首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Early embryonic lethality of H ferritin gene deletion in mice   总被引:17,自引:0,他引:17  
Ferritin molecules play an important role in the control of intracellular iron distribution and in the constitution of long term iron stores. In vitro studies on recombinant ferritin subunits have shown that the ferroxidase activity associated with the H subunit is necessary for iron uptake by the ferritin molecule, whereas the L subunit facilitates iron core formation inside the protein shell. However, plant and bacterial ferritins have only a single type of subunit which probably fulfills both functions. To assess the biological significance of the ferroxidase activity associated with the H subunit, we disrupted the H ferritin gene (Fth) in mice by homologous recombination. Fth(+/-) mice are healthy, fertile, and do not differ significantly from their control littermates. However, Fth(-/-) embryos die between 3.5 and 9.5 days of development, suggesting that there is no functional redundancy between the two ferritin subunits and that, in the absence of H subunits, L ferritin homopolymers are not able to maintain iron in a bioavailable and nontoxic form. The pattern of expression of the wild type Fth gene in 9.5-day embryos is suggestive of an important function of the H ferritin gene in the heart.  相似文献   

3.
J Forejt  S Gregorová 《Cell》1992,70(3):443-450
The Thp deletion on mouse chromosome 17 is lethal when inherited from the mother, because it deletes the T-associated maternal effect (Tme) locus, the paternal copy of which is inactivated by genomic imprinting. We have found a paternally nonimprinted Tme variant in crosses of Thp females with Mus m. musculus males. The data are consistent with the existence of a single Tme-unlinked gene, Imprintor-1 (Imp-1), with two alleles, one of which only causes imprinting at the Tme locus. Imp-1 is unlinked to the gene for cation-dependent Man-6-P receptor and acts prezygotically. Although Tme and Igf2r were thought to be identical, they show different patterns of imprinting in interspecies hybrids. The apparent nonequivalence of the Igf2r gene and Tme results in occurrence of viable mice lacking an active Igf2r gene. These mice are bigger at birth than their normal littermates, in accord with the proposed function of the IGF-II/Man-6-P receptor.  相似文献   

4.
Many human diseases result from the influence of the nutritional environment on gene expression. The environment interacts with the genome by altering the epigenome, including covalent modification of nucleosomal histones. Here, we report a novel and dramatic influence of diet on the phenotype and survival of mice in which histone deacetylase 3 (Hdac3) is deleted postnatally in heart and skeletal muscle. Although embryonic deletion of myocardial Hdac3 causes major cardiomyopathy that reduces survival, we found that excision of Hdac3 in heart and muscle later in development leads to a much milder phenotype and does not reduce survival when mice are fed normal chow. Remarkably, upon switching to a high fat diet, the mice begin to die within weeks and display signs of severe hypertrophic cardiomyopathy and heart failure. Down-regulation of myocardial mitochondrial bioenergetic genes, specifically those involved in lipid metabolism, precedes the full development of cardiomyopathy, suggesting that HDAC3 is important in maintaining proper mitochondrial function. These data suggest that loss of the epigenomic modifier HDAC3 causes dietary lethality by compromising the ability of cardiac mitochondria to respond to changes of nutritional environment. In addition, this study provides a mouse model for diet-inducible heart failure.  相似文献   

5.
We report on a study of the cytogenetic and hepatotoxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Mice of the C57B1/6J (with high-affinity TCDD receptor) or DBA/2J (with low-affinity TCDD receptor) strains were given single intraperitoneal injections of 50, 100 or 150 micrograms of TCDD/kg body weight. At various times (8-48 h) after injection, we examined bone marrow cells for cytogenetic effects by performing structural aberration, sister-chromatid exchange, and micronucleus tests. 1 month after exposure, liver sections were studied for hepatotoxic effects. We found no evidence of chromosome damage by TCDD given in doses that cause liver damage in both strains of mice.  相似文献   

