximately 50% inhibition in Chlamydomonas and in spinach chloroplasts of 100 and 250 μm concentrations, respectively. These concentrations were 20- to 50-fold lower than the concentrations of salicylhydroxamic acid (SHAM) required to produce an equivalent sensitivity. Antimycin A (100 μm) inhibited approximately 80 to 90% of 14CO2 release from both types of chloroplast. At 75 μm, sodium azide inhibited 14CO2 evolution about 50% in Chlamydomonas and 30% in spinach. Sodium azide (100 mm) combined with antimycin A (100 μm) inhibited 14CO2 evolution more than 90%. 14CO2 release was unaffected by uncouplers. These results are interpreted as evidence for a respiratory electron transport pathway functioning in the darkened, isolated chloroplast. Chloroplast respiration defined as 14CO2 release from externally supplied [1-14C]glucose can account for at least 10% of the total respiratory capacity (endogenous release of CO2) of the Chlamydomonas reinhardtii cell.  相似文献   

6.
When isolated spinach chloroplasts are illuminated, photosynthesis and CO2 fixation die off within 30 to 90 minutes. Even when air levels of CO2 are used which maintain high and rate-saturating amounts of ribulose 1,5-bisphosphate inside the plastids, CO2 fixation declines. The decline begins with a drop in activity of the ribulose 1,5-bishosphate carboxylase/oxygenase, specifically loss of the enzyme-activator CO2-Mg2+ form. Next, the light reactions cause gradual leakage of the carboxylase and other stromal proteins to the suspending medium. The chloroplast outer envelope appears to reseal and protect the thylakoids since there is little change in the ferricyanide-dependent Hill reaction. In the dark, under otherwise identical conditions, leakage of carboxylase does not occur.  相似文献   

7.
In the green alga Chlamydomonas reinhardtii, the ClpP protease is encoded by an essential chloroplast gene. Mutating its AUG translation initiation codon to AUU reduced ClpP accumulation to 25 to 45% of that of the wild type. Both the mature protein and the putative precursor containing its insertion sequence were present in reduced amounts. Attenuation of ClpP did not affect growth rates under normal conditions but restricted the ability of the cells to adapt to elevated CO(2) levels. It also affected the rate of degradation of the cytochrome b(6)f complex of the thylakoid membrane in two experimental situations: (1) during nitrogen starvation, and (2) in mutants deficient in the Rieske iron-sulfur protein. The ClpP level also controls the steady state accumulation of a mutated version of the Rieske protein. In contrast, attenuation of ClpP did not rescue the fully unassembled subunits in other cytochrome b(6)f mutants. We conclude that proteolytic disposal of fully or partially assembled cytochrome b(6)f is controlled by the Clp protease.  相似文献   

8.
A method for isolating intact chloroplasts from Chlamydomonas reinhardtii F-60 was developed from the Klein, Chen, Gibbs, Platt-Aloia procedure ([1983] Plant Physiol 72: 481-487). Protoplasts, generated by treatment with autolysine, were lysed with a solution of digitonin and fractionated on Percoll step gradients. The chloroplasts were assessed to be 90% intact (ferricyanide assay) and free from cytoplasmic contamination (NADP isocitrate dehydrogenase activity) and to range from 2 to 5% in mitochondrial contamination (cytochrome c oxidase activity). About 25% of the cellular succinate dehydrogenase activity (21.6 micromoles per milligram chlorophyll per hour, as determined enzymically) was placed within the chloroplast. Chloroplastic succinate dehydrogenase had a Km for succinate of 0.55 millimolar and was associated with the thylakoidal material derived from the intact chloroplasts. This same thylakoidal material, with an enzymic assay of 21.6 micromoles per milligram chlorophyll per hour was able to initiate a light-dependent uptake of oxygen at a rate of 16.4 micromoles per milligram chlorophyll per hour when supplied with succinate and methyl viologen. Malonate was an apparent competitive inhibitor of this reaction. The succinate dehydrogenase activity present in the chloroplast was sufficient to account for the photoanaerobic rate of acetate dissimilation in H2 adapted Chlamydomonas (M Gibbs, RP Gfeller, C Chen [1986] Plant Physiol 82: 160-166).  相似文献   

