首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have shown that foot-and-mouth disease virus (FMDV) infection mediated by the integrin alphavbeta6 takes place through clathrin-dependent endocytosis but not caveolae or other endocytic pathways that depend on lipid rafts. Inhibition of clathrin-dependent endocytosis by sucrose treatment or expression of a dominant-negative version of AP180 inhibited virus entry and infection. Similarly, inhibition of endosomal acidification inhibited an early step in infection. Blocking endosomal acidification did not interfere with surface expression of alphavbeta6, virus binding to the cells, uptake of the virus into endosomes, or cytoplasmic virus replication, suggesting that the low pH within endosomes is a prerequisite for delivery of viral RNA into the cytosol. Using immunofluorescence confocal microscopy, FMDV colocalized with alphavbeta6 at the cell surface but not with the B subunit of cholera toxin, a marker for lipid rafts. At 37 degrees C, virus was rapidly taken up into the cells and colocalized with markers for early and recycling endosomes but not with a marker for lysosomes, suggesting that infection occurs from within the early or recycling endosomal compartments. This conclusion was supported by the observation that FMDV infection is not inhibited by nocodazole, a reagent that inhibits vesicular trafficking between early and late endosomes (and hence trafficking to lysosomes). The integrin alphavbeta6 was also seen to accumulate in early and recycling endosomes on virus entry, suggesting that the integrin serves not only as an attachment receptor but also to deliver the virus to the acidic endosomes. These findings are all consistent with FMDV infection proceeding via clathrin-dependent endocytosis.  相似文献   

2.
Dengue virus (DENV) is an enveloped RNA virus that causes the most common arthropod-borne infection worldwide. The mechanism by which DENV infects the host cell remains unclear. In this work, we used live-cell imaging and single-virus tracking to investigate the cell entry, endocytic trafficking, and fusion behavior of DENV. Simultaneous tracking of DENV particles and various endocytic markers revealed that DENV enters cells exclusively via clathrin-mediated endocytosis. The virus particles move along the cell surface in a diffusive manner before being captured by a pre-existing clathrin-coated pit. Upon clathrin-mediated entry, DENV particles are transported to Rab5-positive endosomes, which subsequently mature into late endosomes through acquisition of Rab7 and loss of Rab5. Fusion of the viral membrane with the endosomal membrane was primarily detected in late endosomal compartments.  相似文献   

3.
Canine parvovirus (CPV) is a nonenveloped virus with a 5-kb single-stranded DNA genome. Lysosomotropic agents and low temperature are known to prevent CPV infection, indicating that the virus enters its host cells by endocytosis and requires an acidic intracellular compartment for penetration into the cytoplasm. After escape from the endocytotic vesicles, CPV is transported to the nucleus for replication. In the present study the intracellular entry pathway of the canine parvovirus in NLFK (Nordisk Laboratory feline kidney) cells was studied. After clustering in clathrin-coated pits and being taken up in coated vesicles, CPV colocalized with coendocytosed transferrin in endosomes resembling recycling endosomes. Later, CPV was found to enter, via late endosomes, a perinuclear vesicular compartment, where it colocalized with lysosomal markers. There was no indication of CPV entry into the trans-Golgi or the endoplasmic reticulum. Similar results were obtained both with full and with empty capsids. The data thus suggest that CPV or its DNA was released from the lysosomal compartment to the cytoplasm to be then transported to the nucleus. Electron microscopy analysis revealed endosomal vesicles containing CPV to be associated with microtubules. In the presence of nocodazole, a microtubule-disrupting drug, CPV entry was blocked and the virus was found in peripheral vesicles. Thus, some step(s) of the entry process were dependent on microtubules. Microinjection of antibodies to dynein caused CPV to remain in pericellular vesicles. This suggests an important role for the motor protein dynein in transporting vesicles containing CPV along the microtubule network.  相似文献   

