首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Haberman  Juta  Laugaste  Reet 《Hydrobiologia》2003,506(1-3):737-744
Hydrobiologia - Mean zooplankter weight (W Zp) and the ratio of zooplankton to phytoplankton biomass (BZp/BPhyt) reflect adequately the trophic state of a body of water; they decrease with...  相似文献   

2.
In shallow lakes with large littoral zones, epiphytes and submerged macrophytes can make an important contribution to the total annual primary production. We investigated the primary production (PP) of phytoplankton, submerged macrophytes, and their epiphytes, from June to August 2005, in two large shallow lakes. The production of pelagic and littoral phytoplankton and of the dominant submerged macrophytes in the littoral zone (Potamogeton perfoliatus in Lake Peipsi and P. perfoliatus and Myriopyllum spicatum in Lake Võrtsjärv) and of their epiphytes was measured using a modified 14C method. The total PP of the submerged macrophyte area was similar in both lakes: 12.4 g C m?2 day?1 in Peipsi and 12.0 g C m?2 day?1 in Võrtsjärv. In Peipsi, 84.2% of this production was accounted for by macrophytes, while the shares of phytoplankton and epiphytes were low (15.6 and 0.16%, respectively). In Võrtsjärv, macrophytes contributed 58%, phytoplankton 41.9% and epiphytes 0.1% of the PP in the submerged macrophyte area. Epiphyte production in both lakes was very low in comparison with that of phytoplankton and macrophytes: 0.01, 5.04, and 6.97 g C m?2 day?1, respectively, in Võrtsjärv, and 0.02, 1.93, and 10.5 g C m?2 day?1, respectively, in Peipsi. The PP of the littoral area contributed 10% of the total summer PP of Lake Peipsi sensu stricto and 35.5% of the total summer PP of Lake Võrtsjärv.  相似文献   

3.
In the 1990s a sharp decrease in nitrogen loading occurred in Estonian rivers, bringing about a reduction of the nitrogen-to-phosphorus ratio (N:P ratio) in the large shallow lakes, Peipsi (3,555 km2, mean depth 7.1 m) and Võrtsjärv (270 km2, 2.8 m). The average mass ratio of total nitrogen (TN) and total phosphorus (TP) in Võrtsjärv (45) was about twice as high as that in Peipsi (22). In Peipsi, the N2-fixing Gloeotrichia echinulata, Aphanizomenon flos-aquae and Anabaena species prevailed in the summer phytoplankton, while in Võrtsjärv the dominant cyanobacteria were Limnothrix planktonica, L. redekei and Planktolyngbya limnetica, which cannot fix N2; the main N2-fixing taxa Aphanizomenon skujae and Anabaena sp. seldom gained dominance. In May–October the critical TN:TP mass ratio, below which N2-fixing cyanobacteria (Nfix) achieved high biomasses, was ~40 in Võrtsjärv and ~30 in Peipsi. The percentages of both total cyanobacteria (CY) and Nfix (CY% and Nfix%) in Peipsi achieved their maximum values at an N:P mass ratio at or below 20 for both TN:TP and Nmin:SRP. In Võrtsjärv, the TN:TP supporting a high Nfix% was between 30 and 40 and the Nmin:SRP supporting this high percentage was in the same range as that in Peipsi (<20), though the maximum Nfix% values in Võrtsjärv (69%) were much lower than in Peipsi (96%). The Nmin:SRP ratio explained 77% of the variability in Nfix% in May–October. The temperature dependence of Nfix% approximated to the maximum function type, with an upper limiting value at a certain water temperature, and this was most distinct in May–October. The critical TN:TP ratios obtained from our study (roughly 30 for Peipsi and 40 for Võrtsjärv) are much higher than the Redfield N:P mass ratio routinely considered (7). Our results represent valuable guidelines for creating effective management strategies for large shallow lakes. They provide a basis for stressing the urgent need to decrease phosphorus loading and to keep the in-lake P concentration low, and not to implement nitrogen reduction measures without a simultaneous decrease of phosphorus concentration.  相似文献   

