首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Procathepsin D-II (Mr = 37 500) was purified from Japanese monkey lung at pH 7.0, and was shown to be converted to the active form, cathepsin D-II (Mr = 33 000) via an intermediate (Mr = 35 500) upon treatment at pH 3.0 and 14 degrees C. Procathepsin D-II was shown to be the inactive precursor of cathepsin D-II based on the following results: the former was inactive toward heat-denaturated casein at pH 5.4 whereas the latter was active; the former was not inactivated by diazoacetyl-DL-norleucine methyl ester in the presence of Cu2+ ion at pH 6.0 whereas the latter was inactivated rapidly under the same conditions; and the former had no affinity to pepstatin-Sepharose between pH 5 and 7 whereas the latter was adsorbed to it. With a rabbit antiserum against procathepsin D-II, cathepsin D-II, pepsinogen C and pepsin C of Japanese monkey were each found to give a single precipitin line which fused completely with each other on agarose plate. On the other hand, cathepsin D-I purified from the monkey lung, and pepsinogens A (I, II, III-1, III-2 and III-3) obtained from the monkey gastric mucosa failed to precipitate with the antiserum. With the antiserum against the monkey pepsinogen C, the same results were obtained. Further, procathepsin D-II and pepsinogen C were shown to have the same amino-terminal amino acid sequence, Ala-Val-Val-Lys-Val-Pro-Leu-Lys-Lys-Phe-Lys-. All these results indicate a strong similarity of procathepsin D-II and cathepsin D-II to pepsinogen C and pepsin C, respectively.  相似文献   

2.
A crude extract of the proventriculus of the Japanese quail gave at least five bands of peptic activity at pH 2.2 on polyacrylamide gel electrophoresis. The main component, constituting about 40% of the total acid protease activity, was purified to homogeneity by hydroxyapatite and DEAE-Sepharose column chromatographies. At below pH 4.0, the pepsinogen was converted to a pepsin, which had the same electrophoretic mobility as one of the five bands of peptic activity present in the crude extract. The molecular weights of the pepsinogen and the pepsin were 40 000 and 36 000, respectively. Quail pepsin was stable in alkali up to pH 8.5. The optimal pH of the pepsin on hemoglobin was pH 3.0. The pepsin had about half the milk-clotting activity of purified porcine pepsin, but the pepsinogen itself had no activity. The hydrolytic activity of quail pepsin on N-acetyl-L-phenylalanyl-3,5-diiodo-L-tyrosine was about 1% of that of porcine pepsin. Among the various protease inhibitors tested, only pepstatin inhibited the proteolytic activity of the pepsin. The amino acid composition of quail pepsinogen was found to be rather similar to that of chick pepsinogen C, and these two pepsinogens possessed common antigenicity.  相似文献   

3.
The complete amino acid sequence of monkey pepsinogen A   总被引:2,自引:0,他引:2  
The complete amino acid sequence of pepsinogen A from the Japanese monkey (Macaca fuscata) was determined. After converting the pepsinogen to pepsin by activation, the pepsin moiety was reduced and carboxymethylated, cleaved by cyanogen bromide, and the amino acid sequences of the major fragments determined. These fragments were aligned with the aid of overlapping peptides isolated from a chymotryptic digest of intact pepsin. Since the sequence of the activation segment had been determined previously (Kageyama, T., and Takahashi, K. (1980) J. Biochem. (Tokyo) 88, 9-16), the 373-residue sequence of monkey pepsinogen A was established, consisting of the pepsin moiety of 326 residues and the activation segment of 47 residues. Three disulfide bridges and 1 phosphoserine residue were found to be present in the pepsinogen molecule. The molecular weight was calculated to be 40,027 including the phosphate group. Monkey pepsinogen A showed high homology with human (94% identity) and porcine (86% identity) pepsinogens A.  相似文献   