9.
The thiobarbituric acid (TBA) test for detecting lipid hydroperoxides does not require for fomation of TBA reacting compounds from hydroperoxides, but oxygen has an unfavorable effect, that is, it forms new hydroperoxides during the reaction when unoxidized lipids co-exist. Therefore, a method using a vacuum reaction tube was proposed.  相似文献   

10.
Woo KC 《Plant physiology》1983,72(2):313-320
This study examines the effect of antimycin A and nitrite on 14CO2 fixation in intact chloroplasts isolated from spinach (Spinacia oleracea L.) leaves. Antimycin A (2 micromolar) strongly inhibited CO2 fixation but did not appear to inhibit or uncouple linear electron transport in intact chloroplasts. The addition of small quantities (40-100 micromolar) of nitrite or oxaloacetate, but not NH4Cl, in the presence of antimycin A restored photosynthesis. Antimycin A inhibition, and the subsequent restoration of photosynthetic activities by nitrite or oxaloacetate, was observed over a wide range of CO2 concentration, light intensity, and temperature. High O2 concentration (up to 240 micromolar) did not appear to influence the extent of the inhibition by antimycin A, nor the subsequent restoration of photosynthetic activity by nitrite or oxaloacetate. Studies of O2 exchanges during photosynthesis in cells and chloroplasts indicated that 2 micromolar antimycin A stimulated O2 uptake by about 25% while net O2 evolution was inhibited by 76%. O2 uptake in chloroplasts in the presence of 2 micromolar antimycin A was 67% of total O2 evolution. These results suggest that only a small proportion of the O2 uptake measured was directly linked to ATP generation. The above evidence indicates that cyclic photophosphorylation is the predominant energy-balancing reaction during photosynthesis in intact chloroplasts. On the other hand, pseudocyclic O2 uptake appears to play only a minimal role.  相似文献   

