首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Malignant gastrointestinal stromal tumors (GIST) are rare mesenchymal tumors originating in the wall of the gastrointestinal tract. Myogenic gastrointestinal stromal tumor, a distinctive morphologic variant is characterized by an unusually prominent myxoid stromal background.

Case presentation

We report a case of myxoid variant of GIST in a 42 years old woman presenting as an epigastric mass associated to an ovarian cyst and elevated CA-125. Histologically, the lesions was composed of a proliferation of spindle cells in an abundant myxoid stroma, without evidence of atypia or anaplasia. Immunohistochemical stains showed strong positive staining with muscle actin, positive staining with CD34 and weak positive staining with CD117, while showed negative for S-100.

Conclusion

At surgery every effort should be made to identify the origin of the tumor. A complete surgical removal of the tumor should be obtained, as this is the only established treatment that offers long term survival.  相似文献   

2.
3.

Background

We previously developed the DBRF-MEGN (difference-based regulation finding-minimum equivalent gene network) method, which deduces the most parsimonious signed directed graphs (SDGs) consistent with expression profiles of single-gene deletion mutants. However, until the present study, we have not presented the details of the method's algorithm or a proof of the algorithm.

Results

We describe in detail the algorithm of the DBRF-MEGN method and prove that the algorithm deduces all of the exact solutions of the most parsimonious SDGs consistent with expression profiles of gene deletion mutants.

Conclusions

The DBRF-MEGN method provides all of the exact solutions of the most parsimonious SDGs consistent with expression profiles of gene deletion mutants.  相似文献   

4.
5.

Background

Wnt signals are important for embryonic stem cells renewal, growth and differentiation. Although 19 Wnt, 10 Frizzled genes have been identified in mammals, their expression patterns in stem cells were largely unknown.

Results

We conducted RNA expression profiling for the Wnt ligands, their cellular receptors "Frizzleds" and co-receptors LRP5/6 in human embryonic stem cells (H7), human bone marrow mesenchymal cells, as well as mouse totipotent F9 teratocarcinoma embryonal cells. Except failing to express Wnt2 gene, totipotent F9 cells expressed RNA for all other 18 Wnt genes as well as all 10 members of Frizzled gene family. H7 cells expressed RNA for each of the 19 Wnt genes. In contrast, human mesenchymal cells did not display detectable RNA expression of Wnt1, Wnt8a, Wnt8b, Wnt9b, Wnt10a, and Wnt11. Analysis of Frizzled RNAs in H7 and human mesechymal cells revealed expression of 9 members of the receptor gene family, except Frizzled8. Expression of the Frizzled co-receptor LRP5 and LRP6 genes were detected in all three cell lines. Human H7 and mouse F9 cells express nearly a full complement of both Wnts and Frizzleds genes. The human mesenchymal cells, in contrast, have lost the expression of six Wnt ligands, i.e. Wnt1, 8a, 8b, 9b, 10a and 11.

Conclusion

Puripotent human H7 and mouse F9 embryonal cells express the genes for most of the Wnts and Frizzleds. In contrast, multipotent human mesenchymal cells are deficient in expression of Frizzled-8 and of 6 Wnt genes.  相似文献   

6.
7.

Background

The hierarchical clustering tree (HCT) with a dendrogram [1] and the singular value decomposition (SVD) with a dimension-reduced representative map [2] are popular methods for two-way sorting the gene-by-array matrix map employed in gene expression profiling. While HCT dendrograms tend to optimize local coherent clustering patterns, SVD leading eigenvectors usually identify better global grouping and transitional structures.

Results

This study proposes a flipping mechanism for a conventional agglomerative HCT using a rank-two ellipse (R2E, an improved SVD algorithm for sorting purpose) seriation by Chen [3] as an external reference. While HCTs always produce permutations with good local behaviour, the rank-two ellipse seriation gives the best global grouping patterns and smooth transitional trends. The resulting algorithm automatically integrates the desirable properties of each method so that users have access to a clustering and visualization environment for gene expression profiles that preserves coherent local clusters and identifies global grouping trends.

