首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The secondary culture of chick embryo cells in 2-3 days after seeding was super-inoculated with homologous cells. Suspended cells adhere and spread on the cell layer whereby the culture density increases quickly. After adhesion of exogenous cells to the layer the stimulation of cell proliferation takes place. This activation is not connected with methodical manipulations or with the influence of conditioned medium factors. The results suggest that the increase in cell number itself does not arrest cell multiplication. It is proposed that the known phenomenon of blocking cell proliferation in dense cultures cannot be attributed only to effects of high cell density.  相似文献   

2.
Human mesenchymal stem cells (hMSCs) derived from bone marrow have the capacity to differentiate along a number of connective tissue pathways and are an attractive source of chondrocyte precursor cells. When these cells are cultured in a three-dimensional format in the presence of transforming growth factor-beta, they undergo characteristic morphological changes concurrent with deposition of cartilaginous extracellular matrix (ECM). In this study, factors influencing hMSC chondrogenesis were investigated using an alginate layer culture system. Application of this system resulted in a more homogeneous and rapid synthesis of cartilaginous ECM than did micromass cultures and presented a more functional format than did alginate bead cultures. Differentiation was found to be dependent on initial cell seeding density and was interrelated to cellular proliferation. Maximal glycosaminoglycan (GAG) synthesis defined an optimal hMSC seeding density for chondrogenesis at 25 x 10(6) cells/ml. Inclusion of hyaluronan in the alginate layer at the initiation of cultures enhanced chondrogenic differentiation in a dose-dependent manner, with maximal effect seen at 100 microg/ml. Hyaluronan increased GAG synthesis at early time points, with greater effect seen at lower cell densities, signifying cell-cell contact involvement. This culture system offers additional opportunities for elucidating conditions influencing chondrogenesis and for modeling cartilage homeostasis or osteoarthritic changes.  相似文献   

3.
The influence of cell density and cell contacts on the proliferation of neuroblasts in culture and its stimulation by meningeal extract were investigated. Dissociated brain cells from 6-day-old chick embryos were cultured under 3 different culture conditions to obtain dense or sparse brain cell cultures, as well as cultures of isolated neuronal cells. The proliferation of neuroblasts, shown by morphological observations, cell counts, determinations of DNA content and measurements of [3H]thymidine incorporation, was found to be the highest in cultures where cell density and cellular contacts were greatest. The addition of meningeal extract stimulated the multiplication of neuroblasts only in cultures where the cells were in closer contact with each other. The results suggested, therefore, that cell density and cell-cell interactions are of importance and favored neuroblast proliferation.  相似文献   

4.
5.
Image analysis was used to study the repair process of a circular mechanical lesion of confluent human endothelial cells in culture after irradiation (10 Gy) prior to wounding. Coverage of denuded areas 48 and 96 h after injury of endothelial cells was identical in control and irradiated cultures, although the labeling index was lowered by 80 to 95% in irradiated cultures. The cell density of non damaged irradiated areas was decreased by 50%. When cultures were submitted to increasing doses of radiation (5.0-30 Gy), the labeling index of the cells diminished rapidly between 0 and 5.0 Gy and reached a plateau at 10 Gy. The decrease in cell density (50% of control at 96 h) was identical at each dose of radiation. Thus cell migration alone could be sufficient for the repair of the lesion, while cell proliferation would mainly maintain the original cell density. The addition of heparin to the culture medium slowed down cell migration and proliferation, but the speed of repair was identical in irradiated and non-irradiated cultures. Acidic fibroblast growth factor plus heparin accelerated equally the repair process whether the cultures were irradiated or not. In irradiated cultures the presence of acidic fibroblast growth factor and heparin maintained cell density in confluent areas at a level similar to that in non-irradiated damaged control cultures without addition of mitogens. Thus heparin and acidic fibroblast growth factor play a role in cell proliferation, in the maintenance of the cell monolayer integrity and in restoring a continuous layer by rapid cell migration and elongation after irradiation.  相似文献   