4.
We applied a multi-proxy palaeolimnological approach to provide insights into the natural variability and human-mediated trends of two interconnected temperate large shallow lakes, Peipsi and Võrtsjärv, during the twentieth century. The history of the lakes was assessed on the basis of age-related changes in the sediment main constituents (water, organic matter and carbonate), sub-fossil pigments, diatom assemblages and organic matter dissolved in pore water. The temporal changes in the palaeodata indicate an increase of the in-lake biological production in both lakes from about the 1960s, suggesting enhanced nutrient inputs. In subsequent decades, the gradual increase of autochthonous organic matter becomes more obvious, indicating progressive eutrophication of the lakes. Palaeolimnological indicators from the sediment record of Lake Peipsi indicate a slight recession of the lake’s eutrophication in the 1990s but not for Lake Võrtsjärv. The results of the study also suggest that after the lakes became eutrophied, the climatically induced water-level fluctuations ceased to be the main driver determining the abundance of phytoplankton. Responses of the lakes to human-induced impacts are better recorded in the sediments of Lake Peipsi than in those of Lake Võrtsjärv, which is shallower of the two and where the wave-induced resuspension of deposits markedly smooths or erases the signals of environmental changes. The results of the investigation expand the knowledge on how large shallow lakes respond to human-mediated and natural perturbations, including those in the lake catchment areas and the capability of the lakes to store the chronology and sequence of these changes.  相似文献   

5.
Understanding the dynamics of fine sediment transport across the upper intertidal zone is critical in managing the erosion and accretion of intertidal areas, and in managed realignment/estuarine habitat recreation strategies. This paper examines the transfer of sediments between salt marsh and mudflat environments in two contrasting macrotidal estuaries: the Seine (France) and the Medway (UK), using data collected during two joint field seasons undertaken by the Anglo-French RIMEW project (Rives-Manche Estuary Watch). High-resolution ADCP, Altimeter, OBS and ASM measurements from mudflat and marsh surface environments have been combined with sediment trap data to examine short-term sediment transport processes under spring tide and storm flow conditions. In addition, the longer-term accumulation of sediment in each salt marsh system has been examined via radiometric dating of sediment cores. In the Seine, rapid sediment accumulation and expansion of salt marsh areas, and subsequent loss of open intertidal mudflats, is a major problem, and the data collected here indicate a distinct net landward flux of sediments into the marsh interior. Suspended sediment fluxes are much higher than in the Medway estuary (averaging 0.09 g/m3/s), and vertical accumulation rates at the salt marsh/mudflat boundary exceed 3 cm/y. Suspended sediment data collected during storm surge conditions indicate that significant in-wash of fine sediments into the marsh interior can occur during (and following) these high-magnitude events. In contrast to the Seine, the Medway is undergoing erosion and general loss of salt marsh areas. Suspended sediment fluxes are of the order of 0.03 g/m3/s, and the marsh system here has much lower rates of vertical accretion (sediment accumulation rates are ca. 4 mm/y). Current velocity data for the Medway site indicate higher velocities on the ebb tide than occur on the flood tide, which may be sufficient to remobilise sediments deposited on the previous tide and so force net removal of material from the marsh.  相似文献   

6.
In the eutrophic Lake Võrtsjärv (Central Estonia, area 270 km2, mean depth 2.8 m) rotifers form ca. 90% of total abundance and 80% of biomass in winter zooplankton community. The winter rotifer assemblage was dominated by Polyarthra dolichoptera, both in abundance and in biomass. Synchaeta verrucosa and Keratella quadrata were the sub-dominants. Thus, winter rotifer community had low diversity and high dominance of a few species. This pattern probably refers to the period of extreme environmental conditions where the rotifer assemblage is composed of few well-adapted species, and the low diversity here was not indicating instability of community structure, but the scarcity of suitable niches. These community structure indices indicate that the winter rotifer assemblage of L. Võrtsjärv was very similar to autumn assemblage, but very different from the spring one. In winter, small raptors were the most important functional group. The second place is occupied by larger raptors. Marginal role of fine particle sedimentators, absence of suckers and high proportion of large raptors were contrasting features of the winter trophic structure in comparison with the other seasons. Changes have taken place in the winter rotifer assemblage in L. Võrtsjärv in 1990–2007. Against the background of diminishing rotifer abundance, the dominant species has become even more prevalent, and the diversity of the winter rotifer assemblage has decreased. Shifts in the community trophic structure were also observed.  相似文献   

