首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
NMR‐monitored pH titration experiments are routinely used to measure site‐specific protein pKa values. Accurate experimental pKa values are essential in dissecting enzyme catalysis, in studying the pH‐dependence of protein stability and ligand binding, in benchmarking pKa prediction algorithms, and ultimately in understanding electrostatic effects in proteins. However, due to the complex ways in which pH‐dependent electrostatic and structural changes manifest themselves in NMR spectra, reported apparent pKa values are often dependent on the way that NMR pH‐titration curves are analyzed. It is therefore important to retain the raw NMR spectroscopic data to allow for documentation and possible re‐interpretation. We have constructed a database of primary NMR pH‐titration data, which is accessible via a web interface. Here, we report statistics of the database contents and analyze the data with a global perspective to provide guidelines on best practice for fitting NMR titration curves. Titration_DB is available at http://enzyme.ucd.ie/Titration_DB . Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Site-specific pK(a) values measured by NMR spectroscopy provide essential information on protein electrostatics, the pH-dependence of protein structure, dynamics and function, and constitute an important benchmark for protein pK(a) calculation algorithms. Titration curves can be measured by tracking the NMR chemical shifts of several reporter nuclei versus sample pH. However, careful analysis of these curves is needed to extract residue-specific pK(a) values since pH-dependent chemical shift changes can arise from many sources, including through-bond inductive effects, through-space electric field effects, and conformational changes. We have re-measured titration curves for all carboxylates and His 15 in Hen Egg White Lysozyme (HEWL) by recording the pH-dependent chemical shifts of all backbone amide nitrogens and protons, Asp/Glu side chain protons and carboxyl carbons, and imidazole protonated carbons and protons in this protein. We extracted pK(a) values from the resulting titration curves using standard fitting methods, and compared these values to each other, and with those measured previously by 1H NMR (Bartik et al., Biophys J 1994;66:1180–1184). This analysis gives insights into the true accuracy associated with experimentally measured pK(a) values. We find that apparent pK(a) values frequently differ by 0.5–1.0 units depending upon the nuclei monitored, and that larger differences occasionally can be observed. The variation in measured pK(a) values, which reflects the difficulty in fitting and assigning pH-dependent chemical shifts to specific ionization equilibria, has significant implications for the experimental procedures used for measuring protein pK(a) values, for the benchmarking of protein pK(a) calculation algorithms, and for the understanding of protein electrostatics in general.  相似文献   

3.
Electrostatic interactions in proteins can be dissected experimentally by determining the pKa values of their constituent ionizable amino acids. To complement previous studies of the glutamic acid and histidine residues in Bacillus circulans xylanase (BCX), we have used NMR methods to measure the pKa s of the seven aspartic acids and the C-terminus of this protein. The pKa s of these carboxyls are all less than the corresponding values observed with random coil polypeptides, indicating that their ionization contributes favorably to the stability of the folded enzyme. In general, the aspartic acids with the most reduced pKa s are those with limited exposure to the solvent and a high degree of conservation among homologous xylanases. Most dramatically, Asp 83 and Asp 101 have pKa s < 2 and thus remain deprotonated in native BCX under all conditions examined. Asp 83 is completely buried, forming a strong salt bridge with Arg 136. In contrast, Asp 101 is located on the surface of the protein, stabilized in the deprotonated form by an extensive network of hydrogen bonds involving an internal water molecule and the neutral side-chain and main-chain atoms of Ser 100 and Thr 145. These data provide a complete experimental database for theoretical studies of the ionization behavior of BCX under acidic conditions.  相似文献   