6.
M B Davidson  G Organ 《Peptides》1982,3(5):721-723
We sought to confirm the observation that 500 microU of insulin injected into the carotid artery of rats lowers plasma glucose by approximately 20 mg/dl within 2 minutes. In our hands, glucose concentrations fell gradually by approximately 20-25 mg/dl over a 45-60 minute period after insertion of a carotid artery cannula. This occurred whether 500 microU of insulin and/or anti-insulin serum or saline were injected toward the heart. There was no change in glucose concentrations following injection of 500 microU of insulin toward the head 45 minutes after insertion of the cannula. Thus, the hypoglycemic response to small amounts of insulin administered to the head via the carotid artery must be very sensitive to factors that are currently difficult to recognize.  相似文献   

7.
K W Marek  I K Vijay  J D Marth 《Glycobiology》1999,9(11):1263-1271
Formation of the dolichol oligosaccharide precursor is essential for the production of asparagine- (N-) linked oligosaccharides (N-glycans) in eukaryotic cells. The first step in precursor biosynthesis requires the enzyme UDP-GlcNAc: dolichol phosphate N-acetylglucosamine-1-phosphate transferase (GPT). Without GPT activity, subsequent steps necessary in constructing the oligosaccharide precursor cannot occur. Inhibition of this biosynthetic step using tunicamycin, a GlcNAc analog, produces a deficiency in N-glycosylation in cell lines and embryonic lethality during preimplantation development in vitro, suggesting that N-glycan formation is essential in early embryogenesis. In exploring structure-function relationships among N-glycans, and since tunicamycin has various reported biochemical activities; we have generated a germline deletion in the mouse GPT gene. GPT mutant embryos were analyzed and the phenotypes obtained were compared with previous studies using tunicamycin. We find that embryos homozygous for a deletion in the GPT gene complete preimplantation development and also implant in the uterine epithelium, but die shortly thereafter between days 4-5 postfertilization with cell degeneration apparent among both embryonic and extraembryonic cell types. Of cells derived from these early embryos, neither trophoblast nor embryonic endodermal lineages are able to survive in culture in vitro. These results indicate that GPT function is essential in early embryogenesis and suggest that N-glycosylation is needed for the viability of cells comprising the peri-implantation stage embryo.  相似文献   

8.
Yellow-bellied marmots, Marmota flaviventris, are obligate hibernators with a relatively short active season. Animals born earlier in the season have higher chances of fulfilling the energetic requirements to survive the long winter. Therefore, the onset of breeding should have a profound impact on juvenile survival. However, there are different ways to compensate for a late start. Late breeders might allocate more resources to late born offspring, making up for the bad start, or juveniles might show compensatory growth. They are not exclusive hypotheses and both can lead to juveniles entering hibernation with a similar body condition. We used data from a long term study in and around the Rocky Mountain Biological Laboratory in Colorado to test these two hypotheses. Animals are individually marked and trapped regularly. We compared mass at weaning, mass at the end of the season, growth rates and survival between animals born earlier and later in the season. We found no evidence of increased maternal input: late breeders had lighter offspring at weaning than early breeders, and late born juveniles did not increase their growth rates. Therefore, late born individuals ended the season with lower body mass, and were thus, less likely to survive the winter. In conclusion, life-history trajectories of juvenile yellow-bellied marmots were determined by maternal allocation, whereas post-weaning decisions did not modify their fate.  相似文献   