4.
Human gastric juice contains 3 major proteolytic components (pepsins1,3 and 5 or gastricsin). Pepsin 1 is increased in peptic ulcer and it's properties are relatively poorly understood. Studies with pepstatin the highly specific aspartic-protease inhibitor have therefore been carried out on individual active and proenzymes to assess any enzymic similarities. Human pepsin 1 was inhibited with high affinity similar to pepsin 3, whereas pepsin 5(gastricsin) was at least 40 times less sensitive. Inhibition of human pepsinogens 1,3 and 5 and pig pepsinogen A showed similar trends to the active enzymes. Studies using Sephadex gel filtration showed that pepstatin does not bind to pepsinogens and inhibition arises from pepstatin binding the pepsins released upon activation. Pepstatin inhibition was shown to be relatively independent of pH between 1.5 and 3.8 although at higher pH inhibition was less effective. The evidence suggests that pepsin 1 is similar to pepsin 3 and pepstatin inhibits by a one to one molecular binding to the active site. The explanation for the reduced affinity of pepstatin to pepsin 5(gastricsin) needs further study by co-crystallisation X-ray analysis.  相似文献   

5.
Two kinds of cathepsin D were found in Japanese monkey lung and were named cathepsins D-I and D-II. Cathepsin D-I was partially purified by ammonium sulfate fractionation and DEAE-cellulose column chromatography. It had properties common to other ordinary cathepsins D in terms of the elution position from a DEAE-cellulose column at pH 8.0, the pH-dependence of activity toward acid-denatured hemoglobin, and the molecular weight of 35,000 as determined by Sephadex G-100 gel filtration. On the other hand, cathepsin D-II was purified about 1,000-fold by a combination of ammonium sulfate fractionation and column chromatographies on DEAE-cellulose and Sephadex G-100. It was a very acidic protein as judged from its elution position from a DEAE-cellulose column at pH 8.0, and the high mobility toward the anode on disc gel electrophoresis at pH 8.6. Its molecular weight was determined to be 35,000 by Sephadex G-100 gel filtration and 39,000 by SDS-polyacrylamide gel electrophoresis. It was optimally active at pH 2.8 against acid-denatured hemoglobin as a substrate, showing 80% of the optimal activity at pH 1.0, and almost no activity above pH 4.0. This pH-profile of activity was similar to that of monkey pepsin C (gastricsin). It did not hydrolyze N-acetyl-L-phenylalanyl-3,5-diiodo-L-tyrosine, a synthetic substrate for pepsin, but was inhibited by a series of pepsin inhibitors such as pepstatin, 1,2-epoxy-3-(p-nitrophenoxy)propane, p-bromophenacyl bromide, and diazoacetyl-DL-norleucine methyl ester, although the diazo reagent was a rather weak inhibitor of the enzyme. The amino acid composition of cathepsin D-II was found to be fairly different from those of other cathepsins D. However, it showed a striking resemblance to that of Japanese monkey pepsinogen C, suggesting some evolutionary relationship between them.  相似文献   

6.
Human gastric juice contains 3 major proteolytic components (pepsins1,3 and 5 or gastricsin). Pepsin 1 is increased in peptic ulcer and it's properties are relatively poorly understood. Studies with pepstatin the highly specific aspartic-protease inhibitor have therefore been carried out on individual active and proenzymes to assess any enzymic similarities. Human pepsin 1 was inhibited with high affinity similar to pepsin 3, whereas pepsin 5(gastricsin) was at least 40 times less sensitive. Inhibition of human pepsinogens 1,3 and 5 and pig pepsinogen A showed similar trends to the active enzymes. Studies using Sephadex gel filtration showed that pepstatin does not bind to pepsinogens and inhibition arises from pepstatin binding the pepsins released upon activation. Pepstatin inhibition was shown to be relatively independent of pH between 1.5 and 3.8 although at higher pH inhibition was less effective. The evidence suggests that pepsin 1 is similar to pepsin 3 and pepstatin inhibits by a one to one molecular binding to the active site. The explanation for the reduced affinity of pepstatin to pepsin 5(gastricsin) needs further study by co-crystallisation X-ray analysis.  相似文献   

