首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acetyltransferase enzymes target specific lysine residues in substrate proteins. While the list of histone and nonhistone substrates is growing, the mechanisms of substrate selection remain unclear. Here, we describe a mass spectrometric approach to examine the site selection of the acetyltransferase p300 in the HIV-1 protein Tat. Tat is acetylated by p300 at a single lysine (K50) within its basic RNA-binding domain. To determine the sequence requirements for K50 recognition within this domain, we synthesized mixtures of "degenerated" Tat peptides, in which one of the surrounding residues was substituted by all proteinogenic amino acids. Peptide mixtures were assembled based on nonoverlapping peptide masses and acetylated by p300 in a standard in vitro acetylation reaction. Analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identified amino acid substitutions that prevented acetylation by p300. This approach represents a fast and comprehensive screening method that was applied to the six surrounding residues of K50 in Tat. It can be applied to any known acetyltransferase substrate and might help to define consensus recognition sequences for individual acetyltransferase enzymes.  相似文献   

2.
Summary When interested in plant cell transformation, the cell wall is often considered as a barrier to DNA transfer, which is only overcome by wounding or wall degrading enzymes. In this work, we demonstrate that cell plasmolysis before electropulsation is an efficient approach to DNA delivery into intact plant cells. Using such a method, transient expression (-glucuronidase and chloramphenicol acetyltransferase) and stable expression (phosphinotricin acetyltransferase) of exogenous genes are obtained in intact black Mexican sweet maize cells.Abbreviations BMS cells Black Mexican Sweet cells - GUS -glucuronidase - CAT chloramphenicol acetyltransferase - PAT Phosphinotricin acetyltransferase - MS Murashige and Skoog - PCV packed cell volume - 4-MU and 4-MUG 4-methylumbelliferone and 4-methylumbelliferyl-glucuronide - BSA bovine serum albumin - TTC triphenyl tetrazolium chloride  相似文献   

3.
Glutathione and total carnitine (i.e., free carnitine plus acid-soluble carnitine esters) were measured in an affected (superior frontal gyrus; SFG) and unaffected (cerebellum: CBL) region of Alzheimer disease (AD) and control brains. Average glutathione content in AD SFG (n=13) and AD CBL (n=7) (7.9±2.1 and 11.9±4.0 nmol/mg protein, respectively (mean ±S.D.)) was similar to that in control SFG (n=13) and CBL (n=6) (7.7±2.0 and 11.6±2.6 nmol/mg protein, respectively). However, glutathione increased significantly with age in AD brain (p=0.003) but not in control brain. Average total carnitine in AD SFG (84±47 pmol/mg protein; n=10) and AD CBL (108±86 pmol/mg protein; n=7) was not significantly different from that in the corresponding regions of control brain (148±97 (n=10) and 144±107 (n=6) pmol/mg protein, respectively). However, a significant decline of total carnitine with age in both regions was noted for AD brain, but not for control brain. Carnitine acetyltransferase activity in the AD SFG (n=13) was not significantly different from that of control SFG (n=13) (1.83±1.05 and 2.04±0.82 nmol/min/mg protein, respectively). However, carnitine acetyltransferase activity of AD CBL (n=7) was significantly lower than that of control CBL (n=6) (1.33±0.88 versus 2.26±0.66 nmol/min/mg protein; p=0.05).  相似文献   

4.
In the seeds ofAllium altaicun (Pall.)Reyse a set of enzymes was found, metabolizing choline esters, composed of active choline esterases and choline acetyltransferase. Choline esterase cleaving acetylcholine occurs in five isoenzymes. The enzyme preparation hydrolyses strongly acetylthiocholine and sinapine, but weakly butyrylthiocholine (20%) in comparison with acetylthiocholine. The hydrolysis of the substrates mentioned is inhibited by physostigmine and neostigmine, but it is not inhibited by the specific inhibitor of acetylcholine esterase (BW 284 C51). In addition to hydrolytic activity a strong catalytic activity of choline acetyltransferase was also observed during the synthesis of sinapine from sinapic acid and choline. The detection of the mentioned enzymes in some representatives of theAllium genus indicates that choline esterases are more widely distributed in monocotyledons than previously assumed.  相似文献   