Conclusion

We demonstrate, through four examples, that the proposed method not only possesses better numerical and statistical properties, it also provides more meaningful biomedical insights than other sorting algorithms. We suggest that sorted proximity matrices for genes and arrays, in addition to the gene-by-array expression matrix, can greatly aid in the search for comprehensive understanding of gene expression structures. Software for the proposed methods can be obtained at http://gap.stat.sinica.edu.tw/Software/GAP.  相似文献   

8.

Background

As the demands for competency-based education grow, the need for standards-based tools to allow for publishing and discovery of competency-based learning content is more pressing. This project focused on developing federated discovery services for competency-based medical e-learning content.

Methods

We built a tool suite for authoring and discovery of medical e-learning metadata. The end-user usability of the tool suite was evaluated through a web-based survey.

Results

The suite, implemented as an open-source system, was evaluated to identify areas for improvement.

Conclusion

The MERG suite is a starting point for organizations implementing competency-based e-learning resources.  相似文献   

9.
10.
11.
12.

Background

The use of biological annotation such as genes and pathways in the analysis of gene expression data has aided the identification of genes for follow-up studies and suggested functional information to uncharacterized genes. Several studies have applied similar methods to genome wide association studies and identified a number of disease related pathways. However, many questions remain on how to best approach this problem, such as whether there is a need to obtain a score to summarize association evidence at the gene level, and whether a pathway, dominated by just a few highly significant genes, is of interest.

Methods

We evaluated the performance of two pathway-based methods (Random Set, and Binomial approximation to the hypergeometric test) based on their applications to three data sets of Crohn's disease. We consider both the disease status as a phenotype as well as the residuals after conditioning on IL23R, a known Crohn's related gene, as a phenotype.

Results

Our results show that Random Set method has the most power to identify disease related pathways. We confirm previously reported disease related pathways and provide evidence for IL-2 Receptor Beta Chain in T cell Activation and IL-9 signaling as Crohn's disease associated pathways.

Conclusions

Our results highlight the need to apply powerful gene score methods prior to pathway enrichment tests, and that controlling for genes that attain genome wide significance enable further biological insight.  相似文献   

13.

Aims

We will examine the latest advances in genomic and proteomic laboratory technology. Through an extensive literature review we aim to critically appraise those studies which have utilized these latest technologies and ascertain their potential to identify clinically useful biomarkers.

Methods

An extensive review of the literature was carried out in both online medical journals and through the Royal College of Surgeons in Ireland library.

Results

Laboratory technology has advanced in the fields of genomics and oncoproteomics. Gene expression profiling with DNA microarray technology has allowed us to begin genetic profiling of colorectal cancer tissue. The response to chemotherapy can differ amongst individual tumors. For the first time researchers have begun to isolate and identify the genes responsible. New laboratory techniques allow us to isolate proteins preferentially expressed in colorectal cancer tissue. This could potentially lead to identification of a clinically useful protein biomarker in colorectal cancer screening and treatment.

Conclusion

If a set of discriminating genes could be used for characterization and prediction of chemotherapeutic response, an individualized tailored therapeutic regime could become the standard of care for those undergoing systemic treatment for colorectal cancer. New laboratory techniques of protein identification may eventually allow identification of a clinically useful biomarker that could be used for screening and treatment. At present however, both expression of different gene signatures and isolation of various protein peaks has been limited by study size. Independent multi-centre correlation of results with larger sample sizes is needed to allow translation into clinical practice.  相似文献   

14.

Background

Modern experimental techniques deliver data sets containing profiles of tens of thousands of potential molecular and genetic markers that can be used to improve medical diagnostics. Previous studies performed with three different experimental methods for the same set of neuroblastoma patients create opportunity to examine whether augmenting gene expression profiles with information on copy number variation can lead to improved predictions of patients survival. We propose methodology based on comprehensive cross-validation protocol, that includes feature selection within cross-validation loop and classification using machine learning. We also test dependence of results on the feature selection process using four different feature selection methods.

Results

The models utilising features selected based on information entropy are slightly, but significantly, better than those using features obtained with t-test. The synergy between data on genetic variation and gene expression is possible, but not confirmed. A slight, but statistically significant, increase of the predictive power of machine learning models has been observed for models built on combined data sets. It was found while using both out of bag estimate and in cross-validation performed on a single set of variables. However, the improvement was smaller and non-significant when models were built within full cross-validation procedure that included feature selection within cross-validation loop. Good correlation between performance of the models in the internal and external cross-validation was observed, confirming the robustness of the proposed protocol and results.

