首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
It is widely accepted that PYP undergoes global structural changes during the formation of the biologically active intermediate PYP(M). High-angle solution x-ray scattering experiments were performed using PYP variants that lacked the N-terminal 6-, 15-, or 23-amino-acid residues (T6, T15, and T23, respectively) to clarify these structural changes. The scattering profile of the dark state of intact PYP exhibited two broad peaks in the high-angle region (0.3 A(-1) < Q < 0.8 A(-1)). The intensities and positions of the peaks were systematically changed as a result of the N-terminal truncations. These observations and the agreement between the observed scattering profiles and the calculated profiles based on the crystal structure confirm that the high-angle scattering profiles were caused by intramolecular interference and that the structure of the chromophore-binding domain was not affected by the N-terminal truncations. The profiles of the PYP(M) intermediates of the N-terminally truncated PYP variants were significantly different from the profiles of the dark states of these proteins, indicating that substantial conformational rearrangements occur within the chromophore-binding domain during the formation of PYP(M). By use of molecular fluctuation analysis, structural models of the chromophore-binding region of PYP(M) were constructed to reproduce the observed profile of T23. The structure obtained by averaging 51 potential models revealed the displacement of the loop connecting beta4 and beta5, and the deformation of the alpha4 helix. High-angle x-ray scattering with molecular fluctuation simulation allows us to derive the structural properties of the transient state of a protein in solution.  相似文献   

2.
Photoactive yellow protein (PYP) is a small bacterial photoreceptor that undergoes a light-activated reaction cycle. PYP is also the prototypical Per-Arnt-Sim (PAS) domain. PAS domains, found in diverse multi-domain proteins from bacteria to humans, mediate protein-protein interactions and function as sensors and signal transducers. Here, we investigate conformational and dynamic changes in solution in wild-type PYP upon formation of the long-lived putative signaling intermediate I2 with enhanced hydrogen/deuterium exchange mass spectrometry (DXMS). The DXMS results showed that the central beta-sheet remains stable but specific external protein segments become strongly deprotected. Light-induced disruption of the dark-state hydrogen bonding network in I2 produces increased flexibility and opening of PAS core helices alpha3 and alpha4, releases the beta4-beta5 hairpin, and propagates conformational changes to the central beta-sheet. Surprisingly, the first approximately 10 N-terminal residues, which are essential for fast dark-state recovery from I2, become more protected. By combining the DXMS results with our crystallographic structures, which reveal detailed changes near the chromophore but limited protein conformational change, we propose a mechanism for I2 state formation. This mechanism integrates the results from diverse biophysical studies of PYP, and links an allosteric T to R-state conformational transition to three pathways for signal propagation within the PYP fold. On the basis of the observed changes in PYP plus commonalities shared among PAS domain proteins, we further propose that PAS domains share this conformational mechanism, which explains the versatile signal transduction properties of the structurally conserved PYP/PAS module by framework-encoded allostery.  相似文献   

3.
Conformational changes in the light illuminated intermediate (pB) of photoactive yellow protein (PYP) were studied from a viewpoint of the diffusion coefficient (D) change of several N-truncated PYPs, which lacked the N-terminal 6, 15, or 23 amino acid residues (T6, T15, and T23, respectively). For intact PYP (i-PYP), D of pB (D(pB)) was approximately 11% lower than that (D(pG)) of the ground state (pG) species. The difference in D (D(pG) - D(pB)) decreased upon cleavage of the N-terminal region in the order of i-PYP>T6>T15>T23. This trend clearly showed that conformational change in the N-terminal group is the main reason for the slower diffusion of pB. This slower diffusion was interpreted in terms of the unfolding of the two alpha-helices in the N-terminal region, increasing the intermolecular interactions due to hydrogen bonding with water molecules. The increase in friction per one residue by the unfolding of the alpha-helix was estimated to be 0.3 x 10(-12) kg/s. The conformational change in the N-terminal group upon photoillumination is discussed.  相似文献   