5.
  • 1.1. The carnitine-responsive mutant yeast, Candida pintolopesii ATCC 26014 and the wild type strain (ATCC 22987) were used to investigate the role of carnitine and the carnitine acetyltransferase system.
  • 2.2. [3H]l-Carnitine, supplied to the cells, was incorporated into acetylcamitine and [14C]pantothenate was incorporated into CoA and its derivatives.
  • 3.3. Both bioautography and quantitative assays indicated that the relative amounts of CoA and acetylCoA were very different in the mutant and wild type cells.
  • 4.4. The wild type yeast maintained an acetylCoA/CoA ratio of 0.33 ± 0.09 indicating that most of the CoA in the cell is in the free CoA form. Carnitine was not required to establish this ratio nor did its presence lower it further.
  • 5.5. In contrast, the mutant cells contained a high acetylCoA/CoA ratio (12.8 ± 3.0).
  • 6.6. In the mutant cells, carnitine lowered the ratio by decreasing the intracellular acetylCoA concentration and releasing free CoA.
  • 7.7. These data indicated that wild type yeast possess an effective mechanism that is not related to the CAT system for regulating the acetylCoA/CoA ratio.
  • 8.8. This mechanism appears to be lacking in the mutant. The CAT system decreased the acetylCoA/CoA ratio in the mutant cells but not to the value which is found in the wild type strain.
  • 9.9. In both stains of Candida pintolopesii, in the presence of carnitine, an acetylcamitine pool can be created whose concentration exceeds that of acetylCoA.
  • 10.10. The intracellular apparent equilibrium constant (Kapp) for carnitine acetyltransferase for wild type Candida pintolopesii ATCC 22987 was 0.73 ± 0.12, close to the established value of 0.6, indicating that the CAT system ran close to equilibrium.
  • 11.11. The Kapp for the CAT system of the carnitine-responsive mutant yeast was 7.7 ± 1.7 indicating that this reaction was not at equilibrium.
  相似文献   

6.
Summary The application of the semipermeable membrane technique in light microscopical demonstration of choline acetyltransferase is described. The method founds upon earlier developed lead salt techniques. Use of semipermeable membranes fully prevents any loss of enzyme by dissolvement or inactivation during fixation. Addition of NaCl to the incubation medium markedly increases the activity of choline acetyltransferase.The research reported in this paper was supported by the Ministerium für Wissenschaft und Technik der DDR  相似文献   

7.
NGF modifies cholinergic neurons through its low-p75 and high affinity-TrkA receptors. Native p75(+)TrkA(–) and trkA-transfected p75(+)TrkA(+) SN56 hybrid cholinergic septal cells were used here to discriminate effects mediated by each receptor. In TrkA(–) cells, NGF (100 ng/ml) affected neither choline acetyltransferase nor morphology but depressed pyruvate dehydrogenase activity by about 30%. Aged 25–35 -amyloid (1 M) caused no changes in choline acetyltransferase and pyruvate dehydrogenase activities in nondifferentiated and differentiated TrkA(–) cells. On the contrary, in nondiferentiated TrkA(+) NGF brought about a 2.5-fold increase of choline acetyltransferase. In differentiated TrkA(+) cells, b-amyloid resulted in no change in PDH but 65% suppression of choline acetyltransferase activity and reduction of their extensions. Thus, activation of TrkA receptors may overcome p75 receptor–mediated inhibitory effects on pyruvate dehydrogenase expression in cholinergic cells. On the other hand, it would make expression of choline acetyltransferase and cell differentiation more susceptible to suppressory effects of -amyloid.  相似文献   

8.
Nuclear Rho kinase, ROCK2, targets p300 acetyltransferase   总被引:4,自引:0,他引:4  
Rho-associated coiled-coil protein kinase (ROCK) is an effector for the small GTPase Rho and plays a pivotal role in diverse cellular activities, including cell adhesion, cytokinesis, and gene expression, primarily through an alteration of actin cytoskeleton dynamics. Here, we show that ROCK2 is localized in the nucleus and associates with p300 acetyltransferase both in vitro and in cells. Nuclear ROCK2 is present in a large protein complex and partially cofractionates with p300 by gel filtration analysis. By immunofluorescence, ROCK2 partially colocalizes with p300 in distinct insoluble nuclear structures. ROCK2 phosphorylates p300 in vitro, and nuclear-restricted expression of constitutively active ROCK2 induces p300 phosphorylation in cells. p300 acetyltransferase activity is dependent on its phosphorylation status in cells, and p300 phosphorylation by ROCK2 results in an increase in its acetyltransferase activity in vitro. These observations suggest that nucleus-localized ROCK2 targets p300 for phosphorylation to regulate its acetyltransferase activity.  相似文献   