4.
Understanding protein stability at residue level detail in the native state ensemble of a protein is crucial to understanding its biological function. At the same time, deriving thermodynamic parameters using conventional spectroscopic and calorimetric techniques remains a major challenge for some proteins due to protein aggregation and irreversibility of denaturation at higher temperature values. In this regard, we describe here the NMR investigations on the conformational stabilities and related thermodynamic parameters such as local unfolding enthalpies, heat capacities and transition midpoints in DLC8 dimer, by using temperature dependent native state hydrogen exchange; this protein aggregates at high (>65°C) temperatures. The stability (free energy) of the native state was found to vary substantially with temperature at every residue. Significant differences were found in the thermodynamic parameters at individual residue sites indicating that the local environments in the protein structure would respond differently to external perturbations; this reflects on plasticity differences in different regions of the protein. Further, comparison of this data with similar data obtained from GdnHCl dependent native state hydrogen exchange indicated many similarities at residue level, suggesting that local unfolding transitions may be similar in both the cases. This has implications for the folding/unfolding mechanisms of the protein. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
6.
Summary Sequence-specific assignments have been made for the 1H, 15N, 13C and 13CO resonances of 14T, the 126-residue amino-terminal domain of the actin-severing protein villin. Villin is a member of a family of proteins that regulate cytoskeletal actin by severing, capping and nucleating actin filaments. Actin binding is dependent on calcium and disrupted by phosphatidyl inositol 4,5-bisphosphate. Actin-severing proteins are built from three or six repeats of a conserved domain, represented by 14T. Expression in Escherichia coli facilitated incorporation of 15N and 13C isotopes and application of triple-resonance, backbone-directed strategies for the sequential assignments. Elements of regular secondary structure have been identified by characteristic patterns of NOE cross peaks and values of vicinal 3JH n H coupling constants. Amide protons that exchange slowly (rates less than 1.0×10-4 per min) are concentrated in the central -sheet and the second and third -helices, suggesting that these elements of secondary structure form very stable hydrogen bonds. Assignments for the amide nitrogens and protons have been examined as a function of pH and calcium concentration. Based on the conservation of chemical shifts in the core of the domain, villin 14T maintains the same overall fold in the pH range from 4.15 to 6.91 and the calcium range from 0 to 50 mM. The calcium data indicate the presence of two calcium-binding sites and suggest their locations.  相似文献   

7.
Anomalous NMR behavior of the hydroxyl proton resonance for Ser 31 has been reported for histidine-containing protein (HPr) from two microorganisms: Escherichia coli and Staphylococcus aureus. The unusual slow exchange and chemical shift exhibited by the resonance led to the proposal that the hydroxyl group is involved in a strong hydrogen bond. To test this hypothesis and to characterize the importance of such an interaction, a mutant in which Ser 31 is replaced by an alanine was generated in HPr from Escherichia coli. The activity, stability, and structure of the mutant HPr were assessed using a reconstituted assay system, analysis of solvent denaturation curves, and NMR, respectively. Substitution of Ser 31 yields a fully functional protein that is only slightly less stable (delta delta G(folding) = 0.46 +/- 0.15 kcal mol-1) than the wild type. The NMR results confirm the identity of the hydrogen bond acceptor as Asp 69 and reveal that it exists as the gauche- conformer in wild-type HPr in solution but exhibits conformational averaging in the mutant protein. The side chain of Asp 69 interacts with two main-chain amide proteins in addition to its interaction with the side chain of Ser 31 in the wild-type protein. These results indicate that removal of the serine has led to the loss of all three hydrogen bond interactions involving Asp 69, suggesting a cooperative network of interactions. A complete analysis of the thermodynamics was performed in which differences in side-chain hydrophobicity and conformational entropy between the two proteins are accounted for.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The stabilities of Bacillus circulans xylanase and a disulfide-bridge-containing mutant (S100C/N148C) were investigated by differential scanning calorimetry (DSC) and thermal inactivation kinetics. The thermal denaturation of both proteins was found to be irreversible, and the apparent transition temperatures showed a considerable dependence upon scanning rate. In the presence of low (nondenaturing) concentrations of urea, calorimetric transitions were observed for both proteins in the second heating cycle, indicating reversible denaturation occurs under those conditions. However, even for these reversible processes, the DSC curves for the wild-type protein showed a scan-rate dependence that was similar to that in the absence of urea. Calorimetric thermograms for the disulfide mutant were significantly less scan-rate dependent in the presence of urea than in the urea-free buffer. The present data show that, just as for irreversible transitions, the apparent transition temperature for the reversible denaturation of proteins can be scan-rate dependent, confirming the prediction of Lepock et al. (Lepock JR, Rithcie KP, Kolios MC, Rodahl AM, Heinz KA, Kruuf J, 1992, Biochemistry 31:12706-12712). The kinetic factors responsible for scan-rate dependence may lead to significant distortions and asymmetry of endotherms, especially at higher scanning rates. This points to the need to check for scan-rate dependence, even in the case of reversible denaturation, before any attempt is made to analyze asymmetric DSC curves by standard thermodynamic procedures. Experiments with the disulfide-bridge-containing mutant indicate that the introduction of the disulfide bond provides additional stabilization of xylanase by changing the rate-limiting step on the thermal denaturation pathway.  相似文献   

