首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OsPT6:1, a phosphate transporter encoding gene from the leaf samples of Oryza sativa, was identified through PCR with specifically designed primers. The phylogenetic analysis and the conserved amino acid residue site detection suggested OsPT6:1 a possible high-affinity phosphate transporter encoding gene. In situ hybridization and RT-PCR demonstrated the expression of OsPT6:1 in both roots and leaves. The peak expression signal was observed in mesophyll cells under low phosphorus (P) induction. A homologous recombination study indicated that OsPT6:1 can enhance the Pi uptake efficiency of Pichia pastoris. At the meantime, the introduction of OsPT6:1 was able to complement the Pi uptake function of yeast cells with high-affinity phosphate transporters deficient. Those results substantiated our contention that OsPT6:1 encoded a high-affinity phosphate transporter of Oryza sativa.  相似文献   

2.
OsPT6:1, a phosphate transporter encoding gene from the leaf samples of Oryza sativa, was identified through PCR with specifically designed primers. The phylogenetic analysis and the conserved amino acid residue site detection suggested OsPT6:1 a possible high-affinity phosphate transporter encoding gene. In situ hybridization and RT-PCR demonstrated the expression of OsPT6:1 in both roots and leaves. The peak expression signal was observed in mesophyll cells under low phosphorus (P) induction. A homologous recombination study indicated that OsPT6:1 can enhance the Pi uptake efficiency of Pichia pastoris. At the meantime, the introduction of OsPT6:1 was able to complement the Pi uptake function of yeast cells with high-affinity phosphate transporters deficient. Those results substantiated our contention that OsPT6:1 encoded a high-affinity phosphate transporter of Oryza sativa. These authors contributed equally to this work.  相似文献   

3.
Plant phosphate (Pi) transporters mediate the uptake and translocation of this nutrient within plants. A total of 13 sequences in the rice ( Oryza sativa ) genome can be identified as belonging to the Pi transporter (Pht1) family. Here, we report on the expression patterns, biological properties and the physiological roles of two members of the family: OsPht1;2 ( OsPT2 ) and OsPht1;6 ( OsPT6 ). Expression of both genes increased significantly under Pi deprivation in roots and shoots. By using transgenic rice plants expressing the GUS reporter gene, driven by their promoters, we detected that OsPT2 was localized exclusively in the stele of primary and lateral roots, whereas OsPT6 was expressed in both epidermal and cortical cells of the younger primary and lateral roots. OsPT6, but not OsPT2, was able to complement a yeast Pi uptake mutant in the high-affinity concentration range. Xenopus oocytes injected with OsPT2 mRNA showed increased Pi accumulation and a Pi-elicited depolarization of the cell membrane electrical potential, when supplied with mM external concentrations. Both results show that OsPT2 mediated the uptake of Pi in oocytes. In transgenic rice, the knock-down of either OsPT2 or OsPT6 expression by RNA interference significantly decreased both the uptake and the long-distance transport of Pi from roots to shoots. Taken together, these data suggest OsPT6 plays a broad role in Pi uptake and translocation throughout the plant, whereas OsPT2 is a low-affinity Pi transporter, and functions in translocation of the stored Pi in the plant.  相似文献   

4.
5.
6.
7.
8.
Sun S  Gu M  Cao Y  Huang X  Zhang X  Ai P  Zhao J  Fan X  Xu G 《Plant physiology》2012,159(4):1571-1581
A number of phosphate (Pi) starvation- or mycorrhiza-regulated Pi transporters belonging to the Pht1 family have been functionally characterized in several plant species, whereas functions of the Pi transporters that are not regulated by changes in Pi supply are lacking. In this study, we show that rice (Oryza sativa) Pht1;1 (OsPT1), one of the 13 Pht1 Pi transporters in rice, was expressed abundantly and constitutively in various cell types of both roots and shoots. OsPT1 was able to complement the proton-coupled Pi transporter activities in a yeast mutant defective in Pi uptake. Transgenic plants of OsPT1 overexpression lines and RNA interference knockdown lines contained significantly higher and lower phosphorus concentrations, respectively, compared with the wild-type control in Pi-sufficient shoots. These responses of the transgenic plants to Pi supply were further confirmed by the changes in depolarization of root cell membrane potential, root hair occurrence, (33)P uptake rate and transportation, as well as phosphorus accumulation in young leaves at Pi-sufficient levels. Furthermore, OsPT1 expression was strongly enhanced by the mutation of Phosphate Overaccumulator2 (OsPHO2) but not by Phosphate Starvation Response2, indicating that OsPT1 is involved in the OsPHO2-regulated Pi pathway. These results indicate that OsPT1 is a key member of the Pht1 family involved in Pi uptake and translocation in rice under Pi-replete conditions.  相似文献   

