首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Cellular senescence is a response to genotoxic stress that results in an irreversible cell cycle arrest. Activation of this pathway relies on the activity of the retinoblastoma proteins and proteins of the DNA damage response cascade. Here, we discuss the functional relevance of the switch from pRb/p105 to Rb2/p130 that becomes apparent when cells enter senescent arrest.  相似文献   

2.
Cellular senescence has been implicated in normal aging, tissue homeostasis, and tumor suppression. Although p53 has been shown to be a central mediator of cellular senescence, the signaling pathway by which it induces senescence remains incompletely understood. In this study, we have shown that both Akt and p21 are required to induce cellular senescence in response to p53 expression. In a p53‐induced senescence model, we found that Akt activation was essential for inducing a cellular senescence phenotype. Surprisingly, Akt inhibition did not abolish p53‐induced cell cycle arrest, but it suppressed the increase in intracellular reactive oxygen species (ROS) levels. The results of the cell cycle and morphological analysis suggest that p53 induced quiescence, not senescence, following Akt inhibition. Conversely, the inhibition of p21 induction abolished cell cycle arrest but did not affect the p53‐induced increase in ROS levels. Additionally, p21 and Akt separately controlled cell cycle arrest and ROS levels, respectively, during H‐Ras‐induced senescence in human normal fibroblasts. The mechanistic analysis revealed that Akt increased ROS levels through NOX4 induction, and increased Akt‐dependent NF‐κB binding to the NOX4 promoter is responsible for NOX4 induction upon p53 expression. We further showed that Akt activation upon p53 expression is mediated by mammalian target of rapamycin complex 2. In addition, p53‐mediated IL6 and IL8 induction was abrogated by Akt inhibition, suggesting that Akt activation is also required for the senescence‐associated secretory phenotype. Collectively, these results suggest that p53 simultaneously controls multiple pathways to induce cellular senescence through p21 and Akt.  相似文献   

3.
The telomere-capping complex shelterin protects functional telomeres and prevents the initiation of unwanted DNA-damage-response pathways. At the end of cellular replicative lifespan, uncapped telomeres lose this protective mechanism and DNA-damage signalling pathways are triggered that activate p53 and thereby induce replicative senescence. Here, we identify a signalling pathway involving p53, Siah1 (a p53-inducible E3 ubiquitin ligase) and TRF2 (telomere repeat binding factor 2; a component of the shelterin complex). Endogenous Siah1 and TRF2 were upregulated and downregulated, respectively, during replicative senescence with activated p53. Experimental manipulation of p53 expression demonstrated that p53 induces Siah1 and represses TRF2 protein levels. The p53-dependent ubiquitylation and proteasomal degradation of TRF2 are attributed to the E3 ligase activity of Siah1. Knockdown of Siah1 stabilized TRF2 and delayed the onset of cellular replicative senescence, suggesting a role for Siah1 and TRF2 in p53-regulated senescence. This study reveals that p53, a downstream effector of telomere-initiated damage signalling, also functions upstream of the shelterin complex.  相似文献   

4.
Telomere attrition, DNA damage and constitutive mitogenic signaling can all trigger cellular senescence in normal cells and serve as a defense against tumor progression. Cancer cells may circumvent this cellular defense by acquiring genetic mutations in checkpoint proteins responsible for regulating permanent cell cycle arrest. A small family of tumor suppressor genes encoding the retinoblastoma susceptibility protein family (Rb, p107, p130) exerts a partially redundant control of entry into S phase of DNA replication and cellular proliferation. Here we report that activation of the p53-dependent DNA damage response has been found to accelerate senescence in human prostate cancer cells lacking a functional Rb protein. This novel form of irradiation-induced premature cellular senescence reinforces the notion that other Rb family members may compensate for loss of Rb protein in the DNA damage response pathway. Consistent with this hypothesis, depletion of p107 potently inhibits the irradiation-induced senescence observed in DU145 cells. In contrast, p130 depletion triggers a robust and unexpected form of premature senescence in unirradiated cells. The dominant effect of depleting both p107 and p130, in the absence of Rb, was a complete blockade of irradiation-induced cellular senescence. Onset of the p107-dependent senescence was temporally associated with p53-mediated stabilization of the cyclin-dependent kinase inhibitor p27 and decreases in c-myc and cks1 expression. These results indicate that p107 is required for initiation of accelerated cellular senescence in the absence of Rb and introduces the concept that p130 may be required to prevent the onset of terminal growth arrest in unstimulated prostate cancer cells lacking a functional Rb allele.  相似文献   