9.
N-Nitroso compounds, such as N-nitrosodiethylamine (NDEA), are a versatile group of chemical carcinogens, being suspected to be involved in gastrointestinal tumors in humans. The intestinal microflora can modify a wide range of environmental chemicals either directly or in the course of enterohepatic circulation. Nitroreductases from bacteria seem to have a wide spectrum of substrates, as observed by the reduction of several nitroaromatic compounds, but their capacity to metabolize N-nitroso compounds has not been described. To elucidate the participation of nitroreductase or acetyltransferase enzymes in the mutagenic activity of NDEA, the bacterial (reverse) mutation test was carried out with the strains YG1021 (nitroreductase overexpression), YG1024 (acetyltransferase overexpression), TA98NR (nitroreductase deficient), and TA98DNP6 (acetyltrasferase deficient), and YG1041, which overexpresses both enzymes. The presence of high levels of acetyltransferase may generate toxic compounds that must be eliminated by cellular processes or can lead to cell death, and consequently decrease the mutagenic effect, as can be observed by the comparison of strain TA98DNP6 with the strains TA98 and YG1024. The slope curves for TA98 strain were 0.66 rev/microM (R(2) = 0.51) and 52.8 rev/microM (R(2) = 0.88), in the absence and presence of S9 mix, respectively. For YG1024 strain, the slope curve, in the presence of S9 mix was 6897 rev/microM (R(2) = 0.78). Our data suggest that N-nitroso compounds need to be initially metabolized by enzymes such as cytochromes P450 to induce mutagenicity. Nitroreductase stimulates toxicity, while acetyltransferase stimulates mutagenicity, and nitroreductase can neutralize the mechanism of mutagenicity generating innoccuos compounds, probably by acting on the product generated after NDEA activation.  相似文献   

10.
11.
12.
Calf liver contains two nuclear N-acetyltransferases which are separated by chromatography on hydroxylapatite. Both acetyltransferase A and acetyltransferase B will transfer acetate from acetyl-CoA to either histone or spermidine. The same protein catalyzes the reaction with both substrates; this is shown by a constant ratio of spermidine to histone activity over a 5,000-fold purification and identical heat denaturation kinetics for both spermidine and histone acetyltransferase activity with each enzyme. Histone is preferentially acetylated when both acceptors are present. Both enzymes preferentially acetylate polyamines (spermidine, spermine, and diaminodipropylamine) to diamines. Acetyltransferase A acetylates histones in the order: whole histone greater than H4 greater than H2A greater than H3 greater than H2B greater than H1; acetyltransferase B in the order: whole histone greater than H4 = H3 greater than H2A greater than H2B greater than H1. Michaelis constants are 2 X 10(-4)M for spermidine and 9 X 10(-6)M for acetyl-CoA. Acetyltransferase A has a molecular weight of 150,000; acetyltransferase B 175,000. Both enzymes are strongly inhibited by p-chloromercuribenzoate and weakly inhibited by EDTA.  相似文献   

13.
Choline acetyltransferase (ChAT; EC 2.3.1.6) was separated from human caudate/putamen into three fractions by successive extractions into apotassium phosphate buffer, a high salt (NaCl) buffer and a buffer containing 0.6% Triton X-100. The Triton-X-solubilized fraction is the membrane-bound ChAT (mChAT) and represents about 40% of the total ChAT. After centrifugation, mChAT was precipitated by ammonium sulfate at 35–65% saturation. The crude enzyme preparation was fractionated in turn on a DEAE-Sepharose, a hydroxylapatite and a phosphocellulose columns. Finally, mChAT was applied to a CoA-Sepharose column equilibrated with buffer containing 100 mM choline chloride and was specifically eluted with buffer containing acetyl-CoA. The presence of both substrates greatly stabilized the enzyme and ChAT was recovered almost quantitatively. The final preparation of mChAT has a specific activity of 37.2 mol of acetylcholine synthesized per min-mg protein. The purified mChAT has a pH optimum of 8.3. It migrated as two bands on SDS-PAGE with molecular weights of 67,000 and 62,000 daltons, respectively. Immunoblot autoradiography showed that an antiserum prepared previously against soluble ChAT also cross-reacted with both bands of mChAT, indicating that both forms of this enzyme are related. Furthermore, as previously reported for soluble ChAT, Fab-Sepharose chromatography could be used for the purification of mChAT and this preparation also resolved into two bands of 10% SDS gel.Special Issue dedicated to Prof. Eduardo De Robertis.  相似文献   