9.
10.
Jia H  Ren H  Gu M  Zhao J  Sun S  Zhang X  Chen J  Wu P  Xu G 《Plant physiology》2011,156(3):1164-1175
Plant phosphate transporters (PTs) are active in the uptake of inorganic phosphate (Pi) from the soil and its translocation within the plant. Here, we report on the biological properties and physiological roles of OsPht1;8 (OsPT8), one of the PTs belonging to the Pht1 family in rice (Oryza sativa). Expression of a β-glucuronidase and green fluorescent protein reporter gene driven by the OsPT8 promoter showed that OsPT8 is expressed in various tissue organs from roots to seeds independent of Pi supply. OsPT8 was able to complement a yeast Pi-uptake mutant and increase Pi accumulation of Xenopus laevis oocytes when supplied with micromolar (33)Pi concentrations at their external solution, indicating that it has a high affinity for Pi transport. Overexpression of OsPT8 resulted in excessive Pi in both roots and shoots and Pi toxic symptoms under the high-Pi supply condition. In contrast, knockdown of OsPT8 by RNA interference decreased Pi uptake and plant growth under both high- and low-Pi conditions. Moreover, OsPT8 suppression resulted in an increase of phosphorus content in the panicle axis and in a decrease of phosphorus content in unfilled grain hulls, accompanied by lower seed-setting rate. Altogether, our data suggest that OsPT8 is involved in Pi homeostasis in rice and is critical for plant growth and development.  相似文献   

11.
12.

Background and aims

Whereas the expression patterns and kinetic properties of the rice (Oryza sativa) phosphate transporter gene OsPht1; 6 (OsPT6) are well documented, little is known about the biological functions of this gene. The aim of this study was to investigate the roles of OsPT6 in inorganic phosphate (Pi) acquisition and mobilization, and examine its potential to enhance agricultural production.

Methods

Here, we generated OsPT6 overexpression transgenic plants using Wuyujing 7, a widely cultivated variety of japonica rice, and then treated transgenic lines and wild type with different Pi supply in hydroponic and soil experiments to explore the functions of OsPT6 in rice.

Results

The OsPT6-overexpressing rice lines grew better and accumulated more biomass than wild-type plants, and exhibited significant increases in P accumulation in various tissues, including reproductive tissues under both hydroponic and soil culture conditions. Phosphate-uptake experiment using radiolabeled Pi (33P) showed that the rate of Pi uptake was 75 % and 73 % greater in transgenic plants grown under Pi-sufficient and -deficient conditions, respectively, than the wild-type controls, and that the shoot/root ratio of 33P was 104 % and 42 % greater, respectively. In addition, the grain yield per transgenic plant was much higher than that of the wild-type plants under field conditions.

Conclusions

Taken together, our results demonstrate that OsPT6 plays a vital role in Pi acquisition and mobilization in rice and suggest that this gene may be used for genetic engineering rice plants that require less Pi fertilizer.  相似文献   

13.
We characterized the function of two rice phosphate (Pi) transporters: OsPHT1;9 (OsPT9) and OsPHT1;10 (OsPT10). OsPT9 and OsPT10 were expressed in the root epidermis, root hairs and lateral roots, with their expression being specifically induced by Pi starvation. In leaves, expression of the two genes was observed in both mesophyll and vasculature. High‐affinity Km values for Pi transport of OsPT9 and OsPT10 were determined by yeast experiments and two‐electrode voltage clamp analysis of anion transport in Xenopus oocytes expressing OsPT9 and OsPT10. Pi uptake and Pi concentrations in transgenic plants harbouring overexpressed OsPT9 and OsPT10 were determined by Pi concentration analysis and 33P‐labelled Pi uptake rate analysis. Significantly higher Pi uptake rates in transgenic plants compared with wild‐type plants were observed under both high‐Pi and low‐Pi solution culture conditions. Conversely, although no alterations in Pi concentration were found in OsPT9 or OsPT10 knockdown plants, a significant reduction in Pi concentration in both shoots and roots was observed in double‐knockdown plants grown under both high‐ and low‐Pi conditions. Taken together, our results suggest that OsPT9 and OsPT10 redundantly function in Pi uptake.  相似文献   