6.
Image analysis was used to study the repair process of a circular mechanical lesion of confluent human endothelial cells in culture after irradiation (10 Gy) prior to wounding. Coverage of denuded areas 48 and 96 h after injury of endothelial cells was identical in control and irradiated cultures, although the labeling index was lowered by 80 to 95% in irradiated cultures. The cell density of non damaged irradiated areas was decreased by 50%. When cultures were submitted to increasing doses of radiation (5.0–30 Gy), the labeling index of the cells diminished rapidly between 0 and 5.0 Gy and reached a plateau at 10 Gy. The decrease in cell density (50% of control at 96 h) was identical at each dose of radiation. Thus cell migration alone could be sufficient for the repair of the lesion, while cell proliferation would mainly maintain the original cell density. The addition of heparin to the culture medium slowed down cell migration and proliferation, but the speed of repair was identical in irradiated and non-irradiated cultures. Acidic fibroblast growth factor plus heparin accelerated equally the repair process whether the cultures were irradiated or not. In irradiated cultures the presence of acidic fibroblast growth factor and heparin maintained cell density in confluent areas at a level similar to that in non-irradiated damaged control cultures without addition of mitogens. Thus heparin and acidic fibroblast growth factor play a role in cell proliferation, in the maintenance of the cell monolayer integrity and in restoring a continuous layer by rapid cell migration and elongation after irradiation.  相似文献   

7.
Contact among rabbit retinal glial cells in subconfluent culture was previously shown to stimulate DNA synthesis [J. M. Burke (1983) Exp. Cell Res. 146, 204-206]. In this study nonliving surface membranes and metabolic coupling were investigated as mediators of the contact-dependent phenomenon. To evaluate surface membranes, preparations of fixed glial cells and fixed fibroblasts of several types were added in varying numbers to sparse cultures of glia or fibroblasts. In agreement with published data, fibroblast proliferation was inhibited by the fixed cells in a dose-dependent manner. Growth in glial cells was similarly inhibited. Fixed cells of both types were approximately equally effective in suppressing proliferation in cells of both types. No number of fixed cells was identified which, when added to glial cultures, stimulated glial proliferation. In contrast, metabolic coupling among glial cells was associated with increased DNA synthesis. Coupling was detected radioautographically as a flux of labeled precursor molecules from a prelabeled to a recipient population of glial cells in coculture. The cocultures were secondarily incubated with [3H]thymidine to label the nuclei of S-phase recipient cells. In the cocultures there was a higher rate of nuclear labeling in coupled than in uncoupled recipient glial cells. The results suggest that growth in subconfluent retinal glial cell cultures is modulated differentially by two types of interactions which require cell contact: growth is inhibited by interaction among nonliving cell surfaces but stimulated by metabolic cooperation among living cells.  相似文献   

8.
Serum inhibition of proliferation of serum-free mouse embryo cells   总被引:3,自引:0,他引:3  
Serum-free mouse embryo (SFME) cells, derived in medium supplemented with insulin, transferrin, high density lipoprotein, epidermal growth factor, and fibronectin, do not undergo crisis, maintain a predominantly diploid karyotype with no detectable chromosomal abnormalities for well over 100 population doublings in vitro, and are growth inhibited by concentrations of serum that are growth-stimulatory for most cell lines in culture. Serum inhibition of SFME cell proliferation was reversible and was not prevented by addition of the supplements of the serum-free medium, even when added repeatedly during the culture period. The serum effect on SFME cell proliferation could be detected after incubation in serum-containing medium for as little as 8 h. SFME cells in serum-containing medium were arrested in the G1 phase of the cell cycle with a greatly reduced rate of incorporation of precursors into DNA and thymidine kinase activity, while a reduction in rate of incorporation of amino acids into protein was not observed. SFME cultures maintained for extended periods in serum-containing medium underwent a crisis-like period followed by the appearance of variant cells capable of growing in serum-supplemented medium. These cells exhibited abnormal karyotype and were resistant to several inhibitors of proliferation active on the parent SFME cell type.  相似文献   