5.
The yeast Sir2 protein mediates chromatin silencing through an intrinsic NAD-dependent histone deacetylase activity. Sir2 is a conserved protein and was recently shown to regulate lifespan extension both in budding yeast and worms. Here, we show that SIRT1, the human Sir2 homolog, is recruited to the promyelocytic leukemia protein (PML) nuclear bodies of mammalian cells upon overexpression of either PML or oncogenic Ras (Ha-rasV12). SIRT1 binds and deacetylates p53, a component of PML nuclear bodies, and it can repress p53-mediated transactivation. Moreover, we show that SIRT1 and p53 co-localize in nuclear bodies upon PML upregulation. When overexpressed in primary mouse embryo fibroblasts (MEFs), SIRT1 antagonizes PML-induced acetylation of p53 and rescues PML-mediated premature cellular senescence. Taken together, our data establish the SIRT1 deacetylase as a novel negative regulator of p53 function capable of modulating cellular senescence.  相似文献   

6.
Within the past year, considerable new insights have been gained into the roles the p53 and retinoblastoma tumour suppressors play in determining the fate of cells through their regulation of cell cycle progression, apoptosis and gene expression. Key advances have been achieved in the identification and characterization of functional domains and through functional knockout studies.  相似文献   

7.
Regulation of cellular senescence by p53.   总被引:17,自引:0,他引:17  
Many normal cells respond to potentially oncogenic stimuli by undergoing cellular senescence, a state of irreversibly arrested proliferation and altered differentiated function. Cellular senescence very likely evolved to suppress tumorigenesis. In support of this idea, it is regulated by several tumor suppressor genes. At the heart of this regulation is p53. p53 is essential for the senescence response to short telomeres, DNA damage, oncogenes and supraphysiological mitogenic signals, and overexpression of certain tumor suppressor genes. Despite the well-documented central role for p53 in the senescence response, many questions remain regarding how p53 senses senescence-inducing stimuli and how it elicits the senescent phenotype.  相似文献   

8.
p53 regulates several biological processes, including senescence. Its protein stability is regulated by ubiquitination and proteasomal degradation, mainly mediated by Mdm2. However, other E3 ligases have been identified, such as the chaperone-associated ligase CHIP, although their precise function regarding p53 degradation remains elusive. Interestingly, CHIP deficiency has been recently shown to result in accelerated aging in mice, although the molecular basis of this phenotype was not completely understood. In this study, we explore the role of CHIP in regulating p53 in senescence. We demonstrate that in senescent human fibroblasts, CHIP is up-regulated concomitant with a significant down-regulation of p53. Moreover, CHIP partially translocates to the nucleus and acquires higher ubiquitination levels in senescent cells. Notably, CHIP overexpression in young cells, to levels similar to those recorded during senescence, leads to p53 degradation to below its basal levels. In addition, whereas CHIP silencing has no effect on p53 stability in young cells, a considerable p53 accumulation occurs in their senescent counterparts. Finally, we have observed an attenuation of the CHIP-associated molecular folding-refolding machinery during senescence, and supportively, inhibition of Hsp90 activity leads to rapid p53 degradation only in senescent cells. Taking these results together, we conclude that CHIP-dependent p53 regulation occurs specifically during senescence.  相似文献   