9.
Core-packing mutants of proteins often approach molten globule states, and hence may have attributes of folding intermediates. We have studied a core-packing mutant of thioredoxin, L78K, in which a leucine residue is substituted by lysine, using 15N heteronuclear two- and three-dimensional NMR. Chemical shift differences between the mutant and wild-type main-chain resonances reveal that structural changes caused by the mutation are localized within 12 A of the altered side chain. The majority of resonances are unchanged, as are many 1H-1H NOEs indicative of the main-chain fold, suggesting that the structure of L78K is largely similar to wild type. Hydrogen exchange studies reveal that residues comprising the central beta-sheet of both mutant and wild-type proteins constitute a local unfolding unit, but with the unfolding/folding equilibrium approximately 12 times larger in L78K. The dynamics of main-chain NH bonds in L78K were studied by 15N spin relaxation and compared with a previous study of wild type. Order parameters for angular motion of NH bonds in the mutant are on average lower than in wild type, suggesting greater spatial freedom on a rapid time scale, but may also be related to different rotational correlation times in the two proteins. There is also evidence of greater conformational exchange in the mutant. Differences between mutant and wild type in hydrogen exchange and main-chain dynamics are not confined to the vicinity of the mutation. We infer that mispacking of the protein core in one location affects local dynamics and stability throughout.  相似文献   

10.
IR spectroscopy was used to study the rate of hydrogen-deuterium (H-D) exchange of peptide NH atoms in different forms of human hemoglobin (Hb) at pH 5–10 and temperatures of 10–63°C. The pH dependence of the H-D exchange rate fits the EX2 mechanism. At 10–30°C, there are two pH-dependent conformers of liganded Hb forms, the fluctuation probability being lower for the alkaline conformer. The differences between the conformers disappear at 40°C, where a third conformer, with a higher probability of local fluctuations, appears. Deoxyhemoglobin has no pH-dependent conformers in the pH range 6–9 at 20°C, and the probability of local fluctuations is considerably decreased compared to the acid conformer of liganded Hb. The destabilization of the liganded Hb structure by decreasing the pH to 5.0 at 20°C or increasing the temperature to 50–60°C at pH 7.1 enhances global fluctuations of the native structure ensuring the H-D exchange of slowly exchanging NH atoms. The mechanisms of local and high-temperature global fluctuations, as well as the possible similarity between the two pH-dependent conformers of liganded Hb and its functional R and R2 states revealed by X-ray analysis and NMR spectroscopy, are discussed.  相似文献   

11.
pH is one of the key parameters that affect the stability and function of proteins. We have studied the effect of pH on the pyridoxal-5'-phosphate-dependent enzyme phosphoserine aminotransferase produced by the facultative alkaliphile Bacillus circulans ssp. alkalophilus using thermodynamic and crystallographic analysis. Enzymatic activity assay showed that the enzyme has maximum activity at pH 9.0 and relative activity less than 10% at pH 7.0. Differential scanning calorimetry and circular dichroism experiments revealed variations in the stability and denaturation profiles of the enzyme at different pHs. Most importantly, release of pyridoxal-5'-phosphate and protein thermal denaturation were found to occur simultaneously at pH 6.0 in contrast to pH 8.5 where denaturation preceded cofactor's release by approximately 3 degrees C. To correlate the observed differences in thermal denaturation with structural features, the crystal structure of phosphoserine aminotransferase was determined at 1.2 and 1.5 A resolution at two different pHs (8.5 and 4.6, respectively). Analysis of the two structures revealed changes in the vicinity of the active site and in surface residues. A conformational change in a loop involved in substrate binding at the entrance of the active site has been identified upon pH change. Moreover, the number of intramolecular ion pairs was found reduced in the pH 4.6 structure. Taken together, the presented kinetics, thermal denaturation, and crystallographic data demonstrate a potential role of the active site in unfolding and suggest that subtle but structurally significant conformational rearrangements are involved in the stability and integrity of phosphoserine aminotransferase in response to pH changes.  相似文献   