7.
Five pepsinogens were purified to homogeneity from the gastric mucosa of Asiatic black bear and termed pepsinogens I-1, I-2, II-1, II-2, and III. Pepsinogen II-1 was the major component and accounted for more than half of the total pepsinogens. Their molecular weights were estimated to be 40,000 for pepsinogens I-1 and I-2, 38,000 for pepsinogens II-1 and II-2, and 42,000 for pepsinogen III. They resembled each other in amino acid composition, except that pepsinogens I-1 and I-2 contained larger numbers of basic residues than the others. Pepsinogen III was a glycoprotein containing about 3.7% carbohydrate. Each was activated to the corresponding pepsin and their enzymatic characteristics were investigated. The optimal pH against hemoglobin was about 2.2 for pepsin I-1, and about 2.5 for pepsins II-1, II-2, and III. Each pepsin was inhibited by pepstatin as well as porcine pepsin and also by diazoacetyl-DL-norleucine methyl ester, 1,2-epoxy-3-(p-nitrophenoxy)-propane, and p-bromophenacyl bromide. Each pepsin could hydrolyze N-acetyl-L-phenylalanyl-3,5-diiodo-L-tyrosine, but the specific activity was much lower than that of porcine pepsin. Activation peptides corresponding to residues 1-43, 1-25, and 26-43 were isolated from an activation mixture of pepsinogen II-1. The amino acid sequences of these peptides and of the NH2-terminal portions of pepsinogen II-1 and pepsin II-1 were determined, resulting in the complete NH2-terminal 60-residue sequence of pepsinogen II-1.  相似文献   

8.
Three pepsinogens (pepsinogens 1, 2, and 3) were purified from the gastric mucosa of the North Pacific bluefin tuna (Thunnus thynuus orientalis). Their molecular masses were determined to be 40.4 kDa, 37.8 kDa, and 40.1 kDa, respectively, by SDS/polyacrylamide gel electrophoresis. They contained relatively large numbers of basic residues when compared with mammalian pepsinogens. Upon activation at pH 2.0, pepsinogens 1 and 2 were converted to the corresponding pepsins, in a stepwise manner through intermediate forms, whereas pepsinogen 3 was converted to pepsin 3 directly. The optimal pH of each pepsin for hemoglobin digestion was around 2.5. N-acetyl-L-phenylalanyl-L-diiodotyrosine was scarcely hydrolyzed be each pepsin. Pepstatin, diazoacetyl-DL-norleucine methyl ester in the presence of Cu2+, 1,2-epoxy-3-(p-nitrophenoxy)propane and p-bromophenacyl bromide inhibited each pepsin, although the extent of inhibition by each reagent differed significantly among the three pepsins. The amino acid sequences of the activation segments of these pepsinogens were determined together with the sequences of the NH2-terminal regions of pepsins. Similarities in the activation segment region among the three tuna pepsinogens were rather low, ranging over 28-56%. A phylogenetic tree for 16 aspartic proteinase zymogens including the three tuna pepsinogens was constructed based on the amino acid sequences of their activation segments. The tree indicates that each tuna pepsinogen diverged from a common ancestor of pepsinogens A and C and prochymosin in the early period of pepsinogen evolution.  相似文献   

9.
The amino-acid sequence of 96 residues in the N-terminal region of rat pepsinogen I was determined and the first 46 residues were found to constitute the activation peptide segment. There was high degree of homology between the activation segments of rat pepsinogen and some pepsinogens A (pig, cow, Japanese monkey and human). However, the number of residues substituted between rat and the other pepsinogens were considerably larger than those among pepsinogens A. In the N-terminal 24 residues of active pepsin, homology (88%) between rat pepsin and human gastricsin was higher than that (50%) between rat pepsin and pepsin A from human or pig. This strongly suggests that rat pepsin should be classified as pepsin C.  相似文献   