4.
Light-activation of the PAS domain protein photoactive yellow protein (PYP) is believed to trigger a negative phototactic response in the phototropic bacterium Halorhodospira halophila. To investigate transient conformational changes of the PYP photocycle, we utilized the PYP mutant M100L that displays an increased lifetime of the putative signaling-state photointermediate PYP(M) by 3 orders of magnitude, as previously reported for the M100A mutant [Devanathan, S., Genick, U. K., Canestrelli, I. L., Meyer, T. E., Cusanovich, M. A., Getzoff, E. D., and Tollin, G. Biochemistry (1998) 37, 11563-11568]. The FTIR difference spectrum of PYP(M) and the ground state of M100L demonstrated extensive peptide-backbone structural changes as observed in the FTIR difference spectrum of the wild-type protein and PYP(M). The conformational change investigated by CD spectroscopy in the far-UV region showed reduction of the alpha-helical content by approximately 40%, indicating a considerable amount of changes in the secondary structure. The optical activity of the p-coumaric acid chromophore completely vanished upon PYP(M) in contrast to the dark state, indicating deformation of the binding pocket structure in PYP(M). The tertiary structural changes were further monitored by small-angle X-ray scattering measurements, which demonstrated a significant increase of the radius of gyration of the molecule by approximately 5% in PYP(M). These structural changes were reversed concomitantly with the chromophore anionization upon the dark state recovery. The observed changes of the quantities provided a more vivid view of the structural changes of the mutant PYP in going from PYP(M) to PYP(dark), which can be regarded as a process of folding of the secondary and the tertiary structures of the "PAS" domain structure, coupled with the p-coumaric acid chromophore deprotonation and isomerization.  相似文献   

5.
The spectroscopic properties of photoactive yellow protein (PYP) partially digested by chymotrypsin were studied. Chymotrypsin yielded three major products that were yellow but distinguishable by SDS-PAGE. They were readily separated by DEAE-Sepharose column chromatography. Protein sequencing and mass spectrometry demonstrated that chymotrypsin cleaved the N-terminal 6, 15, or 23 amino acids (T6, T15, and T23). The blue-shifts of the absorption maxima and the increases in the apparent pK(a) of the chromophores relative to those of intact PYP were less than 4 nm and 0.2, respectively. The absorption spectra of the near-UV intermediates produced from T6, T15, and T23 were identical to that of intact PYP, but with lifetimes that were 140, 2,300, and 4,500 times longer, respectively. These observations suggest that the recovery of the dark state of PYP from the near-UV intermediate is accelerated by the N-terminal region, and that this region acts as a regulatory factor for the photocycle of PYP.  相似文献   

6.
The light-induced global conformational change of photoactive yellow protein was directly observed by small-angle X-ray scattering (SAXS). The N-terminal 6, 15, or 23 amino acid residues were enzymatically truncated (T6, T15, or T23, respectively), and their near-UV intermediates were accumulated under continuous illumination for SAXS measurements. The Kratky plot demonstrated that illumination induced partial loss of globularity. The change in globularity was marked in T6 but very small in T15 and T23, suggesting that structural change in positions 7-15 mainly reduces the globularity. The radius of gyration (R(g)) estimated by Guinier plot was increased by 1.1 A for T6 and 0.7 A for T15 and T23 upon illumination. As T23 lacks most of the N-terminal loop, structural change in the main part composed of the PAS core, helical connector, and beta-scaffold caused an increase of R(g) by 0.7 A. The structural change of positions 7-15 caused an additional increase by 0.4 A. The decrease of R(g) upon truncation of positions 7-15 for dark state was 0.3 A, while that for the intermediate was 0.7 A, suggesting that this region moves outward on formation of the intermediate. These results indicate that a light-induced structural change of PYP takes place in the main part and N-terminal 15 amino acid residues. The former induces only dimensional increase, but the latter results in additional change in shape.  相似文献   

7.
To understand the effect of visible light on the stability of photoactive yellow protein (PYP), urea denaturation experiments were performed with PYP in the dark and with PYP(M) under continuous illumination. The urea concentrations at the midpoint of denaturation were 5.26 +/- 0.29 and 3.77 +/- 0.19 M for PYP and PYP(M), respectively, in 100 mM acetate buffer, and 5.26 +/- 0.24 and 4.11 +/- 0.12 M for PYP and PYP(M), respectively, in 100 mM citrate buffer. The free energy change upon denaturation (DeltaG(D)(H2O)), obtained from the denaturation curve, was 11.0 +/- 0.4 and 7.6 +/- 0.2 kcal/mol for PYP and PYP(M), respectively, in acetate buffer, and 11.5 +/- 0.3 and 7.8 +/- 0.1 kcal/mol for PYP and PYP(M), respectively, in citrate buffer. Even though the DeltaG(D)(H2O) value for PYP(M) is almost identical in the two buffer systems, the urea concentration at the midpoint of denaturation is lower in acetate buffer than in citrate buffer. Although their CD spectra indicate that the protein conformations of the denatured states of PYP and PYP(M) are indistinguishable, the configurations of the chromophores in their denatured structures are not necessarily identical. Both denatured states are interconvertible through PYP and PYP(M). Therefore, the free energy difference between PYP and PYP(M) is 3.4-3.7 kcal/mol for the protein moiety, plus the additional contribution from the difference in configuration of the chromophore.  相似文献   