7.
Haberman  Juta 《Hydrobiologia》1995,(1):313-317
Rotifers form 71% of the zooplankton of the strongly eutrophic (total N 2 g m–3, total P 53 mg m–3) Võrtsjärv (Estonia). Altogether 150 taxa of rotifers occur. Species characteristic of oligo- and mesotrophic waters have totally disappeared during the last 30 years, or are disappearing now. Species whose numbers and biomass reached 20% or more of total zooplankton were considered dominants. These were Anuraeopsis fissa, Keratella cochlearis, K. quadrata frenzeli, Polyarthra dolichoptera, P. luminosa, Synchaeta verrucosa and Trichocerca rousseleti. The contribution of dominant rotifers to total zooplankton and its biomass is as follows: S. verrucosa 25% and 39%, P.dolichoptera 34% and 25%, K. cochlearis 25% and 7%, K. quadrata frenzeli 9% and 7%, A. fissa 28% and 0.4%, T. rousseleti 20% and 0.6%, respectively.  相似文献   

8.
Kisand  Veljo  Nõges  Tiina  Zingel  Priit 《Hydrobiologia》1998,380(1-3):93-102
The diel dynamics of bacterio- and phytoplankton as main compartments in the pelagic foodweb were followed in order to assess the coupling between algal photosynthesis and bacterial growth during a diel cycle in Lake Võrstjärv, Estonia. Three diurnal studies were carried out, on July 12th–13th, 1994; on June 25th–26th, 1995 and on July 17th–18th, 1995 with a sampling interval of 3–4 hours. Diel variations in bacterial number, biomass and productivity, in phytoplankton primary production and extracellular release of photosynthetic products, in ciliate number and biomass were followed. Phytoplankton was dominated by filamentous species: Limnothrix redekei, Oscillatoria sp., Aulacoseira (Melosira) ambigua and Planktolyngbya limnetica. The abundance of bacteria ranged from 4.1 to 14.6 · 1012 cells m-2 (median 9.88). The production of heterotrophic bacteria varied from 0.6 to 11 mgC m-2 h-1 (median 3.65), the variation during diel cycle was high. Depth integrated values of particulate (PPpart) and extracellular primary production (PPdiss) ranged from 6 to 55 and from 17 to 90 mgC m- 2 h-1, respectively. About 50 ciliate taxa were identified among them more abundant were bacterivores, bacterivores- herbivores and omnivores. Biomass of bacterivorous ciliates (TCbact) varied from 8 to 427 mgC m-2. Bacterioplankton production constituted not more than 20% of total primary production (particulate + released), dynamics of bacterial production was related to the primary production, the correlation was negative with PPpart and positive with PPdiss. Different types of potential controlling factors of bacterioplankton (N and P nutrient control, bottom-up control by food and top-down control) are discussed.  相似文献   

9.
Nõges  Peeter  Järvet  Arvo  Tuvikene  Lea  Nõges  Tiina 《Hydrobiologia》1997,363(1-3):219-227
Hydrobiologia - The nutrient budget, phytoplankton primary productionand sedimentation rate were studied weekly in the large(270 km2) and shallow (mean depth 2.8 m)eutrophic Lake...  相似文献   

