首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characteristics of cation permeation through voltage-dependent delayed rectifier K channels in squid giant axons were examined. Axial wire voltage-clamp measurements and internal perfusion were used to determine conductance and permeability properties. These K channels exhibit conductance saturation and decline with increases in symmetrical K+ concentrations to 3 M. They also produce ion- and concentration-dependent current-voltage shapes. K channel permeability ratios obtained with substitutions of internal Rb+ or NH+4 for K+ are higher than for external substitution of these ions. Furthermore, conductance and permeability ratios of NH+4 or Rb+ to K+ are functions of ion concentration. Conductance measurements also reveal the presence of an anomalous mole fraction effect for NH+4, Rb+, or Tl+ to K+. Finally, internal Cs+ blocks these K channels in a voltage-dependent manner, with relief of block by elevations in external K+ but not external NH+4 or Cs+. Energy profiles for K+, NH+4, Rb+, Tl+, and Cs+ incorporating three barriers and two ion-binding sites are fitted to the data. The profiles are asymmetric with respect to the center of the electric field, have different binding energies and electrical positions for each ion, and (for K+) exhibit concentration-dependent barrier positions.  相似文献   

2.
3.
The effects of ouabain on the effectiveness of glycine, Li+, Na+, K+, Rb+, and Cs+ in the external medium in reducing the rate of entry of labeled Cs+ into frog sartorius muscles were studied. The results showed that in the absence of ouabain the effectiveness of glycine and alkali-metal ions in inhibiting labeled Cs+ entry follows the rank order: K+ greater than Cs+, Rb+ greater than Na+, Li+ greater than glycine. Exposure to ouabain in essence reverses this order which then becomes: glycine greater than Li+, Na+ greater than K+, Rb+, greater than Cs+. These results confirm the prediction of the basic electronic interpretation of drug action according to the association-induction hypothesis. In addition, it shows that the action of ouabain on the surface beta- and gamma-carboxyl groups of frog muscle mediating Cs+ entry is quite similar to its action on the cytoplasmic beta- and gamma-carboxyl groups that are the seats of K+ accumulation in the bulk phase cytoplasm as well as to its action on the cell surface beta- and gamma-carboxyl groups responsible for the generation of the resting potential. In all these cases, ouabain acts as an electron-donating cardinal adsorbent (EDC). Finally the marked increase of the binding strength of glycine on the surface beta- and gamma-carboxyl groups was used to explain the primary pharmacodynamic effect of cardiac glycosides in combating heart failure.  相似文献   

4.
Cyclo(L-Lac-L-Val-D-Pro-D-Val)3 (PV-Lac) a structural analogue of the ion-carrier valinomycin, increases the cation permeability of lipid bilayer membranes by forming a 1:1 ion-carrier complex. The selectively sequence for PV-Lac is identical to that of valinomycin; i.e., Rb+ greater than K+ greater than Cs+ greater than or equal to NH+4 greater than Na+ greater than Li+. The steady-state zero-voltage conductance, G(0), is a saturating function of KCl concentration. A similar behavior was found for Rb+, Cs+, and NH+4. However, the ion concentration at which G(0) reaches a plateau strongly depends on membrane composition. The current-voltage curves present saturating characteristics, except at low ion concentrations of Rb+, K+, or Cs+. The ion concentration at which the saturating characteristics appear depends on membrane composition. These and other results presented in this paper agree with a model that assumes complexation between carrier and ion at the membrane-water interface. Current relaxation after voltage-jump studies were also performed for PV-Lac. Both the time constant and the amplitude of the current after a voltage jump strongly depend on ion concentration and membrane composition. These results, together with the stationary conductance data, were used to evaluate the rate constants of the PV-Lac-mediated K+ transport. In glycerolmonooleate they are: association rate constant, 2 x 10(6) M-1 s-1; dissociation rate constant, 4 x 10(5) s-1; translocation rate constant for complex, 5 x 10(4) s-1; and the rate of translocation of the free carrier (ks), 55 s-1. ks is much smaller for PV-Lac than for valinomycin and thus limits the efficiency with which the carrier is able to translocate cations across the membrane.  相似文献   