11.
The biogenesis and assembly of photosynthetic multisubunit protein complexes is assisted by a series of nucleus-encoded auxiliary protein factors. In this study, we characterize the dac mutant of Arabidopsis (Arabidopsis thaliana), which shows a severe defect in the accumulation of the cytochrome b6/f complex, and provide evidence suggesting that the efficiency of cytochrome b6/f complex assembly is affected in the mutant. DAC is a thylakoid membrane protein with two predicted transmembrane domains that is conserved from cyanobacteria to vascular plants. Yeast (Saccharomyces cerevisiae) two-hybrid and coimmunoprecipitation analyses revealed a specific interaction between DAC and PetD, a subunit of the cytochrome b6/f complex. However, DAC was found not to be an intrinsic component of the cytochrome b6/f complex. In vivo chloroplast protein labeling experiments showed that the labeling rates of the PetD and cytochrome f proteins were greatly reduced, whereas that of the cytochrome b6 protein remained normal in the dac mutant. DAC appears to be a novel factor involved in the assembly/stabilization of the cytochrome b6/f complex, possibly through interaction with the PetD protein.The cytochrome b6/f (Cyt b6/f) complex is a multisubunit complex that resides in the thylakoid membrane and functions in linear and cyclic electron transport. In the linear process, the complex receives electrons from PSII and transfers them to PSI, a process that is accompanied by the generation of a proton gradient, which is essential for ATP synthesis (Mitchell, 1961; Saraste, 1999). The native form of this complex is present as a dimer with a mass of 310 kD that can be converted into a 140-kD monomer with increasing detergent concentrations (Huang et al., 1994; Breyton et al., 1997; Mosser et al., 1997; Baniulis et al., 2009). In higher plants, the Cyt b6/f monomer contains at least eight subunits: Cyt f, Cyt b6, PetC, PetD, PetM, PetL, PetG, and PetN (Wollman, 2004). PetC and PetM are encoded by nuclear genes, whereas the others are encoded by plastid genes. It has been shown that PetG and PetN are necessary for complex stability in tobacco (Nicotiana tabacum; Schwenkert et al., 2007). By contrast, PetL is not required for the accumulation of other subunits of the Cyt b6/f complex, even though it is involved in the stability and formation of the functional dimer (Bendall et al., 1986; Schwenkert et al., 2007). Inactivation of PetC in Arabidopsis (Arabidopsis thaliana) resulted in significantly reduced amounts of Cyt b6/f subunits and completely blocked linear electron transport, indicating that PetC participates in the formation of the functionally assembled Cyt b6/f complex (Maiwald et al., 2003). In Synechocystis sp. PCC 6803, the PetM subunit has no essential role in Cyt b6/f complex electron transfer or accumulation; however, the absence of this subunit apparently affects the levels of other protein complexes involved in energy transduction (Schneider et al., 2001). In addition to the other proteins, FNR was identified as a subunit of the Cyt b6/f complex isolated from spinach (Spinacia oleracea) thylakoid membranes (Zhang et al., 2001).Previous research has revealed how the Cyt b6/f complex assembles into a functional dimer (Bendall et al., 1986; Lemaire et al., 1986; Kuras and Wollman, 1994). In the Cyt b6/f complex, Cyt b6 and PetD form a mildly protease-resistant subcomplex that serves as a template for the assembly of Cyt f and PetG, producing a protease-resistant cytochrome moiety (Wollman, 2004). The PetC and PetL proteins then participate in the assembly of the functional dimer (Schwenkert et al., 2007). PetD becomes more unstable in the absence of Cyt b6, and the synthesis of Cyt f is greatly reduced when either Cyt b6 or PetD is inactivated, indicating that both Cyt b6 and PetD are prerequisite for the synthesis of Cyt f (Kuras and Wollman, 1994). The reduced synthesis of Cyt f can be explained by the so-called CES (for controlled by epistasy of synthesis) mechanism. It is suggested that, in this mechanism, the synthesis rate of some chloroplast-encoded subunits of photosynthetic protein complexes is regulated by the availability of their assembly partners from the same complexes (Choquet et al., 2001). The mechanism of CES for Cyt f has been studied in detail in Chlamydomonas reinhardtii (Choquet et al., 1998; Choquet and Vallon, 2000). In it, the unassembled Cyt f inhibits its own translation through a negative feedback mechanism, and MCA1 and TCA1 have been demonstrated to be involved in the regulation of Cyt f synthesis (Boulouis et al., 2011).Many studies have focused on understanding the conversion of apocytochrome to holocytochrome via the covalent binding of heme in Cyt f and Cyt b6 during the assembly of Cyt b6/f through the CCS and CCB pathways (Nakamoto et al., 2000; Wollman, 2004; de Vitry, 2011). The CCS pathway was originally discovered in the green alga C. reinhardtii through genetic studies of ccs mutants (for cytochrome c synthesis) that display a specific defect in membrane-bound Cyt f and soluble Cyt c6, two thylakoid lumen-resident c-type cytochromes functioning in photosynthesis (Xie and Merchant, 1998). In the CCS pathway, six loci that include plastid ccsA and nuclear CCS1 to CCS5 have been found in C. reinhardtii (Xie and Merchant, 1998). In these mutants, the apocytochrome is normally synthesized, targeted, and processed, but heme attachment is perturbed. The CCB pathway is involved in the covalent attachment of heme c(i) to Cyt b6 on the stromal side of the thylakoid membranes (Kuras et al., 2007). The ccb mutants show defects in the accumulation of subunits of the Cyt b6/f complex and covalent binding of heme to Cyt b6 (Lyska et al., 2007; Lezhneva et al., 2008). However, heme binding is not a prerequisite for the assembly of Cyt b6 into the Cyt b6/f complex, although the fully formed Cyt b6/f showed an increased sensitivity to protease (Saint-Marcoux et al., 2009).The assembly of the Cyt b6/f complex is a multistep process, and current studies have shown that the covalent binding of heme to Cyt f and Cyt b6 is highly regulated. Thus, it is reasonable to speculate that, similar to the other photosynthetic protein complexes (Mulo et al., 2008; Nixon et al., 2010; Rochaix, 2011), the assembly of the Cyt b6/f complex is also assisted by many nucleus-encoded factors. In this study, we characterized an Arabidopsis protein, DAC (for defective accumulation of Cyt b6/f complex), that seems to be involved in the assembly of the Cyt b6/f complex. In addition, we provide evidence that DAC interacts directly with PetD before it assembles within the Cyt b6/f complex.  相似文献   