10.
The Medium Resolution Imaging Spectrometer (MERIS/Envisat) was launched in March 2002 for coastal zone monitoring. Preliminary data from MERIS show that its imagery of large lakes is superior to that of other common ocean colour sensors. The main objective of the present study is to evaluate the MERIS data on large European lakes, Vänern and Vättern in Sweden and Peipsi in Estonia/Russia. In these lakes, coloured dissolved organic matter (CDOM) can be a major contributor to the optical properties of the water. Another characteristic of the waters under investigation is the large temporal and spatial variability in the concentrations of chlorophyll (C Chl) and suspended sediments (C TSS). Potentially toxic cyanobacterial blooms occur in Lake Peipsi in late summer. We have compared the MERIS products from the latest reprocessing (finished in March 2006) with available in situ data. There is a reasonably good correlation between the MERIS algal_2 product and the measured C chl over all three lakes, but no correlation was found for other optically active substances. A significant portion of the pixels (up to 90%) are flagged as invalid results after atmospheric correction.  相似文献   

11.
Hydrological changes have the greatest impact on shallow lakes where they alter the water volume and lake depth noticeably. Dissolved organic carbon (DOC), which is markedly affected by hydrological factors, has an important role in many biogeochemical processes. The DOC load supplied to Lake Võrtsjärv, the second largest lake in Estonia, was studied on the scale of the subcatchments discharging into the lake. Daily discharges and biweekly or monthly DOC concentrations were measured close to the river outlets over the years 1990–2002. The stream flow data were separated into groundflow and surface flow by applying local minimum and recursive digital filtering methods. Constituent load estimation software, LOADEST, was used to estimate DOC concentrations and load. LOADEST performed well for three of the four rivers. The total estimated DOC load to Võrtsjärv from all four main rivers varied from 1,320 to 4,934 t year?1. The average annual load over the 13-year period was 3,265 t year?1 or 1.18 g C m?2 year?1. Baseflow separation analysis indicated that the DOC load originating from groundflow contributed 79% and 69% of the total load according to the digital filter and local minimum methods, respectively. The results of our study demonstrate the utility of linking the rating-curve method and baseflow separation to assess the allochthonous DOC load to Võrtsjärv both currently and under changing climatic conditions.  相似文献   

12.
This study is the first attempt at the European scale to make an inventory of ecosystem services (ESS) of a large lake. We analysed a set of ESS indicators against the annual mean values of environmental parameters for 2006–2013. According to principal component analysis, the trophic state- and hydrology-related factors explained about 70% of the environmental variability of the lake and showed strong relationships with some ESS. Among the provisioning ESS, the annual eel catch and the total fish catch were positively related to different eutrophication indicators while the catches of pike, bream, and burbot depended rather on hydrological factors. Reed harvesting efficiency was related to the lake’s water level. The indicators of regulating, maintenance, and cultural ESS showed very high variability in different years, the latter depending on socio-economic conditions rather than environmental factors. We discovered numerous trade-offs between ESS benefitting from higher trophic state or regulated water level of the lake and the goals of good ecological status of the lake. Our analysis showed a clear need for rules prioritizing life supporting regulatory services against other ESS.  相似文献   

13.
L. Vörtsjärv is a eutrophic lake in Central Estonia. The area of the lake is 270 km2, the average depth only 2.8 m. The biological productivity of the lake is rather low. Twelve to fifteen years ago the main fish were ruff and perch (80–90% of catch), while the numbers of valuable fish were small. At the same time the total catch of fish was relatively high — about 300 tons a year. Attempts were made to reduce the numbers of undesirable fish by intense trawl-catch but no marked results were achieved. Subsequently trawl-catch was ended, elvers were regularly introduced into the lake and protection of valuable fish was improved. At the present time the total catch of fish has decreased (184 tons in 1979), but pike-perch and eels are now the main game fish (50–60% of catch) and the value of the catch of fish has risen 2–3 times.  相似文献   