9.
A decline in cell surface gamma-glutamyl transpeptidase specific activity was previously observed to be concomitant with C6 glial cell proliferation. To elucidate the underlying factor(s) mediating gamma-glutamyl transpeptidase down-regulation, the effects of C6 cell density and culture conditions on cell surface transpeptidase activity levels were investigated. After 24 h of culture, the transpeptidase specific activities were inversely related to the initial plating densities. The lower-density cultures showed an induction within 24 h of plating. As the cultures proliferated, the specific transpeptidase activities declined to a common low level at post-confluency. The gamma-glutamyl transpeptidase down-regulation was unrelated to cell growth rate and was most pronounced during logarithmic proliferation. Induction and down-regulation of gamma-glutamyl transpeptidase activity at low cell densities were not a result of trypsinization. Supplementation of low-density cultures with conditioned medium, use of matrix-coated wells, or periodic replacement of growth media to prevent conditioning had minor effects on the decline of cell surface activity. Kinetic analysis showed that the Michaelis constants and the reaction mechanism were unaltered by cell density, indicating that down-regulation was not due to allosteric factors or an alteration in enzyme character. A reduction in the maximal velocity of cell surface transpeptidation at higher cell densities suggested that gamma-glutamyl transpeptidase down-regulation is related to the concentration of enzyme at the cell surface. Immunocytochemical localization of gamma-glutamyl transpeptidase demonstrated that gamma-glutamyl transpeptidase antigen levels decrease as C6 cell density increases. These results led us to propose that cell-cell contact stimulates the disappearance of gamma-glutamyl transpeptidase from the surface of cultured C6 glial cells.  相似文献   

10.
As was reported elsewhere (Gasparian, Grigorian, 1989a, 1989b), the stimulation of cell proliferation takes place in established culture of chick embryo cells after adding a suspension of living or inactivated homologous cells. In the present paper the kinetic parameters of this process, termed as the contact stimulation of cell proliferation, were studied. The dose- and time-dependence of cell response to the stimulus is described. It was shown that the addition of cells activates cell growth both in exponential and stationary cultures. DNA synthesis in resting cells is seen initiated only if their continuous interaction with the added cells is provided. The nature of signals involved in the process of contact stimulation is described.  相似文献   

11.
Primary rat tracheal epithelial (RTE) cell cultures have previously been shown to be highly sensitive to growth inhibition by transforming growth factor-β1 (TGF-β1) when treated within 1–2 days after plating. The purpose of the present studies was to examine the effects of TGFβ1 on the growth of RTE cells as a function of time in culture. We found that the sensitivity of RTE cells to growth inhibition by TGFβ1 decreased dramatically as the cultures aged. The IC50 for inhibition of colony forming efficiency was 0.18 pM when TGFβ1 was added 24 h after cell plating. When TGFβ1 treatment was begun on day 5 of culture, the IC50 was 3–4 pM as measured by inhibition of growth (cell number) and DNA synthesis. However, when TGFβ1 was begun on day 19, the IC50 was 65 pM or > 500 pM, depending on whether inhibition of growth or DNA synthesis, respectively, was measured. TGFβ1 accelerated cell death, as measured by exfoliation of cells, and inhibited cell proliferation. The decrease in responsiveness to TGFβ1 in late cultures was shown to be dependent on culture age as well as on cell density. No evidence was found for inactivation or degradation of the added TGFβ1 by the late stage cultures. Cells subcultured from late stage primary cultures remained less responsive to TGFβ1 than subcultured cells from early cultures. Similar to its effect on proliferation, TGFβ1 down-regulated the expression of two proliferation-related genes, c-myc and transforming growth factor-α, in early but not late RTE cell cultures. On the other hand, fibronectin expression was increased by TGFβ1 by about twofold at both early and late times in culture. This indicates that the changes in TGFβ1 responsiveness with time in culture are selective, apparently affecting primarily proliferation-related events. © 1992 Wiley-Liss, Inc.  相似文献   

12.
Cultures of human vascular endothelial cells were used to study the phenomenon of density-dependent inhibition of cell growth. Endothelial cells were disrupted by nitrogen cavitation, and a plasma membrane-enriched fraction was prepared by differential centrifugation followed in some cases by sucrose density gradient fractionation. Membrane suspension was added to low-density early-passage endothelial cultures grown in microwells. Hemocytometer cell counts and 6 hr 3H-thymidine pulses were performed in triplicate wells at varying intervals. Plasma membranes suppressed cell proliferation in a reversible, dose-dependent fashion. Increasing the ambient concentration of endothelial cell growth factor did not alter the inhibitory effect. The antiproliferative effect was sensitive to heat and trypsin and to incubation with 0.1 M sodium carbonate, pH 11.5. Membrane vesicles selectively derived from the apical cell surface also suppressed proliferation. This phenomenon showed at least some specificity for cell type and species in both human and bovine models. Therefore, cell-cell contact is capable of regulating endothelial cell proliferation in vitro despite the presence of available growth surfaces and of optimally supportive culture medium.  相似文献   