12.
The kinetic folding mechanism for Escherichia coli dihydrofolate reductase postulates two distinct types of transient intermediates. The first forms within 5 ms and has substantial secondary structure but little stability. The second is a set of four species that appear over the course of several hundred milliseconds and have secondary structure, specific tertiary structure, and significant stability (Jennings PA, Finn BE, Jones BE, Matthews CR, 1993, Biochemistry 32:3783-3789). Pulse labeling hydrogen exchange experiments were performed to determine the specific amide hydrogens in alpha-helices and beta-strands that become protected from exchange through the formation of stable hydrogen bonds during this time period. A significant degree of protection was observed for two subsets of the amide hydrogens within the dead time of this experiment (6 ms). The side chains of one subset form a continuous nonpolar strip linking six of the eight strands in the beta-sheet. The other subset corresponds to a nonpolar cluster on the opposite face of the sheet and links three of the strands and two alpha-helices. Taken together, these data demonstrate that the complex strand topology of this eight-stranded sheet can be formed correctly within 6 ms. Measurement of the protection factors at three different folding times (13 ms, 141 ms, and 500 ms) indicates that, of the 13 amide hydrogens displaying significant protection within 6 ms, 8 exhibit an increase in their protection factors from approximately 5 to approximately 50 over this time range; the remaining five exhibit protection factors > 100 at 13 ms. Only approximately half of the population of molecules form this set of stable hydrogen bonds. Thirteen additional hydrogens in the beta-sheet become protected from exchange as the set of native conformers appear, suggesting that the stabilization of this network reflects the global cooperativity of the folding reaction.  相似文献   

13.
Unfolding of marginally stable proteins is a significant factor in commercial application of hydrophobic interaction chromatography (HIC). In this work, hydrogen-deuterium isotope exchange labeling has been used to monitor protein unfolding on HIC media for different stationary phase hydrophobicities and as a function of ammonium sulfate concentration. Circular dichroism and Raman spectroscopy were also used to characterize the structural perturbations experienced by solution phase protein that had been exposed to media and by protein adsorbed on media. As expected, greater instability is seen on chromatographic media with greater apparent hydrophobicity. However, increased salt concentrations also led to more unfolding, despite the well-known stabilizing effect of ammonium sulfate in solution. A thermodynamic framework is proposed to account for the effects of salt on both adsorption and stability during hydrophobic chromatography. Using appropriate estimates of input quantities, analysis with the framework can explain how salt effects on stability in chromatographic systems may contrast with solution stability.  相似文献   

14.
The extent of deuterium labeling of hen lysozyme, its three-disulfide derivative, and the homologous alpha-lactalbumins, has been measured by both mass spectrometry and NMR. Different conformational states of the proteins were produced by varying the solution conditions. Alternate protein conformers were found to contain different numbers of 2H atoms. Furthermore, measurement in the gas phase of the mass spectrometer or directly in solution by NMR gave consistent results. The unique ability of mass spectrometry to distinguish distributions of 2H atoms in protein molecules is exemplified using samples prepared to contain different populations of 2H-labeled protein. A comparison of the peak widths of bovine alpha-lactalbumin in alternate solution conformations but containing the same average number of 2H atoms showed dramatic differences due to different 2H distributions in the two protein conformers. Measurement of 2H distributions by ESI-MS enabled characterization of conformational averaging and structural heterogeneity. In addition, a time course for hydrogen exchange was examined and the variation in distributions of 2H atom compared with simulations for different hydrogen exchange models. The results clearly show that exchange from the native state of bovine alpha-lactalbumin at 15 degrees C is dominated by local unfolding events.  相似文献   