10.
Two pepsinogens (pepsinogens 1 and 2) were purified from the esophageal mucosa of the bullfrog (Rana catesbeiana), and their molecular weights were determined to be 40,100 and 39,200, respectively, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The NH2-terminal 70-residue sequences of both pepsinogens are the same, including the 36-residue activation segment. Furthermore, a cDNA clone encoding frog pepsinogen was obtained and sequenced, which permitted deduction of the complete amino acid sequence (368 residues) of one of the pepsinogen isozymogens. The calculated molecular weight of the protein (40,034) coincided well with the values obtained by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These results are incompatible with the previous report (Shugerman R. P., Hirschowitz, B. I., Bhown, A. S., Schrohenloher, R. E., and Spenney, J. G. (1982) J. Biol. Chem. 257, 795-798) that the major pepsinogen isolated from the bullfrog esophageal gland is a unique "mini" pepsinogen with a molecular weight of approximately 32,000-34,000. The two pepsinogens were immunologically indistinguishable from each other and related to human pepsinogen C. The deduced amino acid sequence was also more homologous with those of pepsinogens C than those of pepsinogens A and prochymosin. These results indicate that the frog pepsinogens belong to the pepsinogen C group. They were both glycoproteins, and therefore, this is the first finding of carbohydrate-containing pepsinogens C. Both pepsinogens were activated to pepsins in the same manner by an apparent one-step mechanism. The resulting pepsins were enzymatically indistinguishable from each other, and their properties resembled those of tuna pepsins.  相似文献   

11.
When Japanese monkey pepsinogen was activated at pH 2.0 in the absence of pepstatin, the activation segment of the amino(N)-terminal 47 residues was released as a single intact polypeptide. This clearly shows that the pepsinogen was activated to pepsin directly. This direct activation was called a 'one-step' process. On the other hand, when pepsinogen was activated at pH 2.0 in the presence of pepstatin, an appreciable amount of pepsinogen was converted to an intermediate form between pepsinogen and pepsin, although a part of pepsinogen was activated directly to pepsin. The intermediate form was generated by releasing the N-terminal 25 residues of pepsinogen. This activation through the intermediate form is thought to be a 'two-step' or 'stepwise-activating' process involving a bimolecular reaction between pepstatin-bound pepsinogen and free pepsin.  相似文献   

12.
Pepsinogen was isolated from the gastric mucosa of Trimeresurus flavoviridis (Habu snake) by DEAE-cellulose and DEAE-Sepharose ion-exchange chromatographies, and Sephacryl S-200 gel-chromatography. The yield calculated from the crude extract was 29% with 6.2-fold purification. The purified pepsinogen gave a single band on both native- and SDS-PAGE. As no other active enzyme was detected on the chromatographies, it was concluded that the Habu snake has one major pepsinogen. The molecular mass of the pepsinogen was estimated to be 38 kDa by SDS-PAGE. The sequence of the N-terminal 26 amino acid residues was determined and compared with those of other pepsinogens. The N-terminal structure of Habu snake pepsinogen was more homologous with those of mammalian pepsinogens C than those of mammalian pepsinogens A. The pepsinogen was rapidly converted to pepsin by way of an intermediate form induced by acidification. The optimum pH of Habu snake pepsin for bovine hemoglobin was 1.5-2.0, and it retained full activity at pH 6.2 and 30 degrees C on incubation for 30 min. The optimum temperature for the snake pepsin was 50 degrees C and it was stable at 40 degrees C on incubation for 10 min. The proteolytic activity of the pepsin toward bovine hemoglobin was about two times higher than that of porcine pepsin A, however, the activity toward oxidized bovine insulin B-chain was lower than that of porcine pepsin A, and it did not hydrolyze oligopeptides. The specificity for oxidized bovine insulin B-chain of the pepsin was different from that of porcine pepsin A. Habu snake pepsin was inhibited by pepstatin A but not by serine, cysteine, or metallo protease inhibitors.  相似文献   

13.
Pepsinogen C and pepsin C from the pig have been further purified by chromatography on DEAE-cellulose and by exclusion chromatography and the specific activities (with haemoglobin substrate) found are higher than those previously reported. The final preparations are homogeneous on electrophoresis in starch gel at three pH values except for contamination with less than 4% of pepsinogen and pepsin respectively. Pepsinogen C, like pepsin C, contains no phosphate. The amino acid compositions show some marked differences from those of pepsinogen and pepsin especially in the content of basic amino acids, glutamic acid, aspartic acid, leucine and isoleucine. The molecular weights of the enzyme and zymogen, obtained from the amino acid compositions, are 41400 and 36000 respectively, similar to those of pepsinogen and pepsin.  相似文献   