13.
The relationship between cell density and the activity of 2':3'-cyclic nucleotide 3'-phosphohydrolase (CNP), an enzyme believed to be specific to oligodendroglial cells and myelin in the brain, has been studied in cultured C-6 glioma cells. Over a 12-day period, the specific activity of CNP underwent a 4-fold increase in conjunction with an increase in the cell density (total protein/flask) and a decline in the growth rate of the cultures. In contrast, the specific activity of Na+,K+-ATPase was not influenced by cell density. Experiments with cultures seeded at different initial densities indicated that the increase in CNP activity coincided with the attainment of a specific cell density rather than with the length of time that the cells were maintained in culture. Arrest of cell proliferation in non-confluent C-6 cells by means of thymidine blockade was not sufficient to cause an increase in the activity of CNP; however, removal of serum from the culture medium resulted in a 3-fold induction of the enzyme in the absence of a high degree of cell contact. The induction of CNP in cells maintained in serum-free medium paralleled the development of a series of distinct morphological changes reminiscent of glial differentiation, which occurred within 48 hours after removal of the serum. Inhibition of protein synthesis by cycloheximide prevented the induction of CNP in serum-free cultures. The demonstration that an enhancement of an oligodendroglial characteristic in C-6 glioma cells can be obtained by growing the cells to high density or by removing serum from the medium, provides further support for the suggestion that these cells may be analogous to the glial stem cells present in the developing brain.  相似文献   

14.
Certain cells, such as 3T3 mouse embryo fibroblasts, are inhibited from dividing when they grow to a characteristic cell density on a surface in tissue culture. We asked whether the inhibition of cell division could be attributed to the inert chemical composition of neighboring cells, that is, whether the residues of lyophilized cells retained the ability to inhibit the division of normal cells. In addition, we wanted to know whether cells in which DNA synthesis was imparied by irradiation would retain the capacity to effectively inhibit normal cells. To answer these questions, confluent and non-confluent layers of 3T3 cells were prepared in tissue culture dishes and the cells were either lyophilized or irrariated in situ. Fresh 3T3 cells were then added to these prepared layers and their growth was followed using radioactive label. There was no growth of added cells on the confluent monolayers of either untreated or irradiated cells. Growth was unimpeded on the monolayers of lyophilized cells. When cells were added to non-confluent cultures of either normal or irradiated cells the added cells grew until they had covered the remaining surface of the culture dish and had come into contact with the pre-existing cells. In the discussion, consideration is given to the role of available surface over which the cells can spread as well as to the possible interactions between neighboring cells.  相似文献   

15.
A long-term culture (LTC) system has been established that supports the continuous production of dendritic cells (DC) from haemopoietic cells present in the culture. The production of cells depends on the presence of an intact stromal cell layer containing a mixture of fibroblasts and endothelial cells. Cells are shed from foci of dividing cells in contact with the stromal cell matrix. They resemble DC in terms of morphology and cell surface marker expression. The LTC can be derived from different lymphoid tissues, but most success has been achieved with murine spleen. Different LTC vary in capacity to produce immunostimulatory DC. Some LTC produce DC that are very effective APC and can stimulate both mixed lymphocyte and antigen-specific T cell responses. The DC produced in others are weak APC. Different LTC appear to produce DC reflecting different stages of maturation or development, reflected by different phenotypic and functional characteristics. The production of cells within LTC occurs independently of added cytokines and is dependent on maintenance of the stromal cell layer and the presence of a subset of smaller progenitor cells. Long-term cultures remain a valuable source of cells for study of DC development and function.  相似文献   

16.
Consumption of EGF by A431 cells: evidence for receptor recycling   总被引:4,自引:0,他引:4       下载免费PDF全文
We examined the extent of EGF consumption by EGFR in A431 cells. When 125I-EGF was added to A431 cell cultures at low or high density, at concentrations which corresponded to 10-fold excess of ligand over receptor on the cell surface, most of the 125I-EGF was consumed within 2 h. The amounts of 125I-EGF consumed were much greater than available EGFR on the A431 cells, by a factor of 6.5 in low-density cultures and 5.8 in high-density cultures. When the concentration of 125I-EGF was increased in low density cultures, further consumption of 125I-EGF by the A431 cells was greatly reduced, partially due to a rapid down regulation of EGFR. However, when higher concentrations of 125I-EGF were added to high density cultures, with reduced receptor down regulation, the cells continued to consume a large fraction of the EGF in the culture medium. The consumption of 125I-EGF by these cultures was in excellent agreement with the measured amount of ligand internalized into the cell. EGF consumption was far in excess of the number of EGFR down regulated or degraded. Only a minor portion of the EGFR could have been replaced during the assay period by synthesis of new EGFR or from the intracellular pool of EGFR, and the fluid-phase uptake of EGF is only temporarily increased by exposure to EGF. Our results demonstrate that EGFR in high density A431 cell cultures recycled many times. The apparent level of recycling was dependent upon the concentration of EGF and followed Michaelis-Menton kinetics for ligand concentrations as high as 215 nM. At this EGF concentration, high-density cultures consumed 45 EGF molecules per receptor over a period of 6 h.  相似文献   