5.
The multi-ion nature of the pore in Shaker K+ channels.   总被引:7,自引:3,他引:4       下载免费PDF全文
We have investigated some of the permeation properties of the pore in Shaker K channels. We determined the apparent permeability ratio of K+, Rb+, and NH4+ ions and block of the pore by external Cs+ ions. Shaker channels were expressed with the baculovirus/Sf9 expression system and the channel currents measured with the whole-cell variant of the patch clamp technique. The apparent permeability ratio, PRb/PK, determined in biionic conditions with internal K+, was a function of external Rb+ concentration. A large change in PRb/PK occurred with reversed ionic conditions (internal Rb+ and external K+). These changes in apparent permeability were not due to differences in membrane potential. With internal K+, PNH4/PK was not a function of external NH4+ concentration (at least over the range 50-120 mM). We also investigated block of the pore by external Cs+ ions. At a concentration of 20 mM, Cs+ block had a voltage dependence equivalent to that of an ion with a valence of 0.91; this increased to 1.3 at 40 mM Cs+. We show that a 4-barrier, 3-site permeation model can simulate these and many of the other known properties of ion permeation in Shaker channels.  相似文献   

6.
Type l voltage-gated K+ channels in murine lymphocytes were studied under voltage clamp in cell-attached patches and in the whole-cell configuration. The kinetics of activation of whole-cell currents during depolarizing pulses could be fit by a single exponential after an initial delay. Deactivation upon repolarization of both macroscopic and microscopic currents was mono-exponential, except in Rb-Ringer or Cs-Ringer solution in which tail currents often displayed "hooks," wherein the current first increased or remained constant before decaying. In some cells type l currents were contaminated by a small component due to type n K+ channels, which deactivate approximately 10 times slower than type l channels. Both macroscopic and single channel currents could be dissected either kinetically or pharmacologically into these two K+ channel types. The ionic selectivity and conductance of type l channels were studied by varying the internal and external permeant ion. With 160 mM K+ in the cell, the relative permeability calculated from the reversal potential with the Goldman-Hodgkin-Katz equation was K+ (identical to 1.0) greater than Rb+ (0.76) greater than NH4+ = Cs+ (0.12) much greater than Na+ (less than 0.004). Measured 30 mV negative to the reversal potential, the relative conductance sequence was quite different: NH4+ (1.5) greater than K+ (identical to 1.0) greater than Rb+ (0.5) greater than Cs+ (0.06) much greater than Na+, Li+, TMA+ (unmeasurable). Single channel current rectification resembled that of the whole-cell instantaneous I-V relation. Anomalous mole-fraction dependence of the relative permeability PNH4/PK was observed in NH4(+)-K+ mixtures, indicating that the type l K+ channel is a multi-ion pore. Compared with other K+ channels, lymphocyte type l K+ channels are most similar to "g12" channels in myelinated nerve.  相似文献   

7.
N E Shvinka  G Caffier 《Tsitologiia》1988,30(9):1101-1107
Conductance ratios (Gi/Gk) and permeability ratios (Pi/Pk) for monovalent cations in frog muscle fibres have been defined under constant current conditions using a double sucrose gap method. Selectivity determined from potassium channel conductance is: K+ greater than Rb+ greater than Cs+ greater than greater than NH4+ greater than Na+ greater than Li+. In gramicidin channels both the permeability and conductance sequences are identical: NH4+ greater than Cs+ greater than Rb+ greater than K+ greater than Na+ greater than Li+. In isotonic K+-sulfate solution with one-sided addition of external [Tl+] (2.5 x 10(-3)-20 x 10(-3) M), differences in the conductance and permeability ratios for gramicidin channel were observed.  相似文献   