8.
Prion diseases are associated with conformational change in the copper-binding protein PrP. The copper-binding sites in PrP are located in the N-terminal region of the molecule and comprise a series of tandem repeats of the sequence PHGGGWGQ together with two histidines at residues 96 and 111 (human PrP numbering). The co-ordination of copper ions within the non-octapeptide repeat metal ion-binding site involves Met109 (human numbering, which corresponds with Met112 in ovine PrP) and the binding of copper to this site leads to an increase in beta-sheet formation in PrP. Here we have investigated the influence of the M112T polymorphism on copper-induced structural changes in ovine recombinant PrP. M112ARQ and T112ARQ ovine PrP show similar secondary structure although M112ARQ appears more thermostable than T112ARQ. Following treatment with copper, M112ARQ showed a greater increase in beta-sheet content than did T112ARQ when measured by CD spectroscopy and by ELISA using anti-PrP monoclonal antibodies. These biochemical and biophysical differences between M112ARQ and T112ARQ correlate with similar differences seen between allelic variants of ovine PrP associated with susceptibility and resistance to classical scrapie. These observations suggest that T112ARQ may provide a measure of resistance to classical scrapie pathogenesis compared to M112ARQ.  相似文献   

9.
The solution structure of the N-terminal domain of the actin-severing protein villin has been determined by multidimensional heteronuclear resonance spectroscopy. Villin is a member of a family of actin-severing proteins that regulate the organization of actin in the eukaryotic cytoskeleton. Members of this family are built from 3 or 6 homologous repeats of a structural domain of approximately 130 amino acids that is unrelated to any previously known structure. The N-terminal domain of villin (14T) contains a central beta-sheet with 4 antiparallel strands and a fifth parallel strand at one edge. This sheet is sandwiched between 2 helices on one side and a 2-stranded parallel beta-sheet with another helix on the other side. The strongly conserved sequence characteristic of the protein family corresponds to internal hydrophobic residues. Calcium titration experiments suggest that there are 2 binding sites for Ca2+, a stronger site near the N-terminal end of the longest helix, with a Kd of 1.8 +/- 0.4 mM, and a weaker site near the C-terminal end of the same helix, with a Kd of 11 +/- 2 mM. Mutational and biochemical studies of this domain in several members of the family suggest that the actin monomer binding site is near the parallel strand at the edge of the central beta-sheet.  相似文献   

10.
A template-assisted conformational change of the cellular prion protein (PrP(C)) from a predominantly helical structure to an amyloid-type structure with a higher proportion of beta-sheet is thought to be the causative factor in prion diseases. Since flexibility of the polypeptide is likely to contribute to the ability of PrP(C) to undergo the conformational change that leads to the infective state, we have undertaken a comprehensive examination of the dynamics of two recombinant Syrian hamster PrP fragments, PrP(29-231) and PrP(90-231), using (15)N NMR relaxation measurements. The molecular motions of these PrP fragments have been studied in solution using (15)N longitudinal (T(1)) and transverse relaxation (T(2)) measurements as well as [(1)H]-(15)N nuclear Overhauser effects (NOE). These data have been analyzed using both reduced spectral density mapping and the Lipari-Szabo model free formalism. The relaxation properties of the common regions of PrP(29-231) and PrP(90-231) are very similar; both have a relatively inflexible globular domain (residues 128-227) with a highly flexible and largely unstructured N-terminal domain. Residues 29-89 of PrP(29-231), which include the copper-binding octarepeat sequences, are also highly flexible. Analysis of the spectral densities at each residue indicates that even within the structured core of PrP(C), a markedly diverse range of motions is observed, consistent with the inherent plasticity of the protein. The central portions of helices B and C form a relatively rigid core, which is stabilized by the presence of an interhelix disulfide bond. Of the remainder of the globular domain, the parts that are not in direct contact with the rigid region, including helix A, are more flexible. Most significantly, slow conformational fluctuations on a millisecond to microsecond time scale are observed for the small beta-sheet. These results are consistent with the hypothesis that the infectious, scrapie form of the protein PrP(Sc) could contain a helical core consisting of helices B and C, similar in structure to the cellular form PrP(C). Our results indicate that residues 90-140, which are required for prion infectivity, are relatively flexible in PrP(C), consistent with a lowered thermodynamic barrier to a template-assisted conformational change to the infectious beta-sheet-rich scrapie isoform.  相似文献   