14.
Choline acetyltransferase (CAT) was purified to homogeneity from 363 g of human neostriatum by means of ammonium sulfate and protamine sulfate fractionation, followed by chromatography on DEAE-Sephadex, hydroxyapatite, phosphocellulose, and agarose-hexane-Co A columns. The final product migrated as a single component on 7.5% gels with or without SDS. It had a molecular weight of 66,000 daltons and a specific activity of 7.3 mol acetylcholine formed per milligram protein per minute. Antibodies prepared in rabbits gave single precipitin lines against this protein on Ouchterlony immunodiffusion and immunoelectrophoresis plates. The CAT-anti-CAT IgG complex migrated as a single band on gel electrophoresis, establishing the monospecificity of the antibodies. Strong cross-reactivity to the IgG was obtained with CAT from rat, rabbit, and guinea pig, but only weak reactivity with chicken. Fab fragments were prepared from the rabbit IgG and were used to stain CAT-containing neurons in the spinal cord and nerve endings at the neuromuscular junction using the PAP technique.  相似文献   

15.
Acetyl-CoA:1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine acetyltransferase, along with phospholipase A2, is a key regulator of platelet-activating factor biosynthesis via the remodeling pathway. We have now obtained evidence in human neutrophils indicating that this enzyme is regulated by a specific member of the mitogen-activated protein kinases, namely the p38 kinase. We earlier demonstrated that tumor necrosis factor-alpha (TNF-alpha) as well as N-formyl-methionyl-leucyl-phenylalanine treatment leads to increased phosphorylation and activation of p38 kinase in human neutrophils. Strikingly, in the present study these stimuli increased the catalytic activity of acetyltransferase up to 3-fold, whereas 4-phorbol 12-myristate 13-acetate, which activates the extracellular-regulated kinases (ERKs) but not p38 kinase, had no effect. Furthermore, a selective inhibitor of p38 kinase, SB 203580, was able to abolish the TNF-alpha- and N-formyl-methionyl-leucyl-phenylalanine-induced activation of acetyltransferase. The same effect was not observed in the presence of an inhibitor that blocked ERK activation (PD 98059). Complementing the findings in intact cells, we have shown that recombinant, activated p38 kinase added to microsomes in the presence of Mg2+ and ATP increased acetyltransferase activity to the same degree as in microsomes obtained from TNF-alpha-stimulated cells. No activation of acetyltransferase occurred upon treatment of microsomes with either recombinant, activated ERK-1 or ERK-2. Finally, the increases in acetyltransferase activity induced by TNF-alpha could be ablated by treating the microsomes with alkaline phosphatase. Thus acetyltransferase appears to be a downstream target for p38 kinase but not ERKs. These data from whole cells as well as cell-free systems fit a model wherein stimulus-induced acetyltransferase activation is mediated by a phosphorylation event catalyzed directly by p38 kinase.  相似文献   

16.
17.
Summary In order to study the synaptic connections of neurons identified by their projection target and neurotransmitter content, we have adapted a method of combining retrograde tracing of horseradish peroxidase (HRP) and immunocytochemistry at the electron microscopic level. HRP was injected into the rat amygdala. Sections from the rostral forebrain were processed according to the 3,3-diaminobenzidine/glucose oxidase reaction followed by choline acetyltransferase (ChAT) localization. Neurons in the ventral pallidum which contained both the diffuse immunoperoxidase reaction product (ChAT) and large electron dense bodies characteristic of retrogradely transported HRP were defined as double labeled, i.e. cholinergic neurons that project to the amygdaloid body.  相似文献   