9.
The significance of cell wall invertase (cwINV) for plant defense was investigated by comparing wild type (wt) tobacco Nicotiana tabacum L. Samsun NN (SNN) with plants with RNA interference-mediated repression of cwINV (SNN::cwINV) during the interaction with the oomycetic phytopathogen Phytophthora nicotianae. We have previously shown that the transgenic plants developed normally under standard growth conditions, but exhibited weaker defense reactions in infected source leaves and were less tolerant to the pathogen. Here, we show that repression of cwINV was not accompanied by any compensatory activities of intracellular sucrose-cleaving enzymes such as vacuolar and alkaline/neutral invertases or sucrose synthase (SUSY), neither in uninfected controls nor during infection. In wt source leaves vacuolar invertase did not respond to infection, and the activity of alkaline/neutral invertases increased only slightly. SUSY however, was distinctly stimulated, in parallel to enhanced cwINV. In SNN::cwINV SUSY-activation was largely repressed upon infection. SUSY may serve to allocate sucrose into callose deposition and other carbohydrate-consuming defense reactions. Its activity, however, seems to be directly affected by cwINV and the related reflux of carbohydrates from the apoplast into the mesophyll cells.Key words: cell wall invertase, apoplastic invertase, alkaline invertase, neutral invertase, sucrose synthase, plant defense, Nicotiana tabacum, Phytophthora nicotianaePlant defense against pathogens is costly in terms of energy and carbohydrates.1,2 Sucrose (Suc) and its cleavage products glucose and fructose are central molecules for metabolism and sensing in higher plants (reviewed in refs. 3 and 4). Rapid mobilization of these carbohydrates seems to be an important factor determining the outcome of plant-pathogen interactions. In particular in source cells reprogramming of the carbon flow from Suc to hexoses may be a crucial process during defense.1,2There are two alternative routes of sucrolytic carbohydrate mobilization. One route is reversible and involves an uridine 5′-diphosphate (UDP)-dependent cleavage catalyzed by sucrose synthase (SUSY). Its activity is limited by the concentrations of Suc and UDP in the cytosol, as the affinity of the enzyme to its substrate is relatively low (Km for Suc 40–200 mM). The other route is the irreversible, hydrolytic cleavage by invertases (INVs), which exhibit high affinity to Suc (Km 7–15 mM).5Plants possess three different types of INV isoenzymes, which can be distinguished by their solubility, subcellular localization, pH-optima and isoelectric point. Usually, they are subdivided into cell wall (cwINV), vacuolar (vacINV), and alkaline/neutral (a/nINVs) INVs.cwINV, also referred to as extracellular or apoplastic INV, is characterized by a low pH-optimum (pH 3.5–5.0) and usually ionically bound to the cell wall. It is the key enzyme of the apoplastic phloem unloading pathway and plays a crucial role in the regulation of source/sink relations (reviewed in refs. 3, 68). A specific role during plant defense has been suggested, based on observations that cwINV is often induced during various plant-pathogen interactions, and the finding that overexpression of a yeast INV in the apoplast increases plant resistance.6,810 It was shown, that a rapid induction of cwINV is, indeed, one of the early defense-related reactions in resistant tobacco source leaves after infection with Phytophthora nicotianae (P. nicotianae).11 Finally, the whole infection area in wt leaves was covered with hypersensitive lesions, indicating that all cells had undergone hypersensitive cell death (Fig. 1A).1,11 When the activity of cwINV was repressed by an RNAi construct, defense-related processes were impaired, and the infection site exhibited only small spots of hypersensitive lesions. Finally, the pathogen was able to sporulate, indicating a reduced resistance of these transgenic plants (Fig. 1A).1Open in a separate windowFigure 1Defense-induced changes in the activity of intracellular sucrose-cleaving enzymes and their contribution to defense. (A) The repression of cwINV in source leaves of tobacco leads to impaired pathogen resistance and can not be compensated by other sucrose-cleaving enzymes. The intensity of defense reactions is amongst others indicated by the extent of hypersensitive lesions. (B and C) Absolute activity of vacuolar (B) and alkaline/neutral (C) INVs at the infection site (white symbols, control; black symbols, infection site). (D) Increase in SUSY activity at the infection site. All data points taken from noninfected control parts of the plants in each individual experiment and each point along the time