12.
Chloroplasts contain a proteolytic system whose activity is ATP-dependent. The presence of genes encoding homologues of the ATP-dependent E. coli CIpA/P protease on the plastome and nuclear genome suggests that a similar protease is located in chloroplasts. Antibodies raised against a recombinant chloroplast-encoded proteolytic ClpP subunit detect this polypeptide in chloroplasts prepared from barley leaves or the eukaryotic algae Chlamydomonas reinhardtii and Euglena gracilis. Co-immunoprecipitation experiments using the anti-ClpP antibody and an antibody against the nuclear encoded regulatory CIpC component (a ClpA homologue) provide direct evidence for the existence of a CIpC/P complex in the chloroplast stroma. These results suggest that at least a part of the ATP-dependent proteolytic reactions in the chloroplast is catalyzed by an enzyme complex similar to the E. coli CIpA/P protease.  相似文献   

13.
Various benzo- and naphthoquinone derivatives were introducedinto the purified photosystem II Dl-D2-cytochrome b559 reactioncenter complex, which lacks the intrinsic plasto-quinone electronacceptors. Effects of these quinones on the electron transferreactions in nanoseconds to milliseconds time range were studiedat room and cryogenic temperatures. 1) The addition of quinonesto the purified photosystem II reaction center complex suppressedthe nanosecond charge recombination between oxidized reactioncenter chlorophyll a (P680+) and reduced pheophytin a (Ph),and stabilized P680+ up to millisecond time range at 280 K andat 77 K. 2) In the reaction center complex supplemented withdibromothymoquinone (DBMIB), P68O was almost fully oxidizedand cytochrome b559 was partially reduced by flash excitation.A semi-quinone-like signal with a peak around 320 nm was alsoinduced but the shift of pheophytin absorption band (C55O) wasnot observed. 3) Halogenated quinones, especially DBMIB, werebetter electron acceptors than unsubstituted or methylated quinones.4) The affinities of quinones to the reaction center complexwere weakly dependent on their molecular structure. (Received July 9, 1991; Accepted August 15, 1991)  相似文献   

