首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dominant family of interspersed repetitive DNA sequences in the human genome has been termed the Alu family. We have found that more than 75% of the lambda phage in a recombinant library representing an African green monkey genome hybridize with a human Alu sequence under stringent conditions. A group of clones selected from the monkey library with probes other than the Alu sequence were analyzed for the presence and distribution of Alu family sequences. The analyses confirm the abundance of Alu sequences and demonstrate that more than one repeat unit is present in some phages. In the clones studied, the Alu units are separated by an average of 8 kilobase pairs of unrelated sequences. The nucleotide sequence of one monkey Alu sequence is reported and shown to resemble the human Alu sequences closely. Hence, the sequence, dispersion pattern, and copy number of the Alu family members are very similar in the African green monkey and human genomes. Among the clones investigated were two that contain segments of the satellite DNA term alpha-component joined to non alpha-component DNA. The experiments indicate that in the monkey genome Alu sequences can occur close to regions of alpha-component DNA.  相似文献   

2.
3.
The human NRAMP1 gene located on Chromosome (Chr) region 2q35 is a candidate gene for increased risk of infection by several intracellular macrophage parasites, including M. tuberculosis and M. leprae. In search for a possible mutational hot spot, we have analyzed a 3.5-kb region 5′ to NRAMP1 that is highly enriched for DNA repeat sequences. The repeat sequences could be grouped into one Mer element and six Alu elements, representing five Alu subfamilies, that had integrated in the same DNA region during successive rounds of Alu retropositional activity. Comparative sequence analysis of the Alu cluster region in humans, chimpanzee (Pan paniscus), and gorilla (Gorilla gorilla) revealed only modest sequence variability and failed to detect any evidence for genomic instability of the highly repetitive DNA region. These results show that sequence length variants in the Alu-flanking regions as well as nucleotide substitutions are the most common genomic variations even in a region of extreme Alu-clustering. Moreover, the high degree of sequence conservation among three primate species argues against the Alu cluster being the site of frequent genomic rearrangements or other frequent genetic events that might influence NRAMP1 expression. Received: 20 September 1997 / Accepted: 23 January 1998  相似文献   

4.
We describe a new class of DNA length polymorphism that is due to a variation in the number of tandem repeats associated with Alu sequences (Alu sequence-related polymorphisms). The polymerase chain reaction was used to selectively amplify a (TTA)n repeat identified in the 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase gene from genomic DNA of 41 human subjects, and the size of the amplified products was determined by gel electrophoresis. Seven alleles were found that differed in size by integrals of three nucleotides. The allele frequencies ranged from 1.5% to 52%, and the overall heterozygosity index was 62%. The polymorphic TTA repeat was located adjacent to a repetitive sequence of the Alu family. A homology search of human genomic DNA sequences for the trinucleotide TTA (at least five members in length) revealed tandem repeats in six other genes. Three of the six (TTA)n repeats were located adjacent to Alu sequences, and two of the three (in the genes for beta-tubulin and interleukin-1 alpha) were found to be polymorphic in length. Tandemly repetitive sequences found in association with Alu sequences may be frequent sites of length polymorphism that can be used as genetic markers for gene mapping or linkage analysis.  相似文献   

5.
C A Fields  D L Grady  R K Moyzis 《Genomics》1992,13(2):431-436
Fifteen examples of the transposon-like human element (THE) LTR and thirteen examples of the MstII interspersed repeat are aligned to generate new consensus sequences for these human repetitive elements. The consensus sequences of these elements are very similar, indicating that they compose subfamilies of a single human interspersed repetitive sequence family. Members of this highly polymorphic repeat family have been mapped to at least 11 chromosomes. Seven examples of the THE internal sequence are also aligned to generate a new consensus sequence for this element. Estimates of the abundance of this repetitive sequence family, derived from both hybridization analysis and frequency of occurrence in GenBank, indicate that THE-LTR/MstII sequences are present every 100-3000 kb in human DNA. The widespread occurrence of members of this family makes them useful landmarks, like Alu, L1, and (GT)n repeats, for physical and genetic mapping of human DNA.  相似文献   