4.
Reoviruses are double-stranded RNA viruses that infect the mammalian respiratory and gastrointestinal tract. Reovirus infection elicits production of type I interferons (IFNs), which trigger antiviral pathways through the induction of interferon-stimulated genes (ISGs). Although hundreds of ISGs have been identified, the functions of many of these genes are unknown. The interferon-inducible transmembrane (IFITM) proteins are one class of ISGs that restrict the cell entry of some enveloped viruses, including influenza A virus. One family member, IFITM3, localizes to late endosomes, where reoviruses undergo proteolytic disassembly; therefore, we sought to determine whether IFITM3 also restricts reovirus entry. IFITM3-expressing cell lines were less susceptible to infection by reovirus, as they exhibited significantly lower percentages of infected cells in comparison to control cells. Reovirus replication was also significantly reduced in IFITM3-expressing cells. Additionally, cells expressing an shRNA targeting IFITM3 exhibited a smaller decrease in infection after IFN treatment than the control cells, indicating that endogenous IFITM3 restricts reovirus infection. However, IFITM3 did not restrict entry of reovirus infectious subvirion particles (ISVPs), which do not require endosomal proteolysis, indicating that restriction occurs in the endocytic pathway. Proteolysis of outer capsid protein μ1 was delayed in IFITM3-expressing cells in comparison to control cells, suggesting that IFITM3 modulates the function of late endosomal compartments either by reducing the activity of endosomal proteases or delaying the proteolytic processing of virions. These data provide the first evidence that IFITM3 restricts infection by a nonenveloped virus and suggest that IFITM3 targets an increasing number of viruses through a shared requirement for endosomes during cell entry.  相似文献   

5.
Flaviviruses deliver their genome into the cell by fusing the viral lipid membrane to an endosomal membrane. The sequence and kinetics of the steps required for nucleocapsid delivery into the cytoplasm remain unclear. Here we dissect the cell entry pathway of virions and virus-like particles from two flaviviruses using single-particle tracking in live cells, a biochemical membrane fusion assay and virus infectivity assays. We show that the virus particles fuse with a small endosomal compartment in which the nucleocapsid remains trapped for several minutes. Endosomal maturation inhibitors inhibit infectivity but not membrane fusion. We propose a flavivirus cell entry mechanism in which the virus particles fuse preferentially with small endosomal carrier vesicles and depend on back-fusion of the vesicles with the late endosomal membrane to deliver the nucleocapsid into the cytoplasm. Virus entry modulates intracellular calcium release and phosphatidylinositol-3-phosphate kinase signaling. Moreover, the broadly cross-reactive therapeutic antibody scFv11 binds to virus-like particles and inhibits fusion.  相似文献   

6.
Adeno-associated virus/phage (AAVP) is a gene delivery vector constructed as a hybrid between adeno-associated virus and filamentous phage. Tumor targeting following systemic administration has previously been demonstrated in several in vivo cancer models, with tumor specificity achieved through display of an αv integrin-targeting ligand on the capsid. However, high titers of AAVP are required for transduction of large numbers of mammalian cells. This study is the first to investigate the mechanisms involved in entry and intracellular trafficking of AAVP. Using a combination of flow cytometry, confocal, and electron microscopy techniques, together with pharmacological agents, RNAi and dominant negative mutants, we have demonstrated that targeted AAVP endocytosis is both dynamin and clathrin-dependent. Following entry, the majority of AAVP particles are sequestered by the endosomal-lysosomal degradative pathway. Finally, we have demonstrated that disruption of this pathway leads to improved transgene expression by AAVP, thus demonstrating that escape from the late endosomes/lysosomes is a critical step for improving gene delivery by AAVP. These findings have important implications for the rational design of improved AAVP and RGD-targeted vectors.  相似文献   

7.
Virosomes are reconstituted viral envelopes which lack the genetic material but retain the cell entry and membrane fusion characteristics of the virus they are derived from. Thus, influenza virosomes are taken up by cells via receptor-mediated endocytosis, which directs the particles to the endosomal cell compartment. Subsequently, the virosomal membrane fuses with the endosomal membrane induced by the mildly acidic pH within the endosomes. This fusion process establishes continuity between the lumen of the virosome and the cell cytosol. Upon interaction of virosomes with antigen-presenting cells (APCs), protein antigens encapsulated within virosomes will be delivered to the cell cytosol, and thus, into the MHC class I presentation pathway. Indeed, virosome-mediated delivery of antigens in vivo results in efficient priming of a class I MHC-restricted cytotoxic T lymphocyte (CTL) response.  相似文献   