scale of an experiment are set as 0%. At least three independent infections are averaged and their means are presented as percentage changes ± SE (circles, SNN; triangles, SNN::cwINV). Insets show the means of the absolute amount of activities (white symbols, control; black symbols, infection site). Material and methods according to Essmann, et al.1vacINV, also labeled as soluble acidic INV, is characterized by a pH optimum between pH 5.0–5.5. Among others it determines the level of Suc stored in the vacuole and generates hexose-based sugar signals (reviewed in refs. 3 and 12). Yet, no specific role of vacINV during pathogen response has been reported. Although vacINV and cwINV are glycoproteins with similar enzymatic and biochemical properties and share a high degree of overall sequence homology and two conserved amino acid motifs,4 the activity of vacINV in tobacco source leaves was not changed due to the repression of the cwINV (Fig. 1B).1 After infection with P. nicotianae the activity of vacINV in wt SNN did not respond under conditions where cwINV was stimulated.1 There was also no significant change in the transgenic SNN::cwINV (Fig. 1B). This suggests that during biotic stress, there is no crosstalk between the regulation of cwINV and vacINV.a/nINVs exhibit activity maxima between pH 6.5 and 8.0, are not glycosylated and thought to be exclusively localized in the cytosol. But recent reports also point to a subcellular location in mitochondria and chloroplasts.13,14 Only a few a/nINVs have been cloned and characterized, and not much is known about their physiological functions (reviewed in refs. 4, 14 and 15). Among other things they seem to be involved in osmotic or low-temperature stress response.14,15 During the interaction between tobacco and P. nicotianae the activity of a/nINVs rose on average 17% in the resistant wt SNN between 1 to 9 hours post infection (Fig. 1C). By contrast, in SNN::cwINV the a/nINVs activities remained unchanged in control leaves and even after infection (Fig. 1C). This suggests that the defense related stimulation in a/nINVs activities is rather a secondary phenomenon, possibly in response to the enhanced cwINV activity and the related carbohydrate availability in the cytosol.SUSY can be found as a soluble enzyme in the cytosol, bound to the inner side of the plasma membrane or the outer membrane of mitochondria, depending on the phosphorylation status. It channels hexoses into polysaccharide biosynthesis (i.e., starch, cellulose and callose) and respiration.12,16 There is also evidence that SUSY improves the metabolic performance at low internal oxygen levels17 but little is known about its role during plant defense. Callose formation is presumably one of the strongest sink reactions in plant cells.1,18 Defense-related SUSY activity may serve to allocate Suc into callose deposition and other carbohydrate-consuming defense reactions. In fact, in the resistant wt the activity of SUSY increased upon interaction with P. nicotianae in a biphasic manner (Fig. 1D). The time course is comparable to that of cwINV activity and correlates with callose deposition and enhanced respiration.1,11 However, repression of cwINV leads in general to a reduction of SUSY activity in source leaves of tobacco.1 After infection the activation of SUSY was also significantly impaired (Fig. 1D). At the same time, the early defense-related callose deposition in infected mesophyll cells of SNN::cwINV plants is substantially delayed.1 It is known that expression of SUSY isoforms is differentially controlled by sugars,12 and there is evidence that hexoses generated by the defense-induced cwINV activity deliver sugar signals to the infected cells.1 In this sense, the reduction of defense-related, cwINV-generated sugar signals could be responsible for the repression of SUSY activity in SNN::cwINV plants after infection with P. nicotianae.Only limited hexoses or hexose-based sugar signals could be generated by cytoplasmic Suc cleavage.12 The reduction of soluble carbohydrates for sugar signaling and also as fuel for metabolic pathways that support defense reactions could be responsible for the impaired resistance in SNN::cwINV plants (Fig. 1A).Obviously, neither intracellular INV isoforms, nor SUSY can compensate for the reduced carbohydrate availability due to cwINV repression during plant defense. The data also suggest that the activity of SUSY is affected by cwINV and related reflux of carbohydrates. It is known that SUSY activity can be controlled, e.g., by sugar-mediated phosphorylation12 and one may speculate that posttranslational modulation of the protein is affected by the defense-related carbohydrate status of the cell.  相似文献   