6.
The complete sequence of a functionally expressed human beta-tubulin gene (5 beta) is presented. The amino acid sequence encoded by this gene constitutes a distinct isotype, differing from a previously described human beta-tubulin sequence at 21 positions throughout the polypeptide chain. The beta-tubulin coding sequence in 5 beta is interrupted by three intervening sequences of 1014, 117 and 4826 nucleotides. The largest of these contains ten members of the Alu family of middle repetitive sequences. Together, these regions account for sixty percent of this intervening sequence. Two of the Alu elements are juxtaposed head to tail, and share the same flanking direct repeat. The ten Alu sequences are substantially divergent, both from each other and from an Alu consensus sequence, and several contain deletions of up to half the entire sequence.  相似文献   

7.
We have isolated, sequenced, and characterized a single-copy B creatine kinase pseudogene. The chromosomal assignment of this gene is 16p13 and a unique sequence probe from this locus detects EcoRI restriction fragment length polymorphisms of 7.8 and 5.4 kb. In 26 unrelated individuals, the frequencies for the 7.8- and 5.4-kb B creatine kinase pseudogene alleles were calculated to be 17.3 and 82.7%, respectively. The B creatine kinase pseudogene is interrupted by a 904-bp DNA insertion composed of three Alu repeat sequences in tandem flanked by an 18-bp direct repeat, derived from the pseudogene sequence. Nucleotide sequence analysis of the Alu elements suggests that the Alu sequences were incorporated into this locus in three separate integration events. Several complex clustered Alu repeat sequences without defined integration borders have been previously identified at different genomic loci. This is the first evidence that complex tandem Alu elements can integrate in an apparently serial manner in the human genome and supports the contention that Alu repeats integrate nonrandomly into the human genome.  相似文献   

8.
The nucleotide sequence of the beta globin gene cluster of the prosimian Galago crassicaudatus has been determined. A total sequence spanning 41,101 bp contains and links together previously published sequences of the five galago beta-like globin genes (5'-epsilon-gamma-psi eta-delta-beta-3'). A computer-aided search for middle interspersed repetitive sequences identified 10 LINE (L1) elements, including a 5' truncated repeat that is orthologous to the full-length L1 element found in the human epsilon-gamma intergenic region. SINE elements that were identified included one Alu type I repeat, four Alu type II repeats, and two methionine tRNA-derived Monomer (type III) elements. Alu type II and Monomer sequences are unique to the galago genome. Structural analyses of the cluster sequence reveals that it is relatively A+T rich (about 62%) and regions with high G+C content are associated primarily with globin coding regions. Comparative analyses with the beta globin cluster sequences of human, rabbit, and mouse reveal extensive sequence homologies in their genic regions, but only human, galago, and rabbit sequences share extensive intergenic sequence homologies. Divergence analyses of aligned intergenic and flanking sequences from orthologous human, galago, and rabbit sequences show a gradation in the rate of nucleotide sequence evolution along the cluster where sequences 5' of the epsilon globin gene region show the least sequence divergence and sequences just 5' of the beta globin gene region show the greatest sequence divergence.  相似文献   

9.
The distribution of interspersed repetitive DNA sequences in the human genome   总被引:25,自引:0,他引:25  
The distribution of interspersed repetitive DNA sequences in the human genome has been investigated, using a combination of biochemical, cytological, computational, and recombinant DNA approaches. "Low-resolution" biochemical experiments indicate that the general distribution of repetitive sequences in human DNA can be adequately described by models that assume a random spacing, with an average distance of 3 kb. A detailed "high-resolution" map of the repetitive sequence organization along 400 kb of cloned human DNA, including 150 kb of DNA fragments isolated for this study, is consistent with this general distribution pattern. However, a higher frequency of spacing distances greater than 9.5 kb was observed in this genomic DNA sample. While the overall repetitive sequence distribution is best described by models that assume a random distribution, an analysis of the distribution of Alu repetitive sequences appearing in the GenBank sequence database indicates that there are local domains with varying Alu placement densities. In situ hybridization to human metaphase chromosomes indicates that local density domains for Alu placement can be observed cytologically. Centric heterochromatin regions, in particular, are at least 50-fold underrepresented in Alu sequences. The observed distribution for repetitive sequences in human DNA is the expected result for sequences that transpose throughout the genome, with local regions of "preference" or "exclusion" for integration.  相似文献   