Conclusions

We have developed a protocol for building predictive machine learning models. The protocol can provide robust estimates of the model performance on unseen data. It is particularly well-suited for small data sets. We have applied this protocol to develop prognostic models for neuroblastoma, using data on copy number variation and gene expression. We have shown that combining these two sources of information may increase the quality of the models. Nevertheless, the increase is small and larger samples are required to reduce noise and bias arising due to overfitting.

Reviewers

This article was reviewed by Lan Hu, Tim Beissbarth and Dimitar Vassilev.
  相似文献   

15.
Xu M  Zhu M  Zhang L 《BMC genomics》2008,9(Z2):S18

Background

Microarray technology is often used to identify the genes that are differentially expressed between two biological conditions. On the other hand, since microarray datasets contain a small number of samples and a large number of genes, it is usually desirable to identify small gene subsets with distinct pattern between sample classes. Such gene subsets are highly discriminative in phenotype classification because of their tightly coupling features. Unfortunately, such identified classifiers usually tend to have poor generalization properties on the test samples due to overfitting problem.

Results

We propose a novel approach combining both supervised learning with unsupervised learning techniques to generate increasingly discriminative gene clusters in an iterative manner. Our experiments on both simulated and real datasets show that our method can produce a series of robust gene clusters with good classification performance compared with existing approaches.

Conclusion

This backward approach for refining a series of highly discriminative gene clusters for classification purpose proves to be very consistent and stable when applied to various types of training samples.
  相似文献   

16.
Xie  Rui  Wen  Jia  Quitadamo  Andrew  Cheng  Jianlin  Shi  Xinghua 《BMC genomics》2017,18(9):845-49

Background

Gene expression is a key intermediate level that genotypes lead to a particular trait. Gene expression is affected by various factors including genotypes of genetic variants. With an aim of delineating the genetic impact on gene expression, we build a deep auto-encoder model to assess how good genetic variants will contribute to gene expression changes. This new deep learning model is a regression-based predictive model based on the MultiLayer Perceptron and Stacked Denoising Auto-encoder (MLP-SAE). The model is trained using a stacked denoising auto-encoder for feature selection and a multilayer perceptron framework for backpropagation. We further improve the model by introducing dropout to prevent overfitting and improve performance.

Results

To demonstrate the usage of this model, we apply MLP-SAE to a real genomic datasets with genotypes and gene expression profiles measured in yeast. Our results show that the MLP-SAE model with dropout outperforms other models including Lasso, Random Forests and the MLP-SAE model without dropout. Using the MLP-SAE model with dropout, we show that gene expression quantifications predicted by the model solely based on genotypes, align well with true gene expression patterns.

Conclusion

We provide a deep auto-encoder model for predicting gene expression from SNP genotypes. This study demonstrates that deep learning is appropriate for tackling another genomic problem, i.e., building predictive models to understand genotypes’ contribution to gene expression. With the emerging availability of richer genomic data, we anticipate that deep learning models play a bigger role in modeling and interpreting genomics.
  相似文献   

17.
Supervised harvesting of expression trees   总被引:2,自引:2,他引:0       下载免费PDF全文
Hastie T  Tibshirani R  Botstein D  Brown P 《Genome biology》2001,2(1):research0003.1-research000312

Background

We propose a new method for supervised learning from gene expression data. We call it 'tree harvesting'. This technique starts with a hierarchical clustering of genes, then models the outcome variable as a sum of the average expression profiles of chosen clusters and their products. It can be applied to many different kinds of outcome measures such as censored survival times, or a response falling in two or more classes (for example, cancer classes). The method can discover genes that have strong effects on their own, and genes that interact with other genes.

Results

We illustrate the method on data from a lymphoma study, and on a dataset containing samples from eight different cancers. It identified some potentially interesting gene clusters. In simulation studies we found that the procedure may require a large number of experimental samples to successfully discover interactions.

Conclusions

Tree harvesting is a potentially useful tool for exploration of gene expression data and identification of interesting clusters of genes worthy of further investigation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号