8.
Enveloped viruses often enter cells via endocytosis; however, specific endocytic trafficking pathway(s) for many viruses have not been determined. Here we demonstrate, through the use of dominant-negative Rab5 and Rab7, that influenza virus (Influenza A/WSN/33 (H1N1) and A/X-31 (H3N2)) requires both early and late endosomes for entry and subsequent infection in HeLa cells. Time-course experiments, monitoring viral ribonucleoprotein colocalization with endosomal markers, indicated that influenza exhibits a conventional endocytic uptake pattern – reaching early endosomes after approximately 10 min, and late endosomes after 40 min. Detection with conformation-specific hemagglutinin antibodies indicated that hemagglutinin did not reach a fusion-competent form until the virus had trafficked beyond early endosomes. We also examined two other enveloped viruses that are also pH-dependent for entry – Semliki Forest virus and vesicular stomatitis virus. In contrast to influenza virus, infection with both Semliki Forest virus and vesicular stomatitis virus was inhibited only by the expression of dominant negative Rab5 and not by dominant negative Rab7, indicating an independence of late endosome function for infection by these viruses. As a whole, these data provide a definitive characterization of influenza virus endocytic trafficking and show differential requirements for endocytic trafficking between pH-dependent enveloped viruses .  相似文献   

9.
Upon entry into mammalian cells, the intracellular pathogen Brucella abortus resides within a membrane-bound compartment, the Brucella -containing vacuole (BCV), the maturation of which is controlled by the bacterium to generate a replicative organelle derived from the endoplasmic reticulum (ER). Prior to reaching the ER, Brucella is believed to ensure its intracellular survival by inhibiting fusion of the intermediate BCV with late endosomes and lysosomes, although such BCVs are acidic and accumulate the lysosomal-associated membrane protein (LAMP-1). Here, we have further examined the nature of intermediate BCVs using confocal microscopy and live cell imaging. We show that BCVs rapidly acquire several late endocytic markers, including the guanosine triphosphatase Rab7 and its effector Rab-interacting lysosomal protein (RILP), and are accessible to fluid-phase markers either delivered to the whole endocytic pathway or preloaded to lysosomes, indicating that BCVs interact with late endosomes and lysosomes. Consistently, intermediate BCVs are acidic and display proteolytic activity up to 12 h post-infection. Expression of dominant-negative Rab7 or overexpression of RILP significantly impaired the ability of bacteria to convert their vacuole into an ER-derived organelle and replicate, indicating that BCV maturation requires interactions with functional late endosomal/lysosomal compartments. In cells expressing dominant-negative Rab7[T22N], BCVs remained acidic, yet displayed decreased fusion with lysosomes. Taken together, these results demonstrate that BCVs traffic along the endocytic pathway and fuse with lysosomes, and such fusion events are required for further maturation of BCVs into an ER-derived replicative organelle.  相似文献   

10.
ABSTRACT

Virosomes are reconstituted viral envelopes which lack the genetic material but retain the cell entry and membrane fusion characteristics of the virus they are derived from. Thus, influenza virosomes are taken up by cells via receptor-mediated endocytosis, which directs the particles to the endosomal cell compartment. Subsequently, the virosomal membrane fuses with the endosomal membrane induced by the mildly acidic pH within the endosomes. This fusion process establishes continuity between the lumen of the virosome and the cell cytosol. Upon interaction of virosomes with antigen-presenting cells (APCs), protein antigens encapsulated within virosomes will be delivered to the cell cytosol, and thus, into the MHC class I presentation pathway. Indeed, virosome-mediated delivery of antigens in vivo results in efficient priming of a class I MHC-restricted cytotoxic T lymphocyte (CTL) response.  相似文献   

11.
Retroviral assembly and budding is driven by the Gag polyprotein and requires the host-derived vacuolar protein sorting (vps) machinery. With the exception of human immunodeficiency virus (HIV)-infected macrophages, current models predict that the vps machinery is recruited by Gag to viral budding sites at the cell surface. However, here we demonstrate that HIV Gag and murine leukemia virus (MLV) Gag also drive assembly intracellularly in cell types including 293 and HeLa cells, previously believed to exclusively support budding from the plasma membrane. Using live confocal microscopy in conjunction with electron microscopy of cells generating fluorescently labeled virions or virus-like particles, we observed that these retroviruses utilize late endosomal membranes/multivesicular bodies as assembly sites, implying an endosome-based pathway for viral egress. These data suggest that retroviruses can interact with the vps sorting machinery in a more traditional sense, directly linked to the mechanism by which cellular proteins are sorted into multivesicular endosomes.  相似文献   