8.
G Eisenman  R Latorre    C Miller 《Biophysical journal》1986,50(6):1025-1034
Open-channel ion permeation properties were investigated for Ca++-activated K+ (CaK) channels in solutions of K+ and its analogues T1+, Rb+, and NH4+. Single CaK channels were inserted into planar lipid bilayers composed of neutral phospholipids, and open-channel current-voltage (I-V) relations were measured in symmetrical and asymmetrical solutions of each of these individual ions. For all concentrations studied, the zero-voltage conductance falls in the sequence K+ greater than T1+ greater than NH4+ greater than Rb+. The shape of the I-V curve in symmetrical solutions of a single permeant ion is non-ohmic and is species-dependent. The I-V shape is sublinear for K+ and T1+ and superlinear for Rb+ and NH4+. As judged by reversal potentials under bi-ionic conditions with K+ on one side of the bilayer and the test cation on the other, the permeability sequence is T1+ greater than K+ greater than Rb+ greater than NH4+ at 300 mM, which differs from the conductance sequence. Symmetrical mixtures of K+ or NH4+ with Rb+ show a striking anomalous mole fraction behavior, i.e., a minimum in single-channel conductance when the composition of a two-ion mixture is varied at constant total ion concentration. This result is incompatible with present models that consider the CaK channel a single-ion pore. In total, the results show that the CaK channel finely discriminates among K+-like ions, exhibiting different energy profiles among these species, and that several such ions can reside simultaneously within the conduction pathway.  相似文献   

9.
Single high-conductance Ca2+-activated K+ channels from rat skeletal muscle were inserted into planar lipid bilayers, and discrete blocking by the Ba2+ ion was studied. Specifically, the ability of external K+ to reduce the Ba2+ dissociation rate was investigated. In the presence of 150 mM internal K+, 1-5 microM internal Ba2+, and 150 mM external Na+, Ba2+ dissociation is rapid (5 s-1) in external solutions that are kept rigorously K+ free. The addition of external K+ in the low millimolar range reduces the Ba2+ off-rate 20-fold. Other permeant ions, such as Tl+, Rb+, and NH4+ show a similar effect. The half-inhibition constants rise in the order: Tl+ (0.08 mM) less than Rb+ (0.1 mM) less than K+ (0.3 mM) less than Cs+ (0.5 mM) less than NH4+ (3 mM). When external Na+ is replaced by 150 mM N-methyl glucamine, the Ba2+ off-rate is even higher, 20 s-1. External K+ and other permeant ions reduce this rate by approximately 100-fold in the micromolar range of concentrations. Na+ also reduces the Ba2+ off-rate, but at much higher concentrations. The half-inhibition concentrations rise in the order: Rb+ (4 microM) less than K+ (19 microM) much less than Na+ (27 mM) less than Li+ (greater than 50 mM). The results require that the conduction pore of this channel contains at least three sites that may all be occupied simultaneously by conducting ions.  相似文献   

10.
11.
Opening of connexin hemichannels in the plasma membrane is highly regulated. Generally, depolarization and reduced extracellular Ca2+ promote hemichannel opening. Here we show that hemichannels formed of Cx50, a principal lens connexin, exhibit a novel form of regulation characterized by extraordinary sensitivity to extracellular monovalent cations. Replacement of extracellular Na+ with K+, while maintaining extracellular Ca2+ constant, resulted in >10-fold potentiation of Cx50 hemichannel currents, which reversed upon returning to Na+. External Cs+, Rb+, NH4+, but not Li+, choline, or TEA, exhibited a similar effect. The magnitude of potentiation of Cx50 hemichannel currents depended on the concentration of extracellular Ca2+, progressively decreasing as external Ca2+ was reduced. The primary effect of K+ appears to be a reduction in the ability of Ca2+, as well as other divalent cations, to close Cx50 hemichannels. Cx46 hemichannels exhibited a modest increase upon substituting Na+ with K+. Analyses of reciprocal chimeric hemichannels that swap NH2- and COOH-terminal halves of Cx46 and Cx50 demonstrate that the difference in regulation by monovalent ions in these connexins resides in the NH2-terminal half. Connexin hemichannels have been implicated in physiological roles, e.g., release of ATP and NAD+ and in pathological roles, e.g., cell death through loss or entry of ions and signaling molecules. Our results demonstrate a new, robust means of regulating hemichannels through a combination of extracellular monovalent and divalent cations, principally Na+, K+, and Ca2+.  相似文献   