14.
We analysed long-term changes in phytoplankton composition in relation to hydrological, meteorological and nutrient loading data in the large (270 km2) shallow (mean depth 2.8 m) Lake Võrtsjärv. Nutrient loads to the lake were heavy in the 1970s and 1980s and decreased considerably thereafter. The average nutrient concentrations for 1985–2004 (1.6 mg l?1 of total nitrogen and 53 μg l?1 of total phosphorus) characterize the lake as a eutrophic water body. All four calculated taxonomic indices showed a unidirectional deterioration of the lake’s ecological status, despite reduced concentrations of nutrients. We focused our analysis on the PTSI index, which revealed a stepwise change between the years 1977 and 1979 that coincided with a large increase in water level, but also with a change of investigator. After correcting input data for possible investigator-induced differences, the step change remained because it was caused by major changes in the whole phytoplankton community. The previous dominant Planktolyngbya limnetica was replaced by two species of seasonally altering Limnothrix. Among phytoplankton functional groups, there was a decrease in all groups comprising small-sized phytoplankton species, such as X1, E, F, J, N and an increase in S1 and H1, both represented by filamentous cyanobacteria. Our results suggest a non-linear response of phytoplankton to changing nutrient loadings, and that the change observed between 1977 and 1979 was a regime shift triggered by water level change. High shade tolerance of the new dominants, and their ability to create shade, obviously stabilized the new status making it resistant to restoration efforts.  相似文献   

15.
Pikeperch is a major predator in the pelagic zone of eutrophic waters, such as the large north-temperate lowland lakes Võrtsjärv (Estonia) and Peipsi (Estonia/Russia). The size and structure of the pikeperch population is strongly influenced by their success at the juvenile stage. Therefore, we investigated the diet and prey selection of pikeperch fry caught in the ice-free period in lakes Peipsi and Võrtsjärv in 2007 and 2008. We analysed the stomach contents of 635 pikeperch from Lake Peipsi and 202 pikeperch from Lake Võrtsjärv, and compared our findings with similar data from the 1950s (Erm, About Biological and Morphological Differences of Pikeperch. Hydrobiological Researches II (in Estonian), 1961). Analysing 4–20 cm long fry, we studied differences in prey size, seasonal diet patterns and the ontogenetic diet shift. In both lakes, 0+ pikeperch feed mostly on large predatory zooplankters. However, in Lake Peipsi the stomach content weight and the average number of food items in stomach were higher, and the food spectrum was wider than in Lake Võrtsjärv. There was also a difference in the type of food that dominated fry’s stomach content (calculated by weight) in the two lakes. In Lake Peipsi, chironomids larvae, as well as zooplankters Daphnia galeata and Bythotrephes longimanus dominated, while in Lake Võrtsjärv zooplankters Mesocyclops leuckarti and Leptodora kindti. Seasonal analysis showed that cladocerans dominated in pikeperch fry stomach content in summer and at the beginning of September, but copepods were dominant in autumn and spring. In contrast to the studies carried out from 1952 to 1958 (Erm, About Biological and Morphological Differences of Pikeperch. Hydrobiological Researches II (in Estonian), 1961), the shift from planktivory to piscivory at the end of the first growing season was hardly ever observed during our investigation. We believe this is due to the lack of suitable prey fish as there was a collapse of the smelt, Osmerus eperlanus (L.), population in both lakes. The transition of pikeperch from planktivory to piscivory was delayed till the next summer.  相似文献   

16.
Major efforts have been made world-wide to improve the ecological quality of shallow lakes by reducing external nutrient loading. These have often resulted in lower in-lake total phosphorus (TP) and decreased chlorophyll a levels in surface water, reduced phytoplankton biomass and higher Secchi depth. Internal loading delays recovery, but in north temperate lakes a new equilibrium with respect to TP often is reached after <10–15 years. In comparison, the response time to reduced nitrogen (N) loading is typically <5 years. Also increased top-down control may be important. Fish biomass often declines, and the percentage of piscivores, the zooplankton:phytoplankton biomass ratio, the contribution of Daphnia to zooplankton biomass and the cladoceran size all tend to increase. This holds for both small and relatively large lakes, for example, the largest lake in Denmark (40 km2), shallow Lake Arresø, has responded relatively rapidly to a ca. 76% loading reduction arising from nutrient reduction and top-down control. Some lakes, however, have proven resistant to loading reductions. To accelerate recovery several physico-chemical and biological restoration methods have been developed for north temperate lakes and used with varying degrees of success. Biological measures, such as selective removal of planktivorous fish, stocking of piscivorous fish and implantation or protection of submerged plants, often are cheap versus traditional physico-chemical methods and are therefore attractive. However, their long-term effectiveness is uncertain. It is argued that additional measures beyond loading reduction are less cost-efficient and often not needed in very large lakes. Although fewer data are available on tropical lakes these seem to respond to external loading reductions, an example being Lake Paranoá, Brazil (38 km2). However, differences in biological interactions between cold temperate versus warm temperate-subtropical-tropical lakes make transfer of existing biological restoration methods to warm lakes difficult. Warm lakes often have prolonged growth seasons with a higher risk of long-lasting algal blooms and dense floating plant communities, smaller fish, higher aggregation of fish in vegetation (leading to loss of zooplankton refuge), more annual fish cohorts, more omnivorous feeding by fish and less specialist piscivory. The trophic structures of warm lakes vary markedly, depending on precipitation, continental or coastal regions locations, lake age and temperature. Unfortunately, little is known about trophic dynamics and the role of fish in warm lakes. Since many warm lakes suffer from eutrophication, new insights are needed into trophic interactions and potential lake restoration methods, especially since eutrophication is expected to increase in the future owing to economic development and global warming.  相似文献   