10.
11.
12.
Repetitive DNA sequences near three human beta-type globin genes.   总被引:7,自引:7,他引:0       下载免费PDF全文
Five repetitive DNA sequences, of average length 259 bp, have been identified in the intergenic regions which flank three human beta-tupe globin genes. A pair of inverted repeat sequences, separated by 919 bp, was found 1.0 kb to the 5' side of the epsiln-globin gene. Each contains a homologous Alu I site. Another repetitive sequence, with the same orientation as the inverted repeat sequence closest to the epsilon-globin gene, lies about 2.2 kb to the 5' side of the delta-globin gene. A pair of inverted repeat sequences, with the same relative orientations as the other pair and separated by about 800 bp, was found about 1.5 kb to the 3' side of the beta-globin gene.  相似文献   

13.
There are at least three immunoglobulin epsilon genes (C epsilon 1, C epsilon 2, and C epsilon 3) in the human genome. The nucleotide sequences of the expressed epsilon gene (C epsilon 1) and one (C epsilon 3) of the two epsilon pseudogenes were compared. The results show that the C epsilon 3 gene lacks the three intervening sequences entirely and has a 31-base A-rich sequence 16 bases 3' to the putative poly(A) addition signal, indicating that the C epsilon 3 gene is a processed gene. The C epsilon 3 gene sequence is homologous to the five separate DNA segments of the C epsilon 1 gene; namely, a segment in the 5'-flanking region (100 bases) and four exons, which are interrupted by a spacer region or intervening sequences. Long terminal repeat (LTR)-like sequences which contain TATAAA and AATAAA sequences as well as terminal inverted repeats are present in both 5'- and 3'-flanking regions. The 5' and 3' LTR-like sequences do not, however, constitute a direct repeat, unlike transposable elements of eukaryotes and retroviruses. The 3' LTR-like sequence is repetitive in the human genome, but is not homologous to the Alu family DNA. Models for the evolutionary origin of the processed gene flanked by the LTR-like sequences are discussed. The C epsilon 3 gene has a new open frame which codes potentially for an unknown protein of 292 amino acid residues.  相似文献   

14.
The regions around the human insulin gene have been studied by heteroduplex, hybridization and sequence analysis. These studies indicated that there is a region of heterogeneous length located approximately 700 bp before the 5' end of the gene; and that the 19 kb of cloned DNA which includes the 1430 bp insulin gene as well as 5650 bp before and 11,500 bp after the gene is single copy sequence except for 500 bp located 6000 bp from the 3' end of the gene. This 500 bp segment contains a member of the Alu family of dispersed middle repetitive sequences as well as another less highly repeated homopolymeric segment. The sequence of this region was determined. This Alu repeat is bordered by 19 bp direct repeats and also contains an 83 bp sequence which is present twice. The regions flanking the human and rat I insulin genes were compared by heteroduplex analysis to localize homologous sequences in the flanking regions which could be involved in the regulation of insulin biosynthesis. The homology between the two genes is restricted to the region encoding preproinsulin and a short region of approximately 60 bp flanking the 5' side of the genes.  相似文献   

15.
通过对重组质粒No.8-1的亚克隆,灰色链霉菌插入到大肠杆菌载体质粒中的序列已缩小到410bp,仍具有启动子功能。序列分析表明,启动子活性片段的G C碱基组成为50.5%。内含链霉菌启动子区域常有的正向重复序列;有1个Alul位点,1个Clal位点,2个Mbol位点,3个Nla Ⅲ位点,1个Pvu Ⅱ位点;具有类似于E.coli启动子的保守序列-10区和-35区,两者间隔18bp;在相应位置上分别有一段序列与E.coli的SD序列和在苄铅青链霉菌的SEP(Streptomyces-E.coil-type promoter)序列中存在的保守序列具有一定的相似性。  相似文献   