11.
Botulinum neurotoxins (BoNTs) undergo low pH-triggered membrane insertion, resulting in the translocation of their light (catalytic) chains into the cytoplasm. The T (translocation) domain of the BoNT heavy chain is believed to carry out translocation. Here, the behavior of isolated T domain from BoNT type A has been characterized, both in solution and when associated with model membranes. When BoNT T domain prepared in the detergent dodecylmaltoside was diluted into aqueous solution, it exhibited a low pH-dependent conformational change below pH 6. At low pH the T domain associated with, and formed pores within, model membrane vesicles composed of 30 mol% dioleoylphosphatidylglycerol/70 mol% dioleoylphosphatidylcholine. Although T domain interacted with vesicles at low (50 mM) and high (400 mM) NaCl concentrations, the interaction required much less lipid at low salt. However, even at high lipid concentrations pore formation was much more pronounced at low NaCl concentrations than at high NaCl concentration. Increasing salt concentration after insertion in the presence of 50 mM NaCl did not decrease pore formation. A similar effect of NaCl concentration upon pore formation was observed in vesicles composed solely of dioleoylphosphatidylcholine, showing that the effect of NaCl did not solely involve modulation of electrostatic interactions between protein and anionic lipids. These results indicate that some feature of membrane-bound T domain tertiary structure critical for pore formation is highly dependent upon salt concentration.  相似文献   

12.
We studied the effects of natural and synthetic polyamines on the conformation of an oligodeoxyribonucleotide (ODN1) harboring the estrogen response element (ERE) by circular dichroism (CD) spectroscopy and polyacrylamide gel electrophoresis. Putrescine and spermidine had no marked effect on the CD spectrum of ODN1. In contrast, spermine provoked and stabilized two characteristic changes in the CD spectrum. The first change was indicated by an increase in the intensity of the CD band at 280 nm at 0.5 mM spermine in Tris-HCl buffer containing 50 mM NaCl. This change appears to be related to changes in base tilt and conformational alterations similar to A-DNA. At 1-2 mM spermine, the CD spectrum was characterized by a loss of positive bands at 220 and 270 nm. This change might have contributions from polyamine-induced condensation/aggregation of DNA. Spectral measurements were also conducted in Tris-HCl buffer containing 150 mM NaCl to minimize contributions from condensation and aggregation of ODN1. Under these conditions, CD spectral changes were retained by (ODN1), although the magnitude of the change was diminished. In contrast, a control oligdeoxyribonucleotide (ODN2) having similar base composition did not show any significant change in the CD spectrum in the presence of 150 mM NaCl and 2 mM spermine. The changes in the CD spectrum of ODN1 were highly sensitive to polyamine structure, as evidenced by experiments using spermine analogs with altered number of -CH2- groups separating the amino and imino groups. Electrophoretic mobility shift analysis further showed ODN1 stabilization by spermine and its analogs. These data demonstrate the ability of an ODN containing ERE to undergo conformational transitions in the presence of polyamines and suggest a possible mechanism for polyamine-mediated alterations in the interaction of estrogen receptor with ERE.  相似文献   

