首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Strategies employing non-gel based methods for quantitative proteomic profiling such as isotope coded affinity tags coupled with mass spectrometry (ICAT-MS) are gaining attention as alternatives to two-dimensional gel electrophoresis (2-DE). We have conducted a large-scale investigation to determine the degree of reproducibility and depth of proteome coverage of a typical ICAT-MS experiment by measuring protein changes in Escherichia coli treated with triclosan, an inhibitor of fatty acid biosynthesis. The entire ICAT-MS experiment was conducted on four independent occasions where more than 24 000 peptides were quantitated using an ion-trap mass spectrometer. Our results demonstrated that quantitatively, the technique provided good reproducibility (median coefficient of variation of ratios was 18.6%), and on average identified more than 450 unique proteins per experiment. However, the method was strongly biased to detect acidic proteins (pI < 7), under-represented small proteins (<10 kDa) and failed to show clear superiority over 2-DE methods in monitoring hydrophobic proteins from cell lysates.  相似文献   

2.
Quantitative protein profiling is an essential part of proteomics and requires technologies that accurately, reproducibly, and comprehensively identify and quantify proteins. Over the past years, many quantitative proteomic methods have been developed. Here, 20S proteasome subtypes isolated from rat were compared by four approaches based on the combination of isotope-coded affinity tag (ICAT), 2-DE, LC and ESI and MALDI MS: (i) 2-DE, (ii) ICAT/2-DE MALDI-MS, (iii) ICAT/LC-ESI-MS, (iv) ICAT/LC-MALDI-MS. A definite qualitative advantage of 2-DE gels was the separation of all known protein species, the identification of cysteine sulfoxide of alpha-4 (RC6-IS) and N-terminal acetylation of several subunits. Furthermore, quantitative differences between the standard subunits beta-2, and beta-5 and their immunosubunits were only detected by 2-DE image analysis revealing a higher replacement of standard- by immuno-beta-subunits in subtype IV. It was obvious that for relative quantification only protein spot and mass peaks with a certain level of intensity displayed acceptable values of SD. However, ICAT in conjunction with LC/MALDI-MS was the most accurate method for quantification. The experimental data of this investigation are accessible via http://www.mpiib-berlin.mpg.de/2D-PAGE/.  相似文献   

3.
Cho H  Smalley DM  Theodorescu D  Ley K  Lee JK 《Proteomics》2007,7(20):3681-3692
LC-MS/MS with certain labeling techniques such as isotope-coded affinity tag (ICAT) enables quantitative analysis of paired protein samples. However, current identification and quantification of differentially expressed peptides (and proteins) are not reliable for large proteomics screening of complex biological samples. The number of replicates is often limited because of the high cost of experiments and the limited supply of samples. Traditionally, a simple fold change cutoff is used, which results in a high rate of false positives. Standard statistical methods such as the two-sample t-test are unreliable and severely underpowered due to high variability in LC-MS/MS data, especially when only a small number of replicates are available. Using an advanced error pooling technique, we propose a novel statistical method that can reliably identify differentially expressed proteins while maintaining a high sensitivity, particularly with a small number of replicates. The proposed method was applied both to an extensive simulation study and a proteomics comparison between microparticles (MPs) generated from platelet (platelet MPs) and MPs isolated from plasma (plasma MPs). In these studies, we show a significant improvement of our statistical analysis in the identification of proteins that are differentially expressed but not detected by other statistical methods. In particular, several important proteins - two peptides for beta-globin and three peptides for von Willebrand Factor (vWF) - were identified with very small false discovery rates (FDRs) by our method, while none was significant when other conventional methods were used. These proteins have been reported with their important roles in microparticles in human blood cells: vWF is a platelet and endothelial cell product that binds to P-selectin, GP1b, and GP IIb/IIIa, and beta-globin is one of the peptides of hemoglobin involved in the transportation of oxygen by red blood cells.  相似文献   