14.
Two pepsinogens, the contents of which increase with developmental progress, were purified from the gastric mucosa of the adult rat by ammonium sulfate fractionation and chromatography on DEAE-cellulose and DEAE-Sepharose CL-6B columns. The purified zymogens, designated as pepsinogens I and II, were each shown to be homogeneous by polyacrylamide gel disc electrophoresis. Pepsinogen II had a greater electrophoretic mobility toward the anode at pH 8.0 than pepsinogen I. The molecular weights of both zymogens were estimated to be 38,000 by SDS-polyacrylamide gel electrophoresis. The activated enzymes, pepsins I and II, each had the same molecular weight of 32,000. The pH optima for both enzymes were found to be 2.0. The enzymes showed high stabilities at pH 8.0, while they lost their activities within 60 min at pH 10.0. The enzymes were inhibited by pepstatin and diazoacetyl-DL-norleucine methyl ester (DAN). The activities of the enzymes in hydrolyzing N-acetyl-L-phenylalanyl-3,5-diiodo-L-tyrosine (APDT) were about 1/8 of that of porcine pepsin. These results suggest that pepsins I and II are very similar.  相似文献   

15.
Japanese monkey progastricsin was shown to be activated to gastricsin exclusively by a two-step process through an intermediate form. The occurrence of this process was substantiated by the isolation of the intermediate form and released peptides. By NH2-terminal sequence analyses of these protein and peptide species, the amino acid sequence of the 43-residue activation segment (propart) was determined to be as follows: (Formula: see text) The NH2-terminal 26-residue peptide was released first, resulting in generation of the intermediate form. The subsequent release of peptides, residues Nos. 27-40 and 27-43, generated two gastricsins as the final products. This two-step process of activation of Japanese monkey progastricsin is in striking contrast to the one-step activation process occurring exclusively for pepsinogen A of the same monkey species. The course of molecular evolution of pepsinogens including progastricsins was deduced from the amino acid sequences of their activation segments by constructing phylogenic trees. The trees divided pepsinogens into 3 clusters, i.e., pepsinogens A, progastricsins and prochymosin, showing that these three groups diverged from one another very early on in the course of the evolution of pepsinogens.  相似文献   

16.
An embryo-specific pepsinogen was isolated from the proventriculi of 15-day-old chicken embryos and purified by means of fractionation with ammonium sulfate, filtration on Sephadex G-100, and chromatography on DEAE-Sepharose CL-6B and hydroxyapatite. The properties of this pepsinogen and pepsin derived from it were compared with those of an adult-specific chicken pepsinogen and its pepsin. Though the optimal pH and alkali-stability were similar in the two pepsinogens, molecular weight, sensitivity to pepstatin, and antigenicity were quite different. Among the properties of this embryo-specific pepsinogen, the large molecular weight (56,000 for pepsinogen and 53,000 for pepsin) is especially noteworthy, since the molecular weights of the known pepsinogens of mammals and birds fall into the range of 35,000-48,000.  相似文献   

17.
The activation of Sepharose-bound monkey pepsinogen A under acidic conditions proceeded by cleavage of the Leu47-Ile48 bond, indicating the occurrence of the intramolecular one-step activation, although the rate of cleavage was very slow. On the other hand the activation of monkey pepsinogen A in solution was highly dependent on pepsinogen concentration and the addition of exogenous pepsin A accelerated the rate of activation, indicating the predominance of intermolecular reaction. The cleavage site, however, was also restricted to the Leu47-Ile48 bond. Thus, apparently exclusive one-step activation occurred in monkey pepsinogen. The activation of porcine pepsinogen A in solution was also dependent on pepsinogen concentration and the addition of exogenous pepsin A accelerated the rate of activation. The major cleavage site by the exogenously added pepsin was the Leu44-Ile45 bond. Therefore the site most susceptible to the intermolecular attacks was the bond connecting the activation segment and the pepsin moiety in both monkey and porcine pepsinogens. In porcine pepsinogen, however, a part of the zymogen was activated through the intermediate form, and an intramolecular reaction was suggested to be involved in the generation of this form. These results showed that in both pepsinogens A the intramolecular reaction occurred, first yielding pepsin A or the intermediate form, which then acted intermolecularly on the remaining pepsinogen or the intermediate form to complete the activation in a short time. A molecular mechanism for the activation reaction was proposed to explain consistently the experimental results.  相似文献   