14.
Photosynthetic organisms have the ability to adapt to changes in light quality by readjusting the cross sections of the light-harvesting systems of photosystem II (PSII) and photosystem I (PSI). This process, called state transitions, maintains the redox poise of the photosynthetic electron transfer chain and ensures a high photosynthetic yield when light is limiting. It is mediated by the Stt7/STN7 protein kinase, which is activated through the cytochrome b6f complex upon reduction of the plastoquinone pool. Its probable major substrate, the light-harvesting complex of PSII, once phosphorylated, dissociates from PSII and docks to PSI, thereby restoring the balance of absorbed light excitation energy between the two photosystems. Although the kinase is known to be inactivated under high-light intensities, the molecular mechanisms governing its regulation remain unknown. In this study we monitored the redox state of a conserved and essential Cys pair of the Stt7/STN7 kinase and show that it forms a disulfide bridge. We could not detect any change in the redox state of these Cys during state transitions and high-light treatment. It is only after prolonged anaerobiosis that this disulfide bridge is reduced. It is likely to be mainly intramolecular, although kinase activation may involve a transient covalently linked kinase dimer with two intermolecular disulfide bonds. Using the yeast two-hybrid system, we have mapped one interaction site of the kinase on the Rieske protein of the cytochrome b6f complex.Photosynthetic organisms are subjected to constant changes in light quality and quantity and need to adapt to these changes in order to optimize, on the one hand, their photosynthetic yield, and to minimize photo-oxidative damage on the other. The photosynthetic electron transfer chain consists of photosystem II (PSII), the plastoquinone (PQ) pool, the cytochrome b6f complex (Cyt b6f), plastocyanin, and photosystem I (PSI). All of these complexes and components are integrated or closely associated with the thylakoid membrane. The two antenna systems of PSII and PSI capture and direct the light excitation energy to the corresponding reaction centers in which a chlorophyll dimer is oxidized and charge separation occurs across the thylakoid membrane. These processes lead to the onset of electron flow from water on the donor side of PSII to ferredoxin on the acceptor side of PSI coupled with proton translocation across the thylakoid membrane. In order to sustain optimal electron flow along this electron transfer chain, the redox poise needs to be maintained under changing environmental conditions. Several mechanisms have evolved for the maintenance of this redox balance. In the case of over-reduction of the acceptor side of PSI, excess electrons can reduce molecular oxygen through the Mehler reaction to superoxide, which is then converted to hydrogen peroxide by a plastid superoxide dismutase and ultimately to water by a peroxidase (Asada, 2000). Over-reduction of the PQ pool can be alleviated by PTOX, the plastid terminal oxidase responsible for oxidizing PQH2 to form hydrogen peroxide, which is subsequently converted to water (Carol et al., 1999; Cournac et al., 2000; Wu et al., 1999).In addition to these electron sinks that prevent the over-reduction of the electron transfer chain, the photosynthetic apparatus is able to maintain the redox poise of the PQ pool by readjusting the relative cross sections of the light harvesting systems of PSII and PSI upon unequal excitation of the two photosystems. This readjustment can occur both in the short term through state transitions and in the long term by changing the stoichiometry between PSII and PSI (Bonaventura and Myers, 1969; Murata, 1969; Pfannschmidt, 2003). State transitions occur because of perturbations of the redox state of the PQ pool due to unequal excitation of PSII and PSI, limitations in electron acceptors downstream of PSI, and/or in CO2 availability. Excess excitation of PSII relative to PSI leads to reduction of the PQ pool and thus favors the docking of PQH2 to the Qo site of the Cyt b6f complex. This process activates the Stt7/STN7 protein kinase (Vener et al., 1997; Zito et al., 1999), which is closely associated with this complex and leads to the phosphorylation of some LHCII proteins and to their detachment from PSII and binding to PSI (Depège et al., 2003; Lemeille et al., 2009). Although both Lhcb1 and Lhcb2 are phosphorylated, only the phosphorylated form of Lhcb2 is associated with PSI whereas phosphorylated Lhcb1 is excluded from this complex (Longoni et al., 2015). This state corresponds to state 2. In this way the change in the relative antenna sizes of the two photosystems restores the redox poise of the PQ pool. The process is reversible as over-excitation of PSI relative to PSII leads to the oxidation of the PQ pool and to the inactivation of the kinase. Under these conditions, phosphorylated LHCII associated with PSI is dephosphorylated by the PPH1/TAP38 phosphatase (Pribil et al., 2010; Shapiguzov et al., 2010) and returns to PSII (state 1). It should be noted, however, that a strict causal link between LHCII phosphorylation and its migration from PSII to PSI has been questioned recently by the finding that some phosphorylated LHCII remains associated with PSII supercomplexes and that LHCII serves as antenna for both photosystems under most natural light conditions (Drop et al., 2014; Wientjes et al., 2013).State transitions are important at low light but do not occur under high light because the LHCII kinase is inactivated under these conditions (Schuster et al., 1986). It was proposed that inactivation of the kinase is mediated by the ferredoxin-thioredoxin system and that a disulfide bond in the kinase rather than in the substrate may be the target site of thioredoxin (Rintamäki et al., 1997, 2000). Analysis of the Stt7/STN7 protein sequences indeed reveals the presence of two conserved Cys residues close to the N-terminal end of this kinase, which are conserved in all species examined and both are essential for kinase activity although they are located outside of the kinase catalytic domain (Fig. 1) (Depège et al., 2003; Lemeille et al., 2009). Based on protease protection studies, this model of the Stt7/STN7 kinase proposes that the N-terminal end of the kinase is on the lumen side of the thylakoid membrane separated from the catalytic domain on the stromal side by an unusual transmembrane domain containing several Pro residues (Lemeille et al., 2009). This configuration of the kinase allows its catalytic domain to act on the substrate sites of the LHCII proteins, which are exposed to the stroma. Although in this model the conserved Cys residues in the lumen are on the opposite side from the stromal thioredoxins, it is possible that thiol-reducing equivalents are transferred across the thylakoid membrane through the CcdA and Hcf164 proteins, which have been shown to operate in this way during heme and Cyt b6f assembly (Lennartz et al., 2001; Page et al., 2004) or through the LTO1 protein (Du et al., 2015; Karamoko et al., 2011).Figure 1.Conserved Cys in the Stt7/STN7 kinase. Alignment of the sequences of the Stt7/STN protein kinase from Selaginella moelendorffii (Sm), Physcomitrella patens (Pp), Oryza sativa (Os), Populus trichocarpa (Pt), Arabidopsis thaliana (At), Chlamydomonas reinhardtii ...Here we have examined the redox state of the Stt7/STN7 kinase during state transitions and after illumination with high light to test the proposed model. We find that the Stt7/STN7 kinase contains a disulfide bridge that appears to be intramolecular and maintained not only during state transitions but also in high light when the kinase is inactive. Although these results suggest at first sight that the disulfide bridge of Stt7/STN7 is maintained during its activation and inactivation, we propose that a transient opening of this bridge occurs during the activation process followed by the formation of an intermolecular disulfide bridge and the appearance of a short-lived, covalently linked kinase dimer.  相似文献   