12.
It has been demonstrated that foot-and-mouth disease virus (FMDV) can utilize at least four members of the alpha(V) subgroup of the integrin family of receptors in vitro. The virus interacts with these receptors via a highly conserved arginine-glycine-aspartic acid amino acid sequence motif located within the betaG-betaH loop of VP1. While there have been extensive studies of virus-receptor interactions at the cell surface, our understanding of the events during viral entry into the infected cell is still not clear. We have utilized confocal microscopy to analyze the entry of two FMDV serotypes (types A and O) after interaction with integrin receptors at the cell surface. In cell cultures expressing both the alphaVbeta3 and alphaVbeta6 integrins, virus adsorbed to the cells at 4 degrees C appears to colocalize almost exclusively with the alphaVbeta6 integrin. Upon shifting the infected cells to 37 degrees C, FMDV capsid proteins were detected within 15 min after the temperature shift, in association with the integrin in vesicular structures that were positive for a marker of clathrin-mediated endocytosis. In contrast, virus did not colocalize with a marker for caveola-mediated endocytosis. Virus remained associated with the integrin until about 1 h after the temperature shift, when viral proteins appeared around the perinuclear region of the cell. By 15 min after the temperature shift, viral proteins were seen colocalizing with a marker for early endosomes, while no colocalization with late endosomal markers was observed. In the presence of monensin, which raises the pH of endocytic vesicles and has been shown to inhibit FMDV replication, viral proteins were not released from the recycling endosome structures. Viral proteins were not observed associated with the endoplasmic reticulum or the Golgi. These data indicate that FMDV utilizes the clathrin-mediated endocytosis pathway to infect the cells and that viral replication begins due to acidification of endocytic vesicles, causing the breakdown of the viral capsid structure and release of the genome by an as-yet-unidentified mechanism.  相似文献   

13.
OVCAR-3 cells internalize TAT-peptide modified liposomes by endocytosis   总被引:1,自引:0,他引:1  
For cytosolic delivery of liposomes containing macromolecular drugs, such as proteins or nucleic acids, it would be beneficial to bypass endocytosis to prevent degradation in the lysosomes. Recent reports pointed to the possibility that coupling of TAT-peptides to the outer surface of liposome particles would enable translocation over the cellular plasma membrane. Here, we demonstrate that cellular uptake of TAT-liposomes occurs via endocytosis rather than plasma membrane translocation. The coupling of HIV-1 derived TAT-peptide to liposomes enhances their binding to ovarian carcinoma cells. The binding was inhibited by the presence of heparin or dextran sulfate, indicating that cell surface proteoglycans are involved in the binding interaction. Furthermore, living confocal microscopy studies revealed that binding of the TAT-liposomes to the plasma membrane is followed by intracellular uptake in vesicular structures. Staining the endosomes and lysosomes demonstrated that fluorescent liposomal labels are present within the endosomal and lysosomal compartments. Furthermore, incubation at low temperature or addition of a metabolic or an endocytosis inhibitor blocked cellular uptake. In conclusion, coupling TAT-peptide to the outer surface of liposomes leads to enhanced endocytosis of the liposomes by ovarian carcinoma cells, rather than direct cytosolic delivery by plasma membrane translocation.  相似文献   

14.
Cellular contacts between HIV-1-infected donor cells and uninfected primary CD4(+) T lymphocytes lead to virus transfer into endosomes. Recent evidence suggests that HIV particles may fuse with endosomal membranes to initiate a productive infection. To explore the role of endocytosis in the entry and replication of HIV, we evaluated the infectivity of transferred HIV particles in a cell-to-cell culture model of virus transmission. Endocytosed virus led to productive infection of cells, except when cells were cultured in the presence of the anti-gp120 mAb IgGb12, an agent that blocks virus attachment to CD4, suggesting that endocytosed virus was recycled to the outer cell surface. Confocal microscopy confirmed the colocalization of internalized virus antigen and the endosomal marker dynamin. Additionally, virus transfer, fusion, or productive infection was not blocked by dynasore, dynamin-dependent endosome-scission inhibitor, at subtoxic concentrations, suggesting that the early capture of virus into intracellular compartments did not depend on endosomal maturation. Our results suggest that endocytosis is not a mechanism of infection of primary CD4 T cells, but may serve as a reservoir capable of inducing trans-infection of cells after the release of HIV particles to the extracellular environment.  相似文献   