15.
Cosgrove MS  Loh SN  Ha JH  Levy HR 《Biochemistry》2002,41(22):6939-6945
The chemical shifts of the C(epsilon1) and C(delta2) protons of His-240 from the 109 kDa Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase (G6PD) were assigned by comparing 1H and 13C spectra of the wild-type and mutant G6PDs containing the His-240 to asparagine mutation (H240N). Unambiguous assignment of the His-240 1H(epsilon1) resonance was obtained from comparing 13C-1H heteronuclear multiple quantum coherence NMR spectra of wild-type and H240N G6PDs that were selectively labeled with 13C(epsilon1) histidine. The results from NOESY experiments with wild-type and H240N variants were consistent with these assignments and the three-dimensional structure of G6PD. pH titrations show that His-240 has a pK(a) of 6.4. This value is, within experimental error, identical to the value of 6.3 derived from the pH dependence of kcat [Viola, R. E. (1984) Arch. Biochem. Biophys. 228, 415-424], suggesting that the pK(a) of His-240 is unperturbed in the apoenzyme despite being part of a His-Asp catalytic dyad. The results obtained for this 109 kDa enzyme indicate that 1H NMR spectroscopy in combination with heteronuclear methods can be a useful tool for functional analysis of large proteins.  相似文献   

16.
3-Chymotrypsin-like protease (3CLpro) is a promising drug target for coronavirus disease 2019 and related coronavirus diseases because of the essential role of this protease in processing viral polyproteins after infection. Understanding the detailed catalytic mechanism of 3CLpro is essential for designing effective inhibitors of infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Molecular dynamics studies have suggested pH-dependent conformational changes of 3CLpro, but experimental pH profiles of SARS-CoV-2 3CLpro and analyses of the conserved active-site histidine residues have not been reported. In this work, pH-dependence studies of the kinetic parameters of SARS-CoV-2 3CLpro revealed a bell-shaped pH profile with 2 pKa values (6.9 ± 0.1 and 9.4 ± 0.1) attributable to ionization of the catalytic dyad His41 and Cys145, respectively. Our investigation of the roles of conserved active-site histidines showed that different amino acid substitutions of His163 produced inactive enzymes, indicating a key role of His163 in maintaining catalytically active SARS-CoV-2 3CLpro. By contrast, the H164A and H172A mutants retained 75% and 26% of the activity of WT, respectively. The alternative amino acid substitutions H172K and H172R did not recover the enzymatic activity, whereas H172Y restored activity to a level similar to that of the WT enzyme. The pH profiles of H164A, H172A, and H172Y were similar to those of the WT enzyme, with comparable pKa values for the catalytic dyad. Taken together, the experimental data support a general base mechanism of SARS-CoV-2 3CLpro and indicate that the neutral states of the catalytic dyad and active-site histidine residues are required for maximum enzyme activity.  相似文献   

17.
Native state hydrogen exchange of cold shock protein A (CspA) has been characterized as a function of the denaturant urea and of the stabilizing agent trimethylamine N-oxide (TMAO). The structure of CspA has five strands of beta-sheet. Strands beta1-beta4 have strongly protected amide protons that, based on experiments as a function of urea, exchange through a simple all-or-none global unfolding mechanism. By contrast, the protection of amide protons from strand beta5 is too weak to measure in water. Strand beta5 is hydrogen bonded to strands beta3 and beta4, both of which afford strong protection from solvent exchange. Gaussian network model (GNM) simulations, which assume that the degree of protection depends on tertiary contact density in the native structure, accurately predict the strong protection observed in strands beta1-beta4 but fail to account for the weak protection in strand beta5. The most conspicuous feature of strand beta5 is its low sequence hydrophobicity. In the presence of TMAO, there is an increase in the protection of strands beta1-beta4, and protection extends to amide protons in more hydrophilic segments of the protein, including strand beta5 and the loops connecting the beta-strands. TMAO stabilizes proteins by raising the free energy of the denatured state, due to highly unfavorable interactions between TMAO and the exposed peptide backbone. As such, the stabilizing effects of TMAO are expected to be relatively independent of sequence hydrophobicity. The present results suggest that the magnitude of solvent exchange protection depends more on solvent accessibility in the ensemble of exchange susceptible conformations than on the strength of hydrogen-bonding interactions in the native structure.  相似文献   