10.
11.
For species of conservation concern, knowledge of key life-history and demographic components, such as the number and sex ratio of breeding adults, is essential for accurate assessments of population viability. Species with temperature-dependent sex determination can produce heavily biased primary sex ratios, and there is concern that adult sex ratios may be similarly skewed or will become so as a result of climate warming. Prediction and mitigation of such impacts are difficult when life-history information is lacking. In marine turtles, owing to the difficultly in observing males at sea, the breeding interval of males is unknown. It has been suggested that male breeding periodicity may be shorter than that of females, which could help to compensate for generally female-biased sex ratios. Here we outline how the use of molecular-based paternity analysis has allowed us, for the first time, to assess the breeding interval of male marine turtles across multiple breeding seasons. In our study rookery of green turtles (Chelonia mydas), 97% of males were assigned offspring in only one breeding season within the 3-year study period, strongly suggesting that male breeding intervals are frequently longer than 1year at this site. Our results also reveal a sex ratio of breeding adults of at least 1.3 males to each female. This study illustrates the utility of molecular-based parentage inference using reconstruction of parental genotypes as a method for monitoring the number and sex ratio of breeders in species where direct observations or capture are difficult.  相似文献   

12.
Coxiella burnetii is a ubiquitous zoonotic bacterial pathogen and the cause of human acute Q fever, a disabling influenza-like illness. C. burnetii's former obligate intracellular nature significantly impeded the genetic characterization of putative virulence factors. However, recent host cell-free (axenic) growth of the organism has enabled development of shuttle vector, transposon, and inducible gene expression technologies, with targeted gene inactivation remaining an important challenge. In the present study, we describe two methods for generating targeted gene deletions in C. burnetii that exploit pUC/ColE1 ori-based suicide plasmids encoding sacB for positive selection of mutants. As proof of concept, C. burnetii dotA and dotB, encoding structural components of the type IVB secretion system (T4BSS), were selected for deletion. The first method exploited Cre-lox-mediated recombination. Two suicide plasmids carrying different antibiotic resistance markers and a loxP site were integrated into 5' and 3' flanking regions of dotA. Transformation of this strain with a third suicide plasmid encoding Cre recombinase resulted in the deletion of dotA under sucrose counterselection. The second method utilized a loop-in/loop-out strategy to delete dotA and dotB. A single suicide plasmid was first integrated into 5' or 3' target gene flanking regions. Resolution of the plasmid cointegrant by a second crossover event under sucrose counterselection resulted in gene deletion that was confirmed by PCR and Southern blot. ΔdotA and ΔdotB mutants failed to secrete T4BSS substrates and to productively infect host cells. The repertoire of C. burnetii genetic tools now allows ready fulfillment of molecular Koch's postulates for suspected virulence genes.  相似文献   

13.
14.
The effect of SkQ1 (a mitochondria-targeted antioxidant) on the level of cytochromes P450 in rat liver was studied. It was found that administration of therapeutic dose of SkQ1 with drinking water for 5 days (250 nmol/kg of body weight per day) did not alter the level of cytochromes P450. Under the same conditions, the standard dose of phenobarbital used for the induction of cytochromes P450 caused the 2.7-fold increase in the content of these cytochromes. We conclude that therapeutic doses of SkQ1 do not induce cytochromes P450 in rats.  相似文献   

15.
16.
Plant cells do not properly recognize animal gene polyadenylation signals   总被引:4,自引:0,他引:4  
Summary We have introduced chimeric genes containing polyadenylation signals from a human gene and two animal virus genes into tobacco cells. We see, in all three cases, inefficient and aberrant utilization of the foreign polyadenylation signals. We find that a chimeric gene carrying the polyadenylation site of the human growth hormone gene is polyadenylated at three sites in the vicinity of the site that is polyadenylated in human cells. A chimeric gene containing the polyadenylation site from the adenovirus 5 E1A gene is polyadenylated at a site 11 bases downstream from that reported in animal cells. A gene carrying the polyadenylation site from the SV40 early region is polyadenylated some 80 bases upstream from the site that is polyadenylated in animal cells. In all three cases, related mRNAs ending at flanking authentic plant polyadenylation sites can be detected, indicating that the foreign polyadenylation signals are inefficiently utilized in tobacco cells.  相似文献   

17.
In this report, we describe a 6 month old girl with a "pure" deletion 9 (pter----p22:) of paternal origin and very discrete facial dysmorphism as the only minimal phenotypic expression of the chromosomal imbalance. We hypothesize that the phenotypic expression in pure 9p deletion may depend from its parental origin.  相似文献   

18.
19.
1. 1.|α-MSH (1/2–13) was injected centrally and peripherally in rabbits exposed to cold.
2. 2.|Doses of the peptide previously shown to reduce fever had no effect on afebrile body temperature in the cold; larger doses did lower temperature.
3. 3.|We conclude that the antipyretic effect of small doses of α-MSH does not depend upon inhibition of central heat productioin and heat conservatioin pathways.
4. 4.|The antipyretic and hypthermic activities of α-MSH are independent and may represent different actions within the CNS.
Keywords: α-MSH; antipyretic/hypothermogenic; fever; central temperature controls; cold exposure; rabbits  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号