12.
Ionic selectivity of Ih channels of tiger salamander rod photoreceptors was investigated using whole-cell voltage clamp. Measured reversal potentials and the Goldman-Hodgkin-Katz voltage equation were used to calculate permeability ratios with 20 mM K+ as a reference. In the absence of external K+, Ih is small and hard to discern. Hence, we defined Ih as the current blocked by 2 mM external Cs+. Some small amines permeate Ih channels, with the following permeability ratios (PX/PK):NH4+, 0.17; methylammonium, 0.06; and hydrazine, 0.04. Other amines are tially impermeant: dimethylammonium (< 0.02), ethylammonium (< 0.01), and tetramethylammonium (< 0.01). When K+ is the only external permeant ion and its concentration is varied, the reversal potential of Ih follows the Nernst potential for a K+ electrode. Ih channels are also permeable to other alkali metal cations (PX/PK): T1+, > 1.55; K+, 1; Rb+, > 0.55; Na+, 0.33; Li+, 0.02. Except for Na+, the relative slope conductance had a similar sequence (GX/GK): T1+, 1.07; K+, 1; Rb+, 0.37; NH4+, 0.07; Na+, 0.02. Based on permeabilities to organic cations, the narrowest part of the pore has a diameter between 4.0 and 4.6 A. Some permeant cations have large effects on the gating kinetics of Ih channels; however, permeant cations appear to have little effect on the steady-state activation curve of Ih channels. Lowering K+ or replacing K+ with Na+ reduces the maximal conductance of Ih but does not shift or change the steepness of its voltage dependence. With ammonium or methylammonium replacing K+ a similar pattern is seen, except that there is a small positive shift of approximately 10 mV in the voltage dependence.  相似文献   

13.
The permeation properties of the 147-pS Ca2+-activated K+ channel of the taenia coli myocytes are similar to those of the delayed rectifier channel in other excitable membranes. It has a selectivity sequence of K+ 1.0 greater than Rb+ 0.65 greater than NH4+ 0.50. Na+, Cs+, Li+, and TEA+ (tetraethylammonium) are impermeant. Internal Na+ blocks K+ channel in a strongly voltage-dependent manner with an equivalent valence (zd) of 1.20. Blockade by internal Cs+ and TEA+ is less voltage dependent, with d of 0.61 and 0.13, and half-blockage concentrations of 88 and 31 mM, respectively. External TEA+ is about 100 times more effective in blocking the K+ channel. All these findings suggest that the 147-pS Ca2+-activated K+ channel in the taenia myocytes, which functions physiologically like the delayed rectifier, is the single-channel basis of the repolarizing current in an action potential.  相似文献   