15.
Electron crystallography of the chloroplastic b(6)f complex allowed the calculation of projection maps of crystals negatively stained or embedded in glucose. This gives insights into the overall structure of the extra- and transmembrane domains of the complex. A comparison with the structure of the bc(1) complex, the mitochondrial homologue of the b(6)f complex, suggests that the transmembrane domains of the two complexes are very similar, confirming the structural homology deduced from sequence analysis. On the other hand, the extramembrane organisation of the c-type cytochrome and of the Rieske protein seems quite different. Nevertheless, the same type of movement of the Rieske protein is observed in the b(6)f as in the bc(1) complex upon the binding of the quinol analogue stigmatellin. Crystallographic data also suggest movements in the transmembrane domains of the b(6)f complex, which would be specific of the b(6)f complex.  相似文献   

16.
Cyclic electron flow (CEFI) has been proposed to balance the chloroplast energy budget, but the pathway, mechanism, and physiological role remain unclear. We isolated a new class of mutant in Arabidopsis thaliana, hcef for high CEF1, which shows constitutively elevated CEF1. The first of these, hcef1, was mapped to chloroplast fructose-1,6-bisphosphatase. Crossing hcef1 with pgr5, which is deficient in the antimycin A–sensitive pathway for plastoquinone reduction, resulted in a double mutant that maintained the high CEF1 phenotype, implying that the PGR5-dependent pathway is not involved. By contrast, crossing hcef1 with crr2-2, deficient in thylakoid NADPH dehydrogenase (NDH) complex, results in a double mutant that is highly light sensitive and lacks elevated CEF1, suggesting that NDH plays a direct role in catalyzing or regulating CEF1. Additionally, the NdhI component of the NDH complex was highly expressed in hcef1, whereas other photosynthetic complexes, as well as PGR5, decreased. We propose that (1) NDH is specifically upregulated in hcef1, allowing for increased CEF1; (2) the hcef1 mutation imposes an elevated ATP demand that may trigger CEF1; and (3) alternative mechanisms for augmenting ATP cannot compensate for the loss of CEF1 through NDH.  相似文献   