17.
The effect of decreasing aragonite saturation state (ΩArag) of seawater (elevated pCO2) on calcification rates of Acropora muricata was studied using nubbins prepared from parent colonies located at two sites of La Saline reef (La Réunion Island, western Indian Ocean): a back-reef site (BR) affected by nutrient-enriched groundwater discharge (mainly nitrate), and a reef flat site (RF) with low terrigenous inputs. Protein and chlorophyll a content of the nubbins, as well as zooxanthellae abundance, were lower at RF than BR. Nubbins were incubated at ~27°C over 2 h under sunlight, in filtered seawater manipulated to get differing initial pCO2 (1,440–340 μatm), ΩArag (1.4–4.0), and dissolved inorganic carbon (DIC) concentrations (2,100–1,850 μmol kg−1). Increasing DIC concentrations at constant total alkalinity (AT) resulted in a decrease in ΩArag and an increase in pCO2. AT at the beginning of the incubations was kept at a natural level of 2,193 ± 6 μmol kg−1 (mean ± SD). Net photosynthesis (NP) and calcification were calculated from changes in pH and AT during the incubations. Calcification decrease in response to doubling pCO2 relative to preindustrial level was 22% for RF nubbins. When normalized to surface area of the nubbins, (1) NP and calcification were higher at BR than RF, (2) NP increased in high pCO2 treatments at BR compared to low pCO2 treatments, and (3) calcification was not related to ΩArag at BR. When normalized to NP, calcification was linearly related to ΩArag at both sites, and the slopes of the relationships were not significantly different. The increase in NP at BR in the high pCO2 treatments may have increased calcification and thus masked the negative effect of low ΩArag on calcification. Removing the effect of NP variations at BR showed that calcification declined in a similar manner with decreased ΩArag (increased pCO2) whatever the nutrient loading.  相似文献   

18.
1. In view of the paucity of data on the response of warm shallow lakes to reductions in nutrient loading, this paper presents a long‐term limnological data set to document changes in the food‐web of a shallow Mediterranean lake (Lake Albufera, Valencia, Spain) that has experienced reductions in phosphorus (P) (77%) and nitrogen (N) (24%) loading following sewage diversion. 2. Nine years after sewage diversion, P concentration in the lake was reduced by 30% but remained high (TP = 0.34 mg L?1), although the mean water retention time in the lake was only 0.1 years. Nitrate concentrations did not significantly change, probably because the lake continued to receive untreated effluents from ricefields. 3. Chlorophyll a concentration was reduced by half (annual mean of 180 μg L?1). Cyanobacteria abundance remained high but its composition changed towards smaller species, both filamentous and chroococcal forms. 4. Cladocera abundance increased and reached peaks twice a year (December to March and July to September). After nutrient reduction, short‐term clear‐water phases (up to 5 weeks) occurred during February to March in several years, concomitant with annual flushing of the lake and lower fish densities. The abundance of Cladocera in winter contrasted with the spring peaks observed in northern restored shallow lakes. The zooplankton to phytoplankton biomass ratio remained lower than in northern temperate shallow lakes, probably because of fish predation on zooplankton. 5. Improvement of the water quality of Lake Albufera remained insufficient to counteract littoral reed regression or improve underwater light allowing submerged plants re‐colonise the lake. 6. Sewage diversion from Lake Albufera impacted the food web through the plankton, but higher trophic levels, such as fish and waterfowl, were affected to a lesser degree. Although the fish species present in the lake are mainly omnivorous, long‐term data on commercial fish captures indicated that fish communities changed in response to nutrient level and trophic structure as has been observed in restored shallow lakes at northern latitudes. 7. Phosphorus concentrations produced similar phytoplankton biomass in Lake Albufera as in more northern shallow lakes with abundant planktivorous fish and small zooplankton. However, in Lake Albufera, high average concentrations were maintained throughout the year. Overall, results suggest that nutrient control may be a greater priority in eutrophicated warm shallow lakes than in similar lakes at higher latitudes.  相似文献   