4.
Quantitative profiling of proteins, the direct effectors of nearly all biological functions, will undoubtedly complement technologies for the measurement of mRNA. Systematic proteomic measurement of the cell cycle is now possible by using stable isotopic labeling with isotope-coded affinity tag reagents and software tools for high-throughput analysis of LC-MS/MS data. We provide here the first such study achieving quantitative, global proteomic measurement of a time-course gene expression experiment in a model eukaryote, the budding yeast Saccharomyces cerevisiae, during the cell cycle. We sampled 48% of all predicted ORFs, and provide the data, including identifications, quantitations, and statistical measures of certainty, to the community in a sortable matrix. We do not detect significant concordance in the dynamics of the system over the time-course tested between our proteomic measurements and microarray measures collected from similarly treated yeast cultures. Our proteomic dataset therefore provides a necessary and complementary measure of eukaryotic gene expression, establishes a rich database for the functional analysis of S. cerevisiae proteins, and will enable further development of technologies for global proteomic analysis of higher eukaryotes.  相似文献   

5.
Chang IF 《Proteomics》2006,6(23):6158-6166
In recent years, MS has been widely used to study protein complex in eukaryotes. The identification of interacting proteins of a particular target protein may help defining protein-protein interaction and proteins of unknown functions. To isolate protein complexes, high-speed ultracentrifugation, sucrose density-gradient centrifugation, and coimmunoprecipitation have been widely used. However, the probability of getting nonspecific binding is comparatively high. Alternatively, by use of one- or two-step (tandem affinity purification) epitope-tag affinity purification, protein complexes can be isolated by affinity or immunoaffinity columns. These epitope-tags include protein A, hexahistidine (His), c-Myc, hemaglutinin (HA), calmodulin-binding protein, FLAG, maltose-binding protein, Strep, etc. The isolated protein complex can then be subjected to protease (i.e., trypsin) digestion followed by an MS analysis for protein identification. An example, the epitope-tag purification of the Arabidopsis cytosolic ribosomes, is addressed in this article to show the success of the application. Several representative protein complexes in eukaryotes been isolated and characterized by use of this approach are listed. In this review, the comparison among different tag systems, validation of interacting relationship, and choices of MS analysis method are addressed. The successful rate, advantages, limitations, and challenges of the epitope-tag purification are also discussed.  相似文献   

6.
A method based on ultra-high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UHPLC–MS/MS) for the simultaneous determination of benzimidazole residues in bovine milk has been optimized and validated. Rapid chromatographic separation of 13 analytes in 8 min was obtained by means of UHPLC. The samples were subject to Oasis MCX solid-phase extraction cartridges for extraction and clean-up. Matrix-matched calibration curves were performed to compensate for the matrix effect and loss in sample preparation. Mean recoveries ranged from 80% to 101% and inter-day precision was lower than 14%. Limit of detection and limit of quantification of the method ranged from 0.01 to 0.5 μg L−1 and from 0.1 to 1.0 μg L−1, respectively.  相似文献   

7.
Drakas R  Prisco M  Baserga R 《Proteomics》2005,5(1):132-137
The tandem affinity purification (TAP) tag technique has been used with success to identify under nondenaturing conditions protein complexes in yeast. The technique can be used in mammalian cells, but we found that the original technique does not yield enough recovery for the identification of proteins when mammalian cells growing in monolayer have to be used. We present here a modified TAP tag technique that allows sufficient recovery of proteins from mouse fibroblasts growing in monolayer cultures. The recovery allows protein identification by mass spectrometry.  相似文献   

8.
The concentration of polyamines in red blood cells (RBCs) is considered to be an index of cell proliferation. This index has been demonstrated to be of clinical importance for the follow-up and treatment of some cancer patients. The concentration of polyamines in RBCs is usually determined by high-performance liquid chromatography (HPLC) with fluorescence detection. In the current work, we present a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of putrescine, spermidine, and spermine, the three major polyamines in RBCs. The polyamines were dansylated and analyzed by an LC gradient of 20-min duration on a C18 column on-line with a tandem mass spectrometer. An internal standard (1,8-diaminooctane) was used for quantification. This method exhibited excellent linearity for the three polyamines with regression coefficients higher than 0.99. The limits of detection for putrescine, spermidine, and spermine were 0.10, 0.75, and 0.50 pmol/ml, respectively. The intrarun precision values for putrescine, spermidine, and spermine all were better than 10%, and the interrun precision values were 13%, 9%, and 20%, respectively. The LC-MS/MS method is sufficiently simple and reliable enough to replace the currently used HPLC method with fluorescence detection in which putrescine is not always detectable.  相似文献   