18.
Several natural compounds found in health-related food items can inhibit acetyltransferases as they induce autophagy. Here we show that this applies to anacardic acid, curcumin, garcinol and spermidine, all of which reduce the acetylation level of cultured human cells as they induce signs of increased autophagic flux (such as the formation of green fluorescent protein-microtubule-associated protein 1A/1B-light chain 3 (GFP-LC3) puncta and the depletion of sequestosome-1, p62/SQSTM1) coupled to the inhibition of the mammalian target of rapamycin complex 1 (mTORC1). We performed a screen to identify the acetyltransferases whose depletion would activate autophagy and simultaneously inhibit mTORC1. The knockdown of only two acetyltransferases (among 43 candidates) had such effects: EP300 (E1A-binding protein p300), which is a lysine acetyltranferase, and NAA20 (N(α)-acetyltransferase 20, also known as NAT5), which catalyzes the N-terminal acetylation of methionine residues. Subsequent studies validated the capacity of a pharmacological EP300 inhibitor, C646, to induce autophagy in both normal and enucleated cells (cytoplasts), underscoring the capacity of EP300 to repress autophagy by cytoplasmic (non-nuclear) effects. Notably, anacardic acid, curcumin, garcinol and spermidine all inhibited the acetyltransferase activity of recombinant EP300 protein in vitro. Altogether, these results support the idea that EP300 acts as an endogenous repressor of autophagy and that potent autophagy inducers including spermidine de facto act as EP300 inhibitors.Macroautophagy (herein referred to as ‘autophagy'') consist in the sequestration of cytoplasmic material in autophagosomes, followed by their fusion with lysosomes for the bulk degradation of autophagic cargo by lysosomal hydrolases.1 This phenomenon can be measured by following the redistribution of green fluorescent protein-microtubule-associated protein 1A/1B-light chain 3 (GFP-LC3) fusion proteins from a diffuse location to autophagosomes (that results in the formation of the so-called GFP-LC3 ‘puncta''), the diminution of the overall abundance of autophagic substrates (such as sequestosome-1, p62/SQSTM1), and the stereotyped activation of proautophagic signals (such as the inhibition of the mammalian target of rapamycin complex 1, mTORC1).2There is growing consensus that the induction of autophagy by nutritional, pharmacological or genetic interventions can reduce age-related pathologies (such as neurodegenerative diseases or type 2 diabetes) and/or extend longevity.3, 4, 5, 6 This applies to caloric restriction or intermediate fasting,7 continuous or intermittent medication of rapamycin,8, 9, 10 administration of the sirtuin 1-activator resveratrol,11, 12 external supply of the polyamine spermidine,13 or genetic ablation of p53.14 In all these cases, inhibition of autophagy by deleting or silencing relevant genes abolishes the extension of health span and/or lifespan.13, 14, 15, 16, 17 Moreover, direct induction of autophagy by transgenic expression of autophagy-relevant genes such as ATG5 in mice is sufficient to increase lifespan.18Recently, acetyltransferases have emerged as a potential target for the pharmaceutical induction of autophagy. Thus, depletion of the sole donor of acetyl groups, acetyl-coenzyme A (acetyl-CoA), is sufficient to reduce the acetylation of cytoplasmic and nuclear proteins coupled to the induction of autophagy.19, 20, 21, 22 Culture of mammalian cells in nutrient-free (NF) conditions or starvation of mice for 24 h reduced the intracellular nucleocytosolic concentrations of acetyl-CoA at the same time as autophagy was induced, and replenishment of acetyl-CoA by external sources (for instance, by providing a membrane-permeant precursor of α-ketoglutarate for anaplerotic reactions or by microinjection of acetyl-CoA) was sufficient to inhibit starvation-induced autophagy.19, 20, 21, 22 Beyond the inhibition of acetyltransferases by acetyl-CoA depletion, direct pharmacological inhibition of acetyltransferases might also contribute to the induction of autophagy. A close correlation between autophagy induction and deacetylation of cytoplasmic proteins was observed in a screen conceived to identify autophagy-stimulating polyphenols23 as well as in in vivo experiments designed to explore the health-improving effects of coffee.24 Spermidine turned out to be an efficient inhibitor of histone acetyltransferases in vitro13 and reduced the global protein acetylation levels in cultured cells.25, 26Driven by these premises, we investigated the hypothesis that several health-related compounds including anacardic acid, curcumin, garcinol and spermidine might induce autophagy by inhibition of acetyltranferases. Here we report results supporting this hypothesis. Moreover, we demonstrate that one particular acetyltransferase, EP300 (E1A-binding protein p300), negatively controls autophagy and that anacardic acid, curcumin, garcinol and spermidine may induce autophagy by directly inhibiting EP300.  相似文献   

19.
The co-translational modification of N-terminal acetylation is ubiquitous among eukaryotes and has been reported to have a wide range of biological effects. The human N-terminal acetyltransferase (NAT) Naa50p (NAT5/SAN) acetylates the α-amino group of proteins containing an N-terminal methionine residue and is essential for proper sister chromatid cohesion and chromosome condensation. The elevated activity of NATs has also been correlated with cancer, making these enzymes attractive therapeutic targets. We report the x-ray crystal structure of Naa50p bound to a native substrate peptide fragment and CoA. We found that the peptide backbone of the substrate is anchored to the protein through a series of backbone hydrogen bonds with the first methionine residue specified through multiple van der Waals contacts, together creating an α-amino methionine-specific pocket. We also employed structure-based mutagenesis; the results support the importance of the α-amino methionine-specific pocket of Naa50p and are consistent with the proposal that conserved histidine and tyrosine residues play important catalytic roles. Superposition of the ternary Naa50p complex with the peptide-bound Gcn5 histone acetyltransferase revealed that the two enzymes share a Gcn5-related N-acetyltransferase fold but differ in their respective substrate-binding grooves such that Naa50p can accommodate only an α-amino substrate and not a side chain lysine substrate that is acetylated by lysine acetyltransferase enzymes such as Gcn5. The structure of the ternary Naa50p complex also provides the first molecular scaffold for the design of NAT-specific small molecule inhibitors with possible therapeutic applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号