13.
The conformation and stability of Sendai virus fusion (F) protein were studied by circular dichroism spectroscopy, and the protein predictive models of Chou and Fasman and Robson and Suzuki were used to elucidate the secondary structure of Sendai virus F protein. The F protein conformation is predicted to contain 33% alpha-helix, 53% beta-sheet and 15% beta-turn by the Chou and Fasman model, and 30% alpha-helix, 55% beta-sheet, 9% beta-turn and 7% random coil by the Robson and Suzuki model. C.d. studies of F protein purified in the presence of the non-ionic detergent, n-octylglucoside, indicated the presence of 49% alpha-helix and 31% beta-sheet at pH 7.0, 54% alpha-helix and 28% beta-sheet at pH 9.0 and 50% alpha-helix and 23% beta-sheet at pH 5.4. A small change in conformation of the protein occurred when the pH was titrated from 7.0 to 5.4 and from 7.0 to 9.0 and a more pronounced conformational change occurred when the pH was changed from 9.0 to 5.4. The F protein in 0.2% n-octylglucoside was resistant to denaturation by 4 M guanidine hydrochloride, the reducing agent 20 mM mercaptoethanol, and to increases in temperature from 5 to 80 degrees C. Monoclonal anti-F protein antibody showed an increased binding to whole virus when the pH was changed from 7.0 to 9.0. The antibody binding was decreased when the pH was shifted from 9.0 to 5.4 Maximum haemolytic activity was observed with virus that was preincubated at pH 8.0.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Apolipophorin III (apoLp-III) is an exchangeable apolipoprotein whose structure is represented as a bundle of five amphipathic alpha-helices. In order to study the properties of the helical domains of apolipophorin III, we designed and obtained five single-tryptophan mutants of Locusta migratoria apoLp-III. The proteins were studied by UV absorption spectroscopy, time-resolved and steady-state fluorescence spectroscopy, and circular dichroism. Fluorescence anisotropy, near-UV CD and solute fluorescence quenching studies indicate that the Trp residues in helices 1 (N-terminal) and 5 (C-terminal) have the highest conformational flexibility. These two residues also showed the highest degree of hydration. Trp residues in helices 3 and 4 display the lowest mobility, as assessed by fluorescence anisotropy and near UV CD. The Trp residue in helix 2 is protected from the solvent but shows high mobility. As inferred from the properties of the Trp residues, helices 1 and 5 appear to have the highest conformational flexibility. Helix 2 has an intermediate mobility, whereas helices 3 and 4 appear to constitute a highly ordered domain. From the configuration of the helices in the tertiary structure of the protein, we estimated the relative strength of the five interhelical interactions of apoLp-III. These interactions can be ordered according to their apparent stabilizing strengths as: helix 3-helix 4 > helix 2-helix 3 > helix 4-helix 1 approximately helix 2-helix 5 > helix 1-helix 5. A new model for the conformational change that is expected to occur upon binding of the apolipoprotein to lipid is proposed. This model is significantly different from the currently accepted model (Breiter, D. R., Kanost, M. R., Benning, M. M., Wesemberg, G., Law, J. H., Wells, M. A., Rayment, I., and Holden, M. (1991) Biochemistry 30, 603-608). The model presented here predicts that the relaxation of the tertiary structure and the concomitant exposure of the hydrophobic core take place through the disruption of the weak interhelical contacts between helices 1 and 5. To some extent, the weakness of the helix 1-helix 5 interaction would be due to the parallel arrangement of these helices.  相似文献   

15.
16.
The secondary structure of the purified glucosamine-6-phosphate deaminase from Escherichia coli K12 was investigated by both circular dichroism (CD) spectroscopy and empirical prediction methods. The enzyme was obtained by allosteric-site affinity chromatography from an overproducing strain bearing a pUC18 plasmid carrying the structural gene for the enzyme. From CD analysis, 34% of alpha-helix, 9% of parallel beta-sheet, 11% of antiparallel beta-sheet, 15% turns and 35% of non-repetitive structures, were estimated. A joint prediction scheme, combining six prediction methods with defined rules using several physicochemical indices, gave the following values: alpha-helix, 37%; beta-sheet, 22%; turns, 18% and coil, 23%. The structure predicted showed also a considerable degree of alternacy of alpha and beta structures; 64% of helices are amphipathic and 90% of beta-sheets are hydrophobic. Overall, the data suggest that deaminase has as dominant motif, an alpha/beta structure.  相似文献   

17.
The kinetics of conformational change in the N-terminal region of photoactive yellow protein (PYP) was studied by the time-resolved diffusion measurement. The transient grating signal that represented the protein diffusion of the ground state and pB state depended on the observation time range. An analysis of the signal based on the time-dependent diffusion coefficient clearly showed that protein diffusion changed with a time constant of 170 μs, corresponding to the pR2 → pB′ transition. Since a previous diffusion study of N-terminal truncated PYPs had revealed that the change in the diffusion coefficient reflected the unfolding of the α-helices in the N-terminal region of PYP, the results indicate that this unfolding took place at the same rate as the pR2 → pB′ transition. This demonstrates that the response of the conformational change in the N-terminal region was quite fast, probably due to changes in a specific hydrogen-bonding network of this domain.  相似文献   