16.
Chromosome-specific subfamilies within human alphoid repetitive DNA   总被引:21,自引:0,他引:21  
Nucleotide sequence data of about 20 X 10(3) base-pairs of the human tandemly repeated alphoid DNA are presented. The DNA sequences were determined from 45 clones containing EcoRI fragments of alphoid DNA isolated from total genomic DNA. Thirty of the clones contained a complete 340 base-pair dimer unit of the repeat. The remaining clones contained alphoid DNA with fragment lengths of 311, 296, 232, 170 and 108 base-pairs. The sequences obtained were compared with an average alphoid DNA sequence determined by Wu & Manuelidis (1980). The divergences ranged from 0.6 to 24.6% nucleotide changes for the first monomer and from 0 to 17.8% for the second monomer of the repeat. On the basis of identical nucleotide changes at corresponding positions, the individual repeat units could be shown to belong to one of several distinct subfamilies. The number of nucleotide changes defining a subfamily generally constitutes the majority of nucleotide changes found in a member of that subfamily. From an evaluation of the proportion of the total amount of alphoid DNA, which is represented by the clones studied, it is estimated that the number of subfamilies of this repeat may be equal to or exceed the number of chromosomes. The expected presence of only one or a few distinct subfamilies on individual chromosomes is supported by the study, also presented, of the nucleotide sequence of 17 cloned fragments of alphoid repetitive DNA from chromosome 7. These chromosome-specific repeats all contain the characteristic pattern of 36 common nucleotide changes that defines one of the subfamilies described. A unique restriction endonuclease (NlaIII) cleavage site present in this subfamily may be useful as a genetic marker of this chromosome. A family member of the interspersed Alu repetitive DNA was also isolated and sequenced. This Alu repeat has been inserted into the human alphoid repetitive DNA, in the same way as the insertion of an Alu repeat into the African green monkey alphoid DNA.  相似文献   

17.
18.
The structures of the termini and their flanking regions of two human KpnI family members were investigated. The two differed in length, but the starting sequence at one terminal (defined as the 5' terminal) was found to be common to both members. The Alu family sequence was found in the 5' flanking regions. The KpnI family sequence started several base-pairs downstream from the 3' end of the Alu family sequence. In both cases, the Alu family sequence was not flanked by the direct repeat sequence common to the Alu family. These two members showed no sequence homology in 3' terminal regions. Interestingly, the Alu family plus the KpnI family unit was found to be flanked by a direct repeat sequence of several base-pair length. Based on these findings, relationship between the Alu family and KpnI family is discussed.  相似文献   

19.
Many genes are known to have nuclease-sensitive sites and/or control sequences in their 3' flanking regions, but for very few genes has this region been sequenced. Previously, we mapped specific, gene activity-dependent DNAase I- and MspI-sensitive sites at the 3' end of the human X-linked housekeeping gene phosphoglycerate kinase (PGK1). Sequence information presented here shows that the 3' nuclease-sensitive site maps precisely to an Alu sequence and near a "BKM" repeat. This is the first report of an Alu sequence that has alternative chromatin configurations depending on gene activity.  相似文献   

20.
The centromeric regions of human chromosomes contain long tracts of tandemly repeated DNA, of which the most extensively characterized is alpha satellite. In a screen for additional centromeric DNA sequences, four phage clones were obtained which contain alpha satellite as well as other sequences not usually found associated with tandemly repeated alpha satellite DNA, including L1 repetitive elements, an Alu element, and a novel AT-rich repeated sequence. The alpha satellite DNA contained within these clones does not demonstrate the higher-order repeat structure typical of tandemly repeated alpha satellite. Two of the clones contain inversions; instead of the usual head-to-tail arrangement of alpha satellite monomers, the direction of the monomers changes partway through each clone. The presence of both inversions was confirmed in human genomic DNA by polymerase chain reaction amplification of the inverted regions. One phage clone contains a junction between alpha satellite DNA and a novel low-copy repeated sequence. The junction between the two types of DNA is abrupt and the junction sequence is characterized by the presence of runs of A's and T's, yielding an overall base composition of 65% AT with local areas > 80% AT. The AT-rich sequence is found in multiple copies on chromosome 7 and homologous sequences are found in (peri)centromeric locations on other human chromosomes, including chromosomes 1, 2, and 16. As such, the AT-rich sequence adjacent to alpha satellite DNA provides a tool for the further study of the DNA from this region of the chromosome. The phage clones examined are located within the same 3.3-Mb SstII restriction fragment on chromosome 7 as the two previously described alpha satellite arrays, D7Z1 and D7Z2. These new clones demonstrate that centromeric repetitive DNA, at least on chromosome 7, may be more heterogeneous in composition and organization than had previously been thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号