9.
Oncogenic ras and p53 cooperate to induce cellular senescence   总被引:14,自引:0,他引:14       下载免费PDF全文
Oncogenic activation of the mitogen-activated protein (MAP) kinase cascade in murine fibroblasts initiates a senescence-like cell cycle arrest that depends on the ARF/p53 tumor suppressor pathway. To investigate whether p53 is sufficient to induce senescence, we introduced a conditional murine p53 allele (p53(val135)) into p53-null mouse embryonic fibroblasts and examined cell proliferation and senescence in cells expressing p53, oncogenic Ras, or both gene products. Conditional p53 activation efficiently induced a reversible cell cycle arrest but was unable to induce features of senescence. In contrast, coexpression of oncogenic ras or activated mek1 with p53 enhanced both p53 levels and activity relative to that observed for p53 alone and produced an irreversible cell cycle arrest that displayed features of cellular senescence. p19(ARF) was required for this effect, since p53(-/-) ARF(-/-) double-null cells were unable to undergo senescence following coexpression of oncogenic Ras and p53. Although the levels of exogenous p53 achieved in ARF-null cells were relatively low, the stabilizing effects of p19(ARF) on p53 could not explain the cooperation between oncogenic Ras and p53 in promoting senescence. Hence, enforced p53 expression without oncogenic ras in p53(-/-) mdm2(-/-) double-null cells produced extremely high p53 levels but did not induce senescence. Taken together, our results indicate that oncogenic activation of the MAP kinase pathway in murine fibroblasts converts p53 into a senescence inducer through both quantitative and qualitative mechanisms.  相似文献   

10.
11.
12.
ING2 is a candidate tumor suppressor gene that can activate p53 by enhancing its acetylation. Here, we demonstrate that ING2 is also involved in p53-mediated replicative senescence. ING2 protein expression increased in late-passage human primary cells, and it colocalizes with serine 15-phosphorylated p53. ING2 and p53 also complexed with the histone acetyltransferase p300. ING2 enhanced the interaction between p53 and p300 and acted as a cofactor for p300-mediated p53 acetylation. The level of ING2 expression directly modulated the onset of replicative senescence. While overexpression of ING2 induced senescence in young fibroblasts in a p53-dependent manner, expression of ING2 small interfering RNA delayed the onset of senescence. Hence, ING2 can act as a cofactor of p300 for p53 acetylation and thereby plays a positive regulatory role during p53-mediated replicative senescence.  相似文献   

13.
Reversal of human cellular senescence: roles of the p53 and p16 pathways   总被引:34,自引:0,他引:34  
Telomere erosion and subsequent dysfunction limits the proliferation of normal human cells by a process termed replicative senescence. Replicative senescence is thought to suppress tumorigenesis by establishing an essentially irreversible growth arrest that requires activities of the p53 and pRB tumor suppressor proteins. We show that, depending on expression of the pRB regulator p16, replicative senescence is not necessarily irreversible. We used lentiviruses to express specific viral and cellular proteins in senescent human fibroblasts and mammary epithelial cells. Expression of telomerase did not reverse the senescence arrest. However, cells with low levels of p16 at senescence resumed robust growth upon p53 inactivation, and limited growth upon expression of oncogenic RAS. In contrast, cells with high levels of p16 at senescence failed to proliferate upon p53 inactivation or RAS expression, although they re-entered the cell cycle without growth after pRB inactivation. Our results indicate that the senescence response to telomere dysfunction is reversible and is maintained primarily by p53. However, p16 provides a dominant second barrier to the unlimited growth of human cells.  相似文献   