15.
The canonical view of the ultimate steps of HIV-1 replication is that virus assembly and budding are taking place at the plasma membrane of infected cells. Surprisingly, recent studies revealed that these steps also occur on endosomal membranes in the interior of infected cells, such as macrophages. This prompted us to revisit the site of HIV-1 assembly in human epithelial-like cells and in infected human T-lymphoblastic cells. To address this question, we investigated the intracellular location of the major viral structural components of HIV-1, namely Gag, Env and the genomic RNA. Using a sub-cellular fractionation method, as well as immuno-confocal and electron microscopy, we show that Gag, the Env glycoproteins and the genomic RNA accumulate in late endosomes that contain infectious HIV-1 particles. In epithelial-like 293T cells, HIV-1 assembles and buds both at the plasma membrane and in endosomes, while in chronically infected human T lymphocytes, viral assembly mostly occurs within the cell where large amounts of infectious virions accumulate in endosomal compartments. In addition, HIV-1 release could be enhanced by ionomycin, a drug stimulating calcium-dependent exocytosis. These results favour the view that newly made Gag molecules associate with the genomic RNA in the cytosol, then viral core complexes can be targeted to late endosomes together with Env, where infectious HIV-1 are made and subsequently released by exocytosis.  相似文献   

16.
Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), a potent virus for mammalian cell gene delivery, possesses an ability to transduce mammalian cells without viral replication. We examined the role of the cellular cytoskeleton in the cytoplasmic trafficking of viral particles toward the nucleus in human hepatic cells. Microscopic studies showed that capsids were found in the nucleus after either viral inoculation or cytoplasmic microinjection of nucleocapsids. The presence of microtubule (MT) depolymerizing agents caused the amount of nuclear capsids to increase. Overexpression of p50/dynamitin, an inhibitor of dynein-dependent endocytic trafficking from peripheral endosomes along MTs toward late endosomes, did not significantly affect the amount of nuclear accumulation of nucleocapsids in the inoculated cells, suggesting that viral nucleocapsids are released into the cytosol during the early stages of the endocytic pathway. Moreover, studies with recombinant viruses containing the nuclear-targeted expression beta-galactosidase gene (beta-gal) showed a markedly increased level in the cellular expression of beta-galactosidase in the presence of MT-disintegrating drugs. The maximal increase in expression at 10 h postinoculation was observed in the presence of 80 muM nocodazole or 10 muM vinblastine. Together, these data suggest that the intact MTs constitute a barrier to baculovirus transport toward the nucleus.  相似文献   

17.
The role of actin dynamics in clathrin-mediated endocytosis in mammalian cells is unclear. In this study, we define the role of actin cytoskeleton in Kaposi''s sarcoma-associated herpesvirus (KSHV) entry and trafficking in endothelial cells using an immunofluorescence-based assay to visualize viral capsids and the associated cellular components. In contrast to infectivity or reporter assays, this method does not rely on the expression of any viral and reporter genes, but instead directly tracks the accumulation of individual viral particles at the nuclear membrane as an indicator of successful viral entry and trafficking in cells. Inhibitors of endosomal acidification reduced both the percentage of nuclei with viral particles and the total number of viral particles docking at the perinuclear region, indicating endocytosis, rather than plasma membrane fusion, as the primary route for KSHV entry into endothelial cells. Accordingly, a viral envelope protein was only detected on internalized KSHV particles at the early but not late stage of infection. Inhibitors of clathrin- but not caveolae/lipid raft-mediated endocytosis blocked KSHV entry, indicating that clathrin-mediated endocytosis is the major route of KSHV entry into endothelial cells. KSHV particles were colocalized not only with markers of early and recycling endosomes, and lysosomes, but also with actin filaments at the early time points of infection. Consistent with these observations, transferrin, which enters cells by clathrin-mediated endocytosis, was found to be associated with actin filaments together with early and recycling endosomes, and to a lesser degree, with late endosomes and lysosomes. KSHV infection induced dynamic actin cytoskeleton rearrangements. Disruption of the actin cytoskeleton and inhibition of regulators of actin nucleation such as Rho GTPases and Arp2/3 complex profoundly blocked KSHV entry and trafficking. Together, these results indicate an important role for actin dynamics in the internalization and endosomal sorting/trafficking of KSHV and clathrin-mediated endocytosis in endothelial cells.  相似文献   