19.
Our study aimed to analyze the effects of chronic nutrient loading on the capacity of headwater streams to retain phosphorus and ammonium pulses of different duration. For this purpose, we selected nine headwater streams located across a gradient of increasing agricultural land use and eutrophication. In each stream, we performed sequential plateau additions with increasing nutrient concentrations in summer 2015 and instantaneous slug additions in summer 2016 under similar hydrological conditions. We modelled kinetic uptake curves from the slug additions via the Tracer Additions for Spiraling Curve Characterization method and calculated ambient uptake parameters. Ambient uptake rates generally increased (1.4–20.8 µg m?2 s?1 for NH4–N and 0.3–10.3 µg m?2 s?1 for SRP, respectively), while ambient uptake velocities decreased from oligotrophic to polytrophic streams (1.8–14.0 mm min?1 for NH4–N and 1.6–9.9 mm min?1 for SRP, respectively). However, correlations between ambient uptake parameters and background concentrations were weak. Concentration-dependent uptake rates followed either a linear or a Michaelis–Menten saturation model, regardless of the degree of nutrient loading. Uptake rate curves showed counter-clockwise hysteresis in oligotrophic streams and clockwise hysteresis in streams of higher trophic states, indicating a reduced significance of hyporheic uptake with increasing nutrient loading. Comparisons of slug and plateau additions revealed that oligotrophic streams were most efficient in uptake during short nutrient pulses, while eutrophic streams profited from longer pulse duration. The results indicate that nutrient uptake is increasingly transport-controlled in polluted streams where increased biofilm thickness and clogging of sediments restrict nutrient transport to reactive sites.  相似文献   

20.
Redox potential is a significant factor in aquatic systems to regulate the availability of nutrients and some metals. To assess the driving variables regulating redox potential, background parameters (dissolved oxygen, pH, temperature, chlorophyll-a, soluble reactive and total phosphorus content of water, coverage and height of submerged macrophytes) and redox potential profiles around the sediment–water interface (SWI) were measured in simulated shallow lake ecosystems. There were two nutrient regimes (enriched and non-enriched) and three temperature scenarios (unheated; +3.5°C; +5°C) installed in the experimental setups, which were constructed to study the effects of global climate change. Temperature did not have any detectable effect on redox potentials, and we presume that nutrient addition had only indirect positive effects through triggering phytoplankton dominance which causes macrophyte absence. When submerged macrophytes were present in high density (80–100% coverage), redox potentials at the SWI varied between 60–215 mV and the mean redox potential was 133 ± 34 mV (mean ± 1 SD). In contrast to this, when phytoplankton dominance was coupled to low macrophyte density (0–20% coverage), the range of redox potentials at the SWI was 160–290 mV and the mean redox potential was 218 ± 34 mV. The results revealed the primary importance of submersed macrophytes; macrophyte coverage determined alone the redox potential of the sediment–water interface by 81%. This study suggests that possible positive effects of macrophytes on redox potential can be suppressed by their negative effects in case of 80–100% coverage and total inhabitation of the water column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号