17.
T V Potapova 《Tsitologiia》1976,18(12):1470-1473
Cultured epithelial cells producing monolayered sheets were used to study intercellular contacts permeable to sodium fluorescein. Cells in dense cultures were more capable of forming permeable junctions than cells of sparse cultures. In addition, the standard microelectrode technique revealed some differences in cellular membrane potentials in dense and sparse cultures. A possible correlation is discussed between intercellular contact formation and other features of cells depending on cell culture density.  相似文献   

18.
S D Balk 《Life sciences》1980,27(21):1917-1920
Density-dependent inhibition of proliferation of cultured fibro-blast-like cells is based on depletion of essential medium factors from the diffusion boundary layer that is present close to the cell surface. Precipitates and particulates have been shown to cause proliferative activity when added to cultures of density-inhibited fibroblasts. It is proposed that precipitates and particulates cause proliferative activity in density-inhibited cultures by disturbing the diffusion boundary layer. The question of the suitability of density-inhibited fibrolasts for studies on initiation of cell replication is discussed as are other types of culture systems in which normal cells are proliferatively quiscent at low densities and under nutritionally replete conditions.  相似文献   

19.
Proliferation of Schwann cells is one of the first events that occurs after contact with a growing axon. To further define the distribution and properties of this axonal mitogen, we have (a) cocultured cerebellar granule cells, which lack glial ensheathment in vivo with Schwann cells; and (b) exposed Schwann cell cultures to isolated granule cell membranes. Schwann cells cocultured with granule cells had a 30-fold increase in the labeling index over Schwann cells cultured alone, suggesting that the mitogen is located on the granule cell surface. Inhibition of granule cell proteoglycan synthesis caused a decrease in the granule cells' ability to stimulate Schwann cell proliferation. Membranes isolated from cerebellar granule cells when added to Schwann cell cultures caused a 45-fold stimulation in [3H]thymidine incorporation. The granule cell mitogenic signal was heat and trypsin sensitive and did not require lysosomal processing by Schwann cells to elicit its proliferative effect. The ability of granule cells and their isolated membranes to stimulate Schwann cell proliferation suggests that the mitogenic signal for Schwann cells is a ubiquitous factor present on all axons regardless of their ultimate state of glial ensheathment.  相似文献   

20.
Experimental conditions have been defined that allow bovine corneal endothelial (BCE) cells to grow in the complete absence of serum. Low density BCE cell cultures maintained on extracellular matrix (ECM)-coated dishes and plated in the total absence of serum proliferate actively when exposed to a synthetic medium supplemented with high density lipoprotein (HDL 500 μg protein/ml), transferrin (10 μg/ml), insulin (5 μg/ml), and fibroblast (FGP) or epidermal growth factor (EGF) added at concentrations of 100 or 50 ng/ml, respectively. Omission of any of these components results in a lower growth rate and/or final cell density of the cultures. BCE cell cultures plated on plastic dishes and exposed to the same synthetic medium grow very poorly. The longevity of BCE cultures maintained on plastic versus ECM and exposed to serum-free versus serum-containing medium has been studied. The use of ECM-coated dishes extended the life span of BCE cultures maintained in serum-supplemented medium to over 120 generations, as compared to less than 20 generations for cultures maintained on plastic. Likewise, BCE cells maintained on ECM and exposed to a synthetic medium supplemented with optimal concentrations of HDL, transferrin, insulin, and FGF underwent 85 generations, whereas control cultures maintained on plastic could not be passaged. The enhancing effect of ECM on BCE cell growth and culture longevity clearly illustrates the importance of the cell substrate in the control of proliferation of these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号