14.
The interactions of the monovalent ions Li+, Na+, K+, NH4+, Rb+ and Cs+ with adenosine-5'-monophosphoric acid (H2-AMP), guanosine-5'-monophosphoric acid (H2-GMP) and deoxyguanosine-5'-monophosphoric acid (H2-dGMP) were investigated in aqueous solution at physiological pH. The crystalline salts M2-nucleotide.nH2O, where M = Li+, Na+, K+ NH4+, Rb+ and Cs+, nucleotide = AMP, GMP and dGMP anions and n = 2-4 were isolated and characterized by Fourier Transform infrared (FTIR) and 1H-NMR spectroscopy. Spectroscopic evidence showed that these ions are in the form of M(H2O)n+ with no direct metal-nucleotide interaction, in aqueous solution. In the solid state, Li+ ions bind to the base N-7 site and the phosphate group (inner-sphere), while the NH4+ cations are in the vicinity of the N-7 position and the phosphate group, through hydrogen bonding systems. The Na-nucleotides and K-nucleotides are structurally similar. The Na+ ions bind to the phosphate group of the AMP through metal hydration shell (outer-sphere), whereas in the Na2-GMP, the hydrated metal ions bind to the base N-7 or the ribose hydroxyl groups (inner-sphere). The Na2-dGMP contains hydrated metal-carbonyl and metal-phosphate bindings (inner-sphere). The Rb+ and Cs+ ions are directly bonded to the phosphate groups and indirectly to the base moieties (via H2O). The ribose moiety shows C2'-endo/anti conformation for the free AMP acid and its alkali metal ion salts. In the free GMP acid, the ribose ring exhibits C3'-endo/anti conformer, while a C2'-endo/anti sugar pucker was found in the Na2-GMP and K2-GMP salts and a C3'-endo/anti conformation for the Li+, NH4+, Rb+ and Cs+ salts. The deoxyribose has C3'-endo/anti conformation in the free dGMP acid and O4'-endo/anti in the Na2-dGMP, K2-dGMP and a C3'-endo/anti for the Li+, NH4+, Rb+ and Cs+ salts. An equilibrium mixture of the C2'-endo/anti and C3'-endo/anti sugar puckers was found for these metal-nucleotide salts in aqueous solution.  相似文献   

15.
Purification and characterization of RNase P from Clostridium sporogenes   总被引:1,自引:0,他引:1  
RNase P is a multi-subunit enzyme responsible for the accurate processing of the 5' terminus of all tRNAs. The RNA subunit from Clostridium sporogenes has been partially purified and characterized. The RNA is approximately 400 nucleotides long and makes a precise endonucleolytic cleavage at the mature 5' terminus of tRNA. The RNA requires moderate concentrations of Mg2+ (20 mM) and relatively high concentrations of NH4Cl (800 mM) for optimal activity. Mn2+ effectively substitutes for Mg2+ at 2 mM. Zn2+, Ni2+, Ca2+, and Co2+ are ineffective at stimulating activity. Monovalent ions are, in general, more effective the greater the ionic radius (NH+4 greater than Cs greater than Rb greater than K greater than Na). In contrast to the activity of Bacillus subtilis, C. sporogenes RNase P RNA is significant more active in (NH4)2SO4 than in NH4Cl.  相似文献   

16.
A voltage-dependent and Ca2(+)-activated cation channel recently found in the vacuolar membrane of the yeast Saccharomyces cerevisiae was incorporated into planar lipid bilayers and further characterized in macroscopic and single channel levels. Single channel conductances for various cations were in the order: NH4+ greater than K+ greater than Rb+ greater than Cs+ greater than Na+ greater than Li+, and were nearly consistent with the order of permeability ratio estimated from reversal potentials determined by macroscopic measurement. Up to 6 mM of Ca2+ added to the cis (cytoplasmic) side opened the channel, but higher concentrations closed the channel without affecting the single channel conductance. Ba2+ closed the channel without affecting the single channel conductance. Ba2+ closed the channel from the cis side. In addition to the above channel, a small cation-selective channel of about 40 pS was found.  相似文献   

17.
The action of monovalent cations Li+, Na+, K+, Rb+, Cs+, NH4+ on catalytic and physico-chemical properties of bacterial tyrosine--phenol-lyase was investigated. It was shown that K+, Rb+, Cs+, NH4+ were the noncompetitive activators of the enzyme, Na+ was an inhibitor, Li+ did not influence the catalytic activity. The values of KA and Vmax were determined for the activators in the reaction of alpha, beta-elimination of L-tyrosine. Monovalent cations affect the absorption and CD spectra of the enzyme and its complex with the quasi-substrate--L-alanine. It was suggested that an activation of tyrosine phenollyase by monovalent cations was connected with the increase of the active protonated form of the holoenzyme (lambda max 420 mm) induced by the cations-activators.  相似文献   