17.
The present study provides a thorough analysis of effects on the redox properties of cytochrome (Cyt) b559 induced by two photosystem II (PS II) herbicides [3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,4-dinitro-6-sec-butylphenol (dinoseb)], an acceleration of the deactivation reactions of system Y (ADRY) agent carbonylcyanide-m-chlorophenylhydrazone (CCCP), and the lipophilic PS II electron-donor tetraphenylboron (TPB) in PS II membrane fragments from higher plants. The obtained results revealed that (1) all four compounds selectively affected the midpoint potential (E(m)) of the high potential (HP) form of Cyt b559 without any measurable changes of the E(m) values of the intermediate potential (IP) and low potential (LP) forms; (2) the control values from +390 to +400 mV for HP Cyt b559 gradually decreased with increasing concentrations of DCMU, dinoseb, CCCP, and TPB; (3) in the presence of high TPB concentrations, a saturation of the E(m) decrease was obtained at a level of about +240 mV, whereas no saturation was observed for the other compounds at the highest concentrations used in this study; (4) the effect of the phenolic herbicide dinoseb on the E(m) is independent of the occupancy of the Q(B)-binding site by DCMU; (5) at high concentrations of TPB or dinoseb, an additional slow and irreversible transformation of HP Cyt b559 into IP Cyt b559 or a mixture of the IP and LP Cyt b559 is observed; and (6) the compounds stimulate autoxidation of HP Cyt b559 under aerobic conditions. These findings lead to the conclusion that a binding site Q(C) exists for the studied substances that is close to Cyt b559 and different from the Q(B) site. On the basis of the results of the present study and former experiments on the effect of PQ extraction and reconstitution on HP Cyt b559 [Cox, R. P., and Bendall, D. S. (1974) The functions of plastoquinone and beta-carotene in photosystem II of chloroplasts, Biochim. Biophys. Acta 347, 49-59], it is postulated that the binding of a plastoquinone (PQ) molecule to Q(C) is crucial for establishing the HP form of Cyt b559. On the other hand, the binding of plastoquinol (PQH2) to Q(C) is assumed to cause a marked decrease of E(m), thus, giving rise to a PQH2 oxidase function of Cyt b559. The possible physiological role of the Q(C) site as a regulator of the reactivity of Cyt b559 is discussed.  相似文献   

18.
The effect of quinone herbicides and fungicides on photosynthetic reactions in isolated spinach (Spinacia oleracea) chloroplasts was investigated. 2,3-Dichloro-1,4-naphthoquinone (dichlone), 2-amino-3-chloro-1,4-naphthoquinone (06K-quinone), and 2,3,5,6-tetrachloro-1,4-benzoquinone (chloranil) inhibited ferricyanide reduction as well as ATP formation. Benzoquinone had little or no effect on these reactions. The two reactions showed a differential sensitivity to these inhibitors. Dichlone was a strong inhibitor of both photosystems I and II; photosystem I was more sensitive to 06K-quinone than was photosystem II, whereas the reverse was true of chloranil. Chloranil and 06K-quinone inhibited ferricyanide reduction and the coupled photophosphorylation to the same extent, whereas dichlone affected photophosphorylation to a greater extent than the ferricyanide reduction.  相似文献   

19.
The cytochrome b6f complex of spinach chloroplasts was prepared with minor modification according to the method of E. Hurt and G. Hauska (1981) Eur. J. Biochem. 117, 591-599) replacing, however, the final ultracentrifugation step by hydroxyapatite chromatography as suggested by M. F. Doyle and C.-A Yu (1985) Biochem. Biophys. Res. Commun. 131, 700-706). The purified complex was partially dissociated by treatment with 4 M urea or 0.1% sodium dodecyl sulfate (SDS) in the absence of reducing agents. A binary subcomplex consisting of cytochrome f and the Rieske iron-sulfur protein was observed under these conditions by three different methods: (a) hydroxyapatite chromatography; (b) extraction with an isopropanol/water/trifluoroacetic acid mixture; and (c) gel filtration in the presence of low SDS concentrations. The subcomplex dissociated into its components by treatment with mercaptoethanol. These results suggest a close interaction of the cytochrome f with the Rieske protein involving SH groups which under reducing conditions leads to complete dissociation of the subcomplex.  相似文献   

20.
Cytochrome (cyt) b-c complexes play a central role in electron transfer chains and are almost ubiquitous in nature. Although similar in their basic structure and function, the cyt b(6)f complex of photosynthetic membranes and its counterpart, the mitochondrial cyt bc(1) complex, show some characteristic differences which cannot be explained by the high resolution structure of the cyt bc(1) complex alone. Especially the presence of a chlorophyll molecule is a striking feature of all cyt b(6)f complex preparations described so far, imposing questions as to its structural and functional role. To allow a more detailed characterization, we here report the preparation of native subunits cyt b(6) and IV starting from a monomeric cyanobacterial cyt b(6)f complex. Spectroscopical and reversed-phase HPLC analyses of the purified cyt b(6) subunit showed that it contained not only two b-type hemes, but also one chlorophyll a molecule and a cyanobacterial carotenoid, echinenone. Evidence for selective binding of both pigments to this subunit is presented and their putative function is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号