18.
We have used a model system composed of tandem repeats of Lytechinus variegatus 5 S rDNA (Simpson, R. T., Thoma, F., and Brubaker, J. M. (1985) Cell 42, 799-808) reconstituted into chromatin with chicken erythrocyte core histones to investigate the mechanism of chromatin assembly. Nucleosomes are assembled onto the DNA template by mixing histone octamers and DNA in 2 M NaCl followed by stepwise dialysis into very low ionic strength buffer over a 24-h period. By 1.0 M NaCl, a defined intermediate composed of arrays of H3.H4 tetramers has formed, as shown by analytical and preparative ultracentrifugation. Digestion with methidium propyl EDTA.Fe(II) indicates that these tetramers are spaced at 207 base pair intervals, i.e. one/repeat length of the DNA positioning sequence. In 0.8 M NaCl, some H2A.H2B has become associated with the H3.H4 tetramers and DNA. Surprisingly, under these conditions DNA is protected from methidium propyl EDTA.Fe(II) digestion almost as well as in the complete nucleosome, even though these structures are quite deficient in H2A.H2B. By 0.6 M NaCl, nucleosome assembly is complete, and the MPE digestion pattern is indistinguishable from that observed for oligonucleosomes at very low ionic strength. Below 0.6 M NaCl, the oligonucleosomes are involved in various salt-dependent conformational equilibria: at approximately 0.6 M, a 15% reduction in S20,w that mimics a conformational change observed previously with nucleosome core particles; at and above 0.1 M, folding into a more compact structure(s); at and above 0.1 M NaCl, a reaction involving varying amounts of dissociation of histone octamers from a small fraction of the DNA templates. In low ionic strength buffer (less than 1 mM NaCl), oligonucleosomes are present as fully loaded templates in the extended beads-on-a-string structure.  相似文献   

19.
The oil bodies of rapeseeds contain a triacylglycerol matrix surrounded by a monolayer of phospholipids embedded with abundant structural alkaline proteins termed oleosins and some other minor proteins. Oleosins are unusual proteins because they contain a 70-80-residue uninterrupted nonpolar domain flanked by relatively polar C- and N-terminal domains. Although the hydrophilic N-terminal domain had been studied, the structural feature of the central hydrophobic domain remains unclear due to its high hydrophobicity. In the present study, we reported the generation, purification, and characterization of a 9-kDa central hydrophobic domain from rapeseed oleosin (19 kDa). The 9-kDa central hydrophobic domain was produced by selectively degrading the N and C termini with enzymes and then purifying the digest by SDS-PAGE and electroelution. We have also reconstituted the central domain into liposomes and synthetic oil bodies to determine the secondary structure of the domain using CD and Fourier transform infrared (FTIR) spectroscopy. The spectra obtained from CD and FTIR were analyzed with reference to structural information of the N-terminal domain and the full-length rapeseed oleosin. Both CD and FTIR analysis revealed that 50-63% of the domain was composed of beta-sheet structure. Detailed analysis of the FTIR spectra indicated that 80% of the beta-sheet structure, present in the central domain, was arranged in parallel to the intermolecular beta-sheet structure. Therefore, interactions between adjacent oleosin proteins would give rise to a stable beta-sheet structure that would extend around the surface of the seed oil bodies stabilizing them in emulsion systems. The strategies used in our present study are significant in that it could be generally used to study difficult proteins with different independent structural domains, especially with long hydrophobic domains.  相似文献   

20.
The photocycle intermediates of photoactive yellow protein (PYP) were characterized by low-temperature Fourier transform infrared spectroscopy. The difference FTIR spectra of PYP(B), PYP(H), PYP(L), and PYP(M) minus PYP were measured under the irradiation condition determined by UV-visible spectroscopy. Although the chromophore bands of PYP(B) were weak, intense sharp bands complementary to the 1163-cm(-1) band of PYP, which show the chromophore is deprotonated, were observed at 1168-1169 cm(-1) for PYP(H) and PYP(L), indicating that the proton at Glu46 is not transferred before formation of PYP(M). Free trans-p-coumaric acid had a 1294-cm(-1) band, which was shifted to 1288 cm(-1) in the cis form. All the difference FTIR spectra obtained had the pair of bands corresponding to them, indicating that all the intermediates have the chromophore in the cis configuration. The characteristic vibrational modes at 1020-960 cm(-1) distinguished the intermediates. Because these modes were shifted by deuterium-labeling at the ethylene bond of the chromophore while labeling at the phenol part had no effect, they were attributed to the ethylene bond region. Hence, structural differences among the intermediates are present in this region. Bands at about 1730 cm(-1), which show that Glu46 is protonated, were observed for all intermediates except for PYP(M). Because the frequency of this mode was constant in PYP(B), PYP(H), and PYP(L), the environment of Glu46 is conserved in these intermediates. The photocycle of PYP would therefore proceed by changing the structure of the twisted ethylene bond of the chromophore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号