18.
Pepsinogens A and C, and prochymosin were purified from four species of adult New World monkeys, namely, common marmoset (Callithrix jacchus), cotton-top tamarin (Saguinus oedipus), squirrel monkey (Saimiri sciureus), and capuchin monkey (Cebus apella). The occurrence of prochymosin was quite unique since this zymogen is known to be neonate-specific and, in primates, it has been thought that the prochymosin gene is not functional. No multiple form has been detected for any type of pepsinogen except that two pepsinogen-A isozymogens were identified in capuchin monkey. Pepsins A and C, and chymosin hydrolyzed hemoglobin optimally at pH 2-2.5 with maximal activities of about 20, 30, and 15 units/mg protein. Pepsins A were inhibited in the presence of an equimolar amount of pepstatin, and chymosins and pepsins C needed 5- and 100-fold molar excesses of pepstatin for complete inhibition, respectively. Hydrolysis of insulin B chain occurred first at the Leu15-Tyr16 bond in the case of pepsins A and chymosins, and at either the Leu15-Tyr16 or Tyr16-Leu17 bond in the case of pepsins C. The presence of different types of pepsins might be advantageous to New World monkeys for the efficient digestion of a variety of foods. Molecular cloning of cDNAs for three types of pepsinogens from common marmoset was achieved. A phylogenetic tree of pepsinogens based on the nucleotide sequence showed that common marmoset diverged from the ancestral primate about 40 million years ago.  相似文献   

19.
The developmental changes in the expression of monkey pepsinogens and structural differences between the polypeptides were investigated. Monkey pepsinogens included five different components, namely, pepsinogens A-(1-4) and progastricsin. Their respective relative levels and specific activities changed significantly during development. The sequential expression of genes for type-A pepsinogens was particularly noteworthy. Pepsinogen A-3 was the major zymogen at the newborn stage, accounting for nearly half of the total pepsinogens at this stage. Pepsinogen A-2 became predominant at the 4-month stage, and pepsinogen A-1 predominated at the juvenile and adult stages. Enzymatic properties of pepsinogens A-1, A-2 and A-3 were similar but not identical to those of pepsinogen A-4 and progastricsin, in particular with respect to the activation processes. Each pepsin digested various protein substrates but some differences in specificity were evident. cDNA clones for five pepsinogens were isolated, and the nucleotide sequences were determined. Each cDNA contained leader, pro, and pepsin regions that encoded 15, 47, and 326 amino acid residues, respectively, with the exception of the cDNA for progastricsin in which the pro and pepsin regions encoded 43 and 329 amino acid residues, respectively. Type-A pepsinogens exhibited a high degree of similarity, with over 96% of bases in the nucleotide sequences of the protein-coding regions being identical. Northern analysis revealed that the level of expression of genes for type-A pepsinogens and for progastricsin was significant at the fetal stage and increased with development.  相似文献   

20.
Upon activation of human pepsinogen A at pH 2.0 in the presence of pepstatin, an intermediate form was generated together with pepsin A. This activation intermediate could be separated from pepsinogen A and pepsin A by DE-32 cellulose chromatography at pH 5.5. It had a molecular weight intermediate between those of pepsinogen A and pepsin A, and contained about half the number of basic amino acid residues in pepsinogen A. It had phenylalanine as the amino(N)-terminal amino acid, and was deduced to be generated by release of N-terminal 25 residue segment from pepsinogen A. Amino acid sequence determination of the N-terminal portions of pepsinogen A and the intermediate from enabled us to elucidate the entire acid sequence of the 47-residue activation peptide segment as follow: [Formula: see text]. On the other hand, upon activation of pepsinogen A at pH 2.0 in the absence of pepstatin, cleavage of the activation segment occurred at several additional bonds. In addition, upon activation both in the presence and in the absence of pepsitatin, an additional activation intermediate, designated pepsin A', was formed in minor quantities. This form was identical with pepsin A, except that it had an additional Pro-Thr-Leu sequence preceding the N-terminal valine of pepsin A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号