18.
昆虫杆状病毒应用于哺乳动物基因治疗的研究进展   总被引:5,自引:0,他引:5  
杆状病毒是一类宿主特异性的昆虫病毒。昆虫杆状病毒表达系统是一个高效的真核表达系统,被广泛用于在昆虫细胞或昆虫幼虫中生产外源蛋白质。杆状病毒不能感染哺乳动物,却可以进入不同物种和组织来源的多种哺乳动物细胞,并在合适的哺乳动物启动子控制下表达外源基因。杆状病毒在哺乳动物细胞中不能复制,对细胞没有毒性,加上杆状病毒本身具有基因组大、可操作性好等优点,作为哺乳动物基因治疗的载体,将治疗基因传递给哺乳动物细胞已受到了广泛关注。在此就杆状病毒作为基因治疗载体的最新研究进展进行了阐述并探讨其发展趋势。  相似文献   

19.
The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) can infect a variety of mammalian cells, as well as insect cells, facilitating its use as a viral vector for gene delivery into mammalian cells. Glycoprotein gp64, a major component of the budded AcMNPV envelope, is involved in viral entry into cells by receptor-mediated endocytosis and subsequent membrane fusion. We examined the potential production of pseudotype baculovirus particles transiently carrying ligands of interest in place of gp64 as a method of ligand-directed gene delivery into target cells. During amplification of a gp64-null pseudotype baculovirus carrying a green fluorescent protein gene in gp64-expressing insect cells, however, we observed the high-frequency appearance of a replication-competent virus incorporating the gp64 gene into the viral genome. To avoid generation of replication-competent revertants, we prepared pseudotype baculoviruses by transfection with recombinant bacmids without further amplification in the gp64-expressing cells. We constructed gp64-null recombinant bacmids carrying cDNAs encoding either vesicular stomatitis virus G protein (VSVG) or measles virus receptors (CD46 or SLAM). The VSVG pseudotype baculovirus efficiently transduced a reporter gene into a variety of mammalian cell lines, while CD46 and SLAM pseudotype baculoviruses allowed ligand-receptor-directed reporter gene transduction into target cells expressing measles virus envelope glycoproteins. Gene transduction mediated by the pseudotype baculoviruses could be inhibited by pretreatment with specific antibodies. These results indicate the possible application of pseudotype baculoviruses in ligand-directed gene delivery into target cells.  相似文献   

20.
Transduction domains such as those derived from the HIV-TAT protein are candidate vectors for intracellular delivery of therapeutic macromolecules such as DNA and proteins. The mechanism by which they enter cells is controversial, and very little spatial information regarding the downstream fate of these peptides from the plasma membrane is available. We studied endocytic traffic of fluorescent conjugates of HIV-TAT peptide and octaarginine in human hematopoietic cell lines K562 (CD34-) and KG1a (CD34+) and substantiated our findings in epithelia cells. Both peptides were efficiently internalized to endocytic pathways of both hematopoietic cell lines; however, comparative analysis of the intracellular location of the peptides with endocytic probes revealed major differences in spatial organization of their endocytic organelles and their interaction with the peptides at low temperatures. Double labeling confocal microscopy demonstrates that prelabeled lysosomes of all the tested cells are accessible to internalized peptides within 60 min of endocytic uptake. Incubation of cells with nocodazole and cytochalasin D inhibited peptide traffic from early to late endosomal structures, demonstrating a cytoskeletal requirement for lysosomal delivery. Disruption of Golgi and endoplasmic reticulum dynamics was without effect on peptide localization, suggesting that endosomes and lysosomes rather than these organelles are the major acceptor compartments for these molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号