18.
1. The cytoplasmic membrane ionic current of cells of Rhodobacter capsulatus, washed to lower the endogenous K+ concentration, had a non-linear dependence on the membrane potential measured during photosynthetic illumination. Treatment of the cells with venturicidin, an inhibitor of the H(+)-ATP synthase, increased the membrane potential and decreased the membrane ionic current at values of membrane potential below a threshold. 2. The addition of K+ or Rb+, but not of Na+, led to an increase in the membrane ionic current and a decrease in the membrane potential in either the presence or absence of venturicidin. Approximately 0.4 mM K+ or 2.0 mM Rb+ led to a half-maximal response. At saturating concentrations of K+ and Rb+, the membrane ionic currents were similar. The membrane ionic currents due to K+ and Rb+ were not additive. The K(+)-dependent and Rb(+)-dependent ionic currents had a non-linear relationship with membrane potential: the alkali cations only increased the ionic current when the membrane potential lay above a threshold value. The presence of 1 mM Cs+ did not lead to an increase in the membrane ionic current but it had the effect of inhibiting the membrane ionic current due to either K+ or Rb+. 3. Photosynthetic illumination in the presence of either K+ or Rb+, and weak acids such as acetate, led to a decrease in light-scattering by the cells. This was attributed to the uptake of potassium or rubidium acetate and a corresponding increase in osmotic strength in the cytoplasm. 4. The addition of NH4+ also led to an increase in membrane ionic current and to a decrease in membrane potential (half-maximal at 2.0 mM NH4+). The relationship between the NH4(+)-dependent ionic currents and the membrane potential was similar to that for K+. The NH4(+)-dependent and K(+)-dependent ionic current were not additive. However, illumination in the presence of NH4+ and acetate did not lead to significant light-scattering changes. The NH4(+)-dependent membrane ionic current was inhibited by 1 mM Cs+ but not by 50 microM methylamine. 5. It is proposed that the K(+)-dependent membrane ionic current is catalysed by a low-affinity K(+)-transport system such as that described in Rb. capsulatus [Jasper, P. (1978) J. Bacteriol. 133, 1314-1322]. The possibility is considered that, as well as Rb+, this transport system can also operate with NH4+. However, in our experimental conditions NH4+ uptake is followed by NH3 efflux.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The rates of calcium transport and Ca2+-dependent ATP hydrolysis by rabbit skeletal muscle sarcoplasmic reticulum were stimulated by monovalent cations. The rate of decomposition of phosphoprotein intermediate of the Ca2+-dependent ATPase of sarcoplasmic reticulum was also increased by these ions to an extent that is sufficient to account for the stimulation of calcium transport and Ca2+-dependent ATPase activity. The order of effectiveness of monovalent cations tested at saturating concentrations in increasing rate of phosphoprotein decomposition is: K+, Na+ greater than Rb+, NH4+ greater than Cs+ greater than Li+, choline+, Tris+.  相似文献   

20.
When guinea-pig papillary muscles were depolarized to ca. -30 mV by superfusion with K+-free Tyrode's solution supplemented with Ba2+, Ni2+, and D600, addition of Cs+ transiently hyperpolarized the membrane in a reproducible manner. The size of the hyperpolarization (pump potential) depended on the duration of the preceding K+-free exposure; peak amplitudes (Epmax) elicited by 10 mM Cs+ after 5-, 10-, and 15-min K+-free exposures were 12.9, 17.7, and 23.2 mV, respectively. Pump potentials were unaffected by external Cl- but suppressed by cardiac glycosides, hyperosmotic conditions, and low-Na+ solution. Using Epmax as an indicator of Na+ pump activation, the half-maximal concentration for activation by Cs+ was 12-16.3 mM. At 6 mM, Cs+ was three times less potent than Rb+ or K+ and five times more potent than Li+. From these findings, and correlative voltage-clamp data from myocytes, we calculate that (i) a pump current of 7.8 nA/cm2 generates an Epmax of 1 mV and (ii) resting pump current in normally polarized muscle (approximately 0.16 microA/cm2) is five times smaller than previously estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号