18.
As a first step to determine the folding pathway of a protein with an alpha/beta doubly wound topology, the 1H, 13C, and 15N backbone chemical shifts of Azotobacter vinelandii holoflavodoxin II (179 residues) have been determined using multidimensional NMR spectroscopy. Its secondary structure is shown to contain a five-stranded parallel beta-sheet (beta2-beta1-beta3-beta4-beta5) and five alpha-helices. Exchange rates for the individual amide protons of holoflavodoxin were determined using the hydrogen exchange method. The amide protons of 65 residues distributed throughout the structure of holoflavodoxin exchange slowly at pH* 6.2 [kex < 10(-5) s(-1)] and can be used as probes in future folding studies. Measured exchange rates relate to apparent local free energies for transient opening. We propose that the amide protons in the core of holoflavodoxin only exchange by global unfolding of the apo state of the protein. The results obtained are discussed with respect to their implications for flavodoxin folding and for modulation of the flavin redox potential by the apoprotein. We do not find any evidence that A. vinelandii holoflavodoxin II is divided into two subdomains based on its amide proton exchange rates, as opposed to what is found for the structurally but not sequentially homologous alpha/beta doubly wound protein Che Y.  相似文献   

19.
Horng JC  Demarest SJ  Raleigh DP 《Proteins》2003,52(2):193-202
Many proteins are capable of populating partially folded states known as molten globule states. Alpha-lactalbumin forms a molten globule under a range of conditions including low pH (the A-state) and at neutral pH in the absence of Ca(2+) with modest amounts of denaturant. The A-state is the most thoroughly characterized and thought to mimic a kinetic intermediate populated during refolding at neutral pH. We demonstrate that the properties and interactions that stabilize the A-state and the pH 7 molten globule of human alpha-lactalbumin differ. The unfolding of the wild-type protein is compared to the unfolding of a variant that lacks the 6 - 120 disulfide bond and to an autonomously folded peptide construct that we have previously shown represents the minimum core structure of the A-state of human alpha-lactalbumin. Studies conducted at pH 2 and 7 show that the disulfide makes little contribution to the stability of the molten globule at pH 7 but is important at pH 2. In contrast, the beta-subdomain of the protein is less important at pH 2 than at pH 7. The role of helix propensity in stabilizing the different forms of the molten globule state is examined and it is shown that it cannot account for the differences. The strikingly different behavior observed at pH 2 and 7 indicates that the A-state may not be a rigorous mimic of the folding intermediate populated at pH 7.  相似文献   

20.
In this paper we discuss the thermodynamics of ion binding in solution, protein adsorption and ion co-adsorption. The emphasis is on charge regulation effects. To this end, we introduce phenomenological linkage relations from which the ion binding can be calculated from the electrolyte dependency of proton titration curves and the co-adsorption from the electrolyte dependency of protein adsorption isotherms. The linkage relations are derived from classical interfacial thermodynamics, and thus offer an alternative approach as compared to the mass balance equations which are currently used in biotechnology, and Record et al.'s 1978 analysis of Wyman's Binding Polynomial for protein interactions. The co-adsorption theory is an extension of our previous analysis of ion binding in solution, which we include here for comparison of the ion co-adsorption with the ion binding in solution. The theory is applied to the chromatography of lysozyme on the strong cation exchanger ‘mono S’ and to the proton titration of lysozyme in solution. In the accompanying Part 2 of this paper the results are interpreted with a simple model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号