9.
In this study, a magnetic bead-based platform amenable to high-throughput protein carbonic anhydrase II (CA II) capture is presented. The key steps in this approach involved immunoaffinity purification of the target protein from serum followed by on-bead digestion with trypsin to release a surrogate peptide. This tryptic peptide was quantified by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) operating in multiple reaction monitoring acquisition mode. Using a synthetic peptide standard and a structural analogue free-labeled internal standard, the resulting concentration was stoichiometrically converted to CA II serum concentration. The analytical steps, such as preparation of immunobeads, protein capture, proteolysis, and calibration, were optimized. The method was validated in terms of recovery (77%), reproducibility (relative standard deviation [RSD] < 12%), and method detection limit (0.5 pmol ml−1). The developed method was applied to determining the CA II in eight healthy subjects, and the concentration measured was 27.3 pmol ml−1 (RSD = 65%).  相似文献   

10.
Plants release specialized (secondary) metabolites from their roots to communicate with other organisms, including soil microorganisms. The spatial behavior of such metabolites around these roots can help us understand roles for the communication; however, currently, they are unclear because soil-based studies are complex. Here, we established a multimodal metabolomics approach using imaging mass spectrometry (IMS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to spatially assign metabolites under laboratory conditions using agar. In a case study using Catharanthus roseus, we showed that 58 nitrogen (N)-containing metabolites are released from the roots into the agar. For the metabolite assignment, we used 15N-labeled and non-labeled LC-MS/MS data, previously reported. Four metabolite ions were identified using authentic standard compounds as derived from monoterpene indole alkaloids (MIAs) such as ajmalicine, catharanthine, serpentine, and yohimbine. An alkaloid network analysis using dot products and spinglass methods characterized five clusters to which the 58 ions belong. The analysis clustered ions from the indolic skeleton-type MIAs to a cluster, suggesting that other communities may represent distinct metabolite groups. For future chemical assignments of the serpentine community, key fragmentation patterns were characterized using the 15N-labeled and non-labeled MS/MS spectra.  相似文献   

11.
8-Hydroxy-2-deoxyguanosine (8-OHdG), 8-nitroguanine (8-NO2Gua), 8-iso-prostaglandin F (8-IsoPGF), and N-acetyl-S-(tetrahydro-5-hydroxy-2-pentyl-3-furanyl)-L-cysteine (HNE-MA) are well-studied and representative biomarkers for oxidative DNA damage, inflammation, and lipid peroxidation; all of which have been associated with increases in risks of various diseases and cancers. A rapid and highly sensitive isotope-dilution liquid-chromatography tandem mass spectrometry (LC-MS/MS) method was developed to simultaneously quantify the aforementioned biomarkers in urine. Upon validation, this method shows excellent feasibility, sensitivity (0.008–0.03 ng/mL) and satisfactory recoveries (88.7–95.4%); the calibration curves displayed excellent linearity with coefficients of determination (R2) greater than 0.998. Additionally, low variations were observed in the relative standard deviation for intra- and inter-day measurements for the four analytes. The relative matrix effects for all four analytes ranged from 2.04 to 3.27%, which signaled that interferences from endogenous levels of the analytes were deemed statistically insignificant. This study successfully developed an analytical method capable to simultaneously quantify urinary 8-OHdG, 8-NO2Gua, 8-IsoPGF, and HNE-MA. This analytical protocol can be applied towards conducting epidemiological studies to reveal the mechanisms related to disease development, and thus evaluate the associated risks of diseases.  相似文献   