14.
TP53 is a classic tumor suppressor, but its role in kidney cancer remains unclear. In our study, we tried to explain the role of p53 in kidney cancer through the p53-related enhancer RNA pathway. Functional experiments were used to explore whether P53-bound enhancer regions 2 (p53BER2) has a role in the cell cycle and senescence response of TP53-wild type (WT) renal cancer cells in vitro or vivo. RNA-sequencing was used to identify the potential target of p53BER2. The results showed that the expression level of P53BER2 was downregulated in renal cancer tissues and cell lines, further dual-luciferase experiments and APR-256-reactivated experiments showed p53BER2 expresses in a p53-dependent way. Moreover, knockdown p53BER2 could reverse nutlin-3-induced cytotoxic effect in TP53-WT cell lines. Further exploration showed the downregulation of p53BER2 could reverse nutlin-3-induced G1-arrest and senescence in TP53-WT cell lines. What is more, the knockdown of p53BER2 showed resistance to nutlin-3 treatment in vivo. Additionally, we found BRCA2 could be regulated by p53BER2 in vitro and vivo; further experiment showed p53BER2 could induce cell-cycle arrest and DNA repair by mediating BRCA2. In summary, the p53-associated enhancer RNA-p53BER2 mediates the cell cycle and senescence of p53 in TP53-WT renal cancer cells.Subject terms: Tumour biomarkers, Renal cell carcinoma  相似文献   

15.
16.
Valproic acid (VPA) is a widely prescribed drug to treat epilepsy, bipolar disorder, and migraine. If taken during pregnancy, however, exposure to the developing embryo can cause birth defects, cognitive impairment, and autism spectrum disorder. How VPA causes these developmental defects remains unknown. We used embryonic mice and human organoids to model key features of VPA drug exposure, including exencephaly, microcephaly, and spinal defects. In the malformed tissues, in which neurogenesis is defective, we find pronounced induction of cellular senescence in the neuroepithelial (NE) cells. Critically, through genetic and functional studies, we identified p19Arf as the instrumental mediator of senescence and microcephaly, but, surprisingly, not exencephaly and spinal defects. Together, these findings demonstrate that misregulated senescence in NE cells can contribute to developmental defects.

Does cellular senescence contribute to developmental birth defects? This study shows that valproic acid induces cellular senescence in neuroepithelial cells, the precursors of all adult brain cells, and blocks their differentiation, suggesting that aberrant senescence in the embryo may contribute to postnatal cognitive defects.  相似文献   

17.
18.
A novel target of NESH-SH3 (TARSH) was identified as a cellular senescence related gene in mouse embryonic fibroblasts (MEFs) replicative senescence, the expression of which has been suppressed in primary clinical lung cancer specimens. However, the molecular mechanism underlying the regulation of TARSH involved in pulmonary tumorigenesis remains unclear. Here we demonstrate that the reduction of TARSH gene expression by short hairpin RNA (shRNA) system robustly inhibited the MEFs proliferation with increase in senescence-associated β-galactosidase (SA-β-gal) activity. Using p53−/− MEFs, we further suggest that this growth arrest by loss of TARSH is evoked by p53-dependent p21Cip1 accumulation. Moreover, we also reveal that TARSH reduction induces multicentrosome in MEFs, which is linked in chromosome instability and tumor development. These results suggest that TARSH plays an important role in proliferation of replicative senescence and may serve as a trigger of tumor development.  相似文献   

19.
Although Ras is a potent oncogene in human tumors it has the paradoxical ability to promote Oncogene Induced Senescence (OIS). This appears to serve as a major barrier to Ras driven transformation in vivo. The signaling pathways used by Ras to promote senescence remain relatively poorly understood, but appear to invoke both the p53 and the Rb master tumor suppressors. Exactly how Ras communicates with p53 and Rb has remained something of a puzzle. NORE1A is a direct Ras effector that is frequently downregulated in human tumors. We have now found that it serves as a powerful Ras senescence effector. Moreover, we have defined signaling mechanisms that allows Ras to control both p53 and Rb post-translational modifications via the NORE1A scaffolding molecule. Indeed, NORE1A can be detected in complex with both p53 and Rb. Thus, by coupling Ras to both tumor suppressors, NORE1A forms a major component of the Ras senescence machinery and serves as the missing link between Ras and p53/Rb.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号