14.
一个高亲和力水稻根系磷转运蛋白候选基因片段的克隆   总被引:4,自引:0,他引:4  
磷是影响作物产量的主要限制因子之一,植物在缺磷条件下主要高亲和力的磷转蛋白对磷进行有效吸收,利用RT-PCR技术,经过缺磷处理水稻京系17(Oryza sativa L.ssp. japonica cv.Jingxi17)的根系中的克隆到一个1178bp的磷转 蛋白基因片段OjPT1,测序后与GenBank中的已知序列进行氨基酸水平上的同源性比较,结果表明,该序列与拟南芥、马铃薯、番茄、苜蓿、长春花等植物的同源性分别在70%左右,并且与酵母、VA菌和子囊属脉胞菌等的磷转运蛋白也表出出较高的同源性。通过RT-PCR结果证明,该基因片段为诱导表达,该基因已被GenBan接收(收录号为AF239619)。  相似文献   

15.
16.
Seo HM  Jung Y  Song S  Kim Y  Kwon T  Kim DH  Jeung SJ  Yi YB  Yi G  Nam MH  Nam J 《Biotechnology letters》2008,30(10):1833-1838
Most high-affinity phosphate transporter genes (OsPTs) in rice were highly induced in roots when phosphate was depleted. OsPT1, however, was highly expressed in primary roots and leaves regardless of external phosphate concentrations. This finding was confirmed histochemically using transgenic rice plants that express the GUS reporter gene under the control of the OsPT1 promoter, which exhibited high GUS activity even in the phosphate sufficient condition. Furthermore, transgenic rice plants overexpressing the OsPT1 gene accumulated almost twice as much phosphate in the shoots as did wild-type plants. As a result, transgenic plants had more tillers than did wild-type plants, which is a typical physiological indicator for phosphate status in rice.  相似文献   

17.
18.
19.
Putative phosphate transporters have been identified in a barley (Hordeum vulgare L.) genomic library by their homology to known phosphate transporters from dicot species. The genes designated HORvu;Pht1;1 and HORvu;Pht1;6 encode proteins of 521 and 535 amino acids respectively with 12 predicted membrane-spanning domains and other motifs common to the Phtl family of phosphate transporters. HORvu;Pht1;1 is expressed exclusively in roots and is strongly induced by phosphate deprivation. HORvu;Pht1;6 is expressed in the aerial parts of the plant with strongest expression in old leaves and flag leaves. In situ hybridization showed that HORvu;Pht1;6 is expressed in the phloem of vascular bundles in leaves and ears. In order to study the biochemical properties of HORvu;Pht1;1 and HORvu;Pht1;6, the genes were expressed in transgenic rice (Oryza sativa L.) plants under the control of the rice actin promoter and suspension cell cultures were generated. Cells derived from transgenic plants were able to take up phosphate at a much higher rate than control cells, demonstrating that both genes encode functional phosphate transporters. The estimated Km for phosphate for cells expressing HORvu;Pht1;1 was 9.06 +/- 0.82 microM, which is characteristic of a high-affinity transporter. The rate of phosphate uptake decreased with increasing pH, suggesting that HORvu;Pht1;1 operates as a H+/H2PO4(-) symporter. In contrast, the estimated Km for phosphate for cells expressing HORvu;Pht1;6 was 385 +/- 61 microM, which is characteristic of a low-affinity transporter. Taken together, the results suggest that HORvu;Pht1;1 functions in uptake of phosphate at the root surface, while HORvu;Pht1;6 probably functions in remobilization of stored phosphate from leaves.  相似文献   

20.
Phosphate (Pi) transporters mediate acquisition and transportation of Pi within plants. Here, we investigated the functions of OsPht1;4 (OsPT4), one of the 13 members of the Pht1 family in rice. Quantitative real‐time RT‐PCR analysis revealed strong expression of OsPT4 in roots and embryos, and OsPT4 promoter analysis using reporter genes confirmed these findings. Analysis using rice protoplasts showed that OsPT4 localized to the plasma membrane. OsPT4 complemented a yeast mutant defective in Pi uptake, and also facilitated increased accumulation of Pi in Xenopus oocytes. Further, OsPT4 genetically modified (GM) rice lines were generated by knockout/knockdown or over‐expression of OsPT4. Pi concentrations in roots and shoots were significantly lower and higher in knockout/knockdown and over‐expressing plants, respectively, compared to wild‐type under various Pi regimes. 33Pi uptake translocation assays corroborated the altered acquisition and mobilization of Pi in OsPT4 GM plants. We also observed effects of altered expression levels of OsPT4 in GM plants on the concentration of Pi, the size of the embryo, and several attributes related to seed development. Overall, our results suggest that OsPT4 encodes a plasma membrane‐localized Pi transporter that facilitates acquisition and mobilization of Pi, and also plays an important role in development of the embryo in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号