12.
The aim of this study was to characterize endogenous nitroproteins, and those proteins that interact with nitroproteins, in a human pituitary nonfunctional adenoma so as to clarify the role of protein nitration in adenomas. A nitrotyrosine affinity column (NTAC) was used to preferentially enrich and isolate endogenous nitroproteins and nitroprotein-protein complexes from a tissue homogenate that was prepared from a human pituitary nonfunctional pituitary adenoma. The preferentially enriched endogenous nitroproteins and nitroprotein-protein complexes were subjected to trypsin digestion, desalination, and tandem mass spectrometry analysis. Nine nitroproteins (Rho-GTPase-activing protein 5, leukocyte immunoglobulin-like receptor subfamily A member 4 precursor, zinc finger protein 432, cAMP-dependent protein kinase type I-beta regulatory subunit, sphingosine-1-phosphate lyase 1, centaurin beta 1, proteasome subunit alpha type 2, interleukin 1 family member 6, and rhophilin 2) and three proteins (interleukin 1 receptor-associated kinase-like 2, glutamate receptor-interacting protein 2, and ubiquitin) that interacted with nitroproteins were discovered. The nitration site of each nitroprotein was located onto the functional domain where nitration occurred, and each nitroprotein was related to a corresponding functional system. Those data indicate that protein nitration might be an important molecular event in the formation of a human pituitary nonfunctional adenoma.  相似文献   

13.
Plasma vitamin K1 (phylloquinone) determination is commonly used for the diagnosis of vitamin K deficiency in patients suffering from lipid malabsorption. Moreover, current evidence that adequate vitamin K intake, and correspondingly adequate plasma vitamin K1 concentration, could also be of importance in relation to bone and brain diseases emphasizes the need to improve the current analytical methods. We developed a liquid chromatography coupled to tandem mass spectrometry method using a stable isotope ring-D4-labeled internal standard of vitamin K1 and operating in the multiple reaction monitoring mode by the selection of a precursor and product ions. The atmospheric pressure chemical ionization (APCI) method was shown to be more sensitive than electrospray ionization. After a single-step extraction with cyclohexane, chromatographic separation was performed on a C18 column with an isocratic mobile phase. The linearity was up to 5400 ng/L, and the limit of detection was 14 ng/L. Intra- and interrun precision were 2.4% and 8.3%, respectively, for the lower limit of the reference range. Recovery was better than 98%. The method is simple and reliable, allowing accurate vitamin K1 measurement in plasma samples from healthy subjects and patients suffering from vitamin K deficiency.  相似文献   

14.
We report the development of a robust interface for off-line coupling of nano liquid chromatography (LC) to matrix-assisted laser desorption/ionisation-mass spectrometry (MALDI-MS) and its application to the analysis of proteolytic digests of proteins, both isolated and in mixtures. The interface makes use of prestructured MALDI sample supports to concentrate the effluent to a small sample plate area and localize the MALDI sample to a predefined array, thereby enriching the analyte molecules and facilitating automated MALDI-MS analysis. Parameters that influence the preparation of MALDI samples from the LC effluent were evaluated with regard to detection sensitivity, spectra quality, and reproducibility of the method. A procedure for data processing is described. The presented nano LC MALDI-MS system allowed the detection of several peptides from a tryptic digest of bovine serum albumin, at analyzed amounts corresponding to one femtomole of the digested protein. For the identification of native proteins isolated from mouse brain by two-dimensional gel electrophoresis, nano LC MALDI-MS increased the number of detected peptides, thereby allowing identification of proteins that could not be identified by direct MALDI-MS analysis. The ability to identify proteins in complex mixtures was evaluated for the analysis of Escherichia coli 50S ribosomal subunit. Out of the 33 expected proteins, 30 were identified by MALDI tandem time of flight fragment ion fingerprinting.  相似文献   

15.
Isotope ratio monitoring (IRM) mass spectrometry was used to measure the relative abundance of stable isotopes in several samples of adult human hemoglobin expressed in E. coli, yeast, and human blood. The results showed significant differences in the distribution of (15)N and (13)C isotopes among hemoglobin samples produced in these organisms. This indicates that IRM mass spectrometry can be used in forensic protein chemistry to identify the origin of protein expression.  相似文献   

16.
This work demonstrates that amino acid analysis based on isotope dilution mass spectrometry (IDMS) can be applied to quantify proteins having different complexities and natures. Five proteins and one decapeptide were selected for the study: C-reactive protein (CRP), beta-2-microglobulin (B2 M), cystatine C (CysC), human serum albumin (HSA), Ara h1, and angiotensin I. The quantification was based on the determination of four amino acids, proline (Pro), isoleucine (Ile), valine (Val), and phenylalanine (Phe) within a working range between 5 and 100 pmol/injection of each amino acid, after 60 min digestion with HCl at 150 °C. The amino acids were selected taking into account their abundance in the protein sequence and to include the more difficult to break peptide bonds. Quantification of the protein amounts calculated from each amino acid is consistent, indicating that the method is working reliably. This consistency points to a complete hydrolysis of the proteins. The trueness of the method was proven when dry mass determination after dialysis was applied to HSA and CRP and the results were compared to those from amino acid analysis. Traceability to SI was assured by extensive characterisation of the amino acid calibrants by nuclear magnetic resonance, neutron activation analysis, and Karl Fischer titration.  相似文献   

17.
The detection of low affinity interactions between proteins and ligands by biophysical methods is challenging. It is often necessary to use competition methods that are time consuming and require well characterized known binders. A mass spectrometry approach is presented for identifying low affinity protein-ligand binding which does not require direct detection of the parent protein-ligand complex but depends on characteristic changes observed in the protein mass spectrum. We observe that on titration of ligand there are characteristic ‘charge-state shifts’ which manifest as changes in the relative intensities of protein peaks that correlate with the degree of protein-ligand complex formation. We suggest that use of this phenomenon will be particularly suitable for the identification of low affinity complexes where the intensity of any complex ion would be close to noise.  相似文献   

18.
Glucokinase catalyzes phosphoryl group transfer from ATP to glucose to form glucose-6-phosphate in the first step of cellular metabolism. While the location of the ATP-binding site of glucokinase was proposed recently, limited information exists on its conformation or the key amino acids involved in substrate binding. Affinity labeling with phenylglyoxal is used to probe possible Arg residues involved in ATP binding. Electrospray ionization mass spectrometry indicates that reaction of purified glucokinase with phenylglyoxal results in as many as six or seven sites of modification, suggesting nonspecific modification. However, preincubation of glucokinase with glucose followed by reaction with phenylglyoxal reveals only two sites of modification. Glucokinase activity assays show that enzyme preincubated with glucose possesses residual activity corresponding to the fraction of unmodified enzyme observed by mass spectrometry, strongly suggesting that glucokinase preincubated with glucose is specifically labeled and inactivated upon modification by phenylglyoxal. The data support the existing conformational model of glucokinase.  相似文献   

19.
A robust, rapid, selective and sensitive liquid chromatography-negative atmospheric pressure chemical ionization (LC-(APCI(-))-MS-MS) method has been developed for the quantification of mometasone furoate (MF) in human plasma utilizing a solid-phase extraction clean-up step and 13C-fluticasone propionate as internal standard. The intra- and inter-day coefficients of variation were < or = 15% and the lower limit of quantification (LLOQ) was 15 pg/ml. This method is ideally suited for pharmacokinetic investigations of low MF levels following inhalation of MF.  相似文献   

20.
A comparison study on folate quantitation was carried out between the recently developed stable isotope dilution assay using liquid chromatography-tandem mass spectrometry (LC-MS-MS) and the frequently used HPLC with fluorimetric detection (LC-FD). By applying LC-MS-MS, spinach, wheat bread, beef, and blood plasma were found to contain 159.2, 19.8, 1.2, and 5.6 microg/100 g total folates, respectively, whereas the respective quantitative data obtained by LC-FD were 95.5, 16.2, 0.7, and 6.8 microg/100 g. In all samples, LC-MS-MS revealed superior selectivity and precision and circumvented the shortcomings of conventional LC techniques, i.e., ambiguous peak assignment as well as high detection limits for 5-formyltetrahydrofolate, 10-formylfolic acid, and folic acid. The affinity chromatography columns used in this study showed excellent cleanup performance and permitted detection limits as low as 0.1, 0.5, 0.1, 0.08, and 0.1 microg/100 g for tetrahydrofolate (H(4)folate), 5-methyl-H(4)folate, 5-formyl-H(4)folate, 10-formylfolate, and pteroylglutamic acid, respectively. Thus, a 10-fold higher sensitivity compared to solid-phase anion-exchange cartridges was achieved. However, affinity chromatography columns revealed a significantly higher affinity toward the natural vitamers than to the racemic isotopomeric standards, which has to be considered when applying the latter in stable isotope dilution assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号