首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Atherosclerosis is understood to be a blood vessel inflammation. High-mobility group box-1 (HMGB-1) plays a key role in the systemic inflammation. Tissue factor (TF) is known to lead to inflammation which promotes thrombus formation. Membrane type1 matrix metalloprotease (MT1-MMP) associates with advanced glycation endproducts (AGE) triggered-TF protein expression and phosphorylation of NF-κB. However, it is still unclear about the correlation of MT1-MMP and HMBG-1-mediated TF expression. In this study, we investigated the molecular mechanisms of TF expression in response to HMGB-1 stimulation and the involvement of MT1-MMP in endothelial cells.

Methods and Results

Pull-down assays and Western blotting revealed that HMGB-1 induced RhoA/Rac1 activation and NF-kB phosphorylation in cultured human aortic endothelial cells. HMGB-1 increased the activity of MT1-MMP, and inhibition of RAGE or MT1-MMP by siRNA suppressed HMGB-1-induced TF upregulation as well as HMGB-1-triggered RhoA/Rac1 activation and NF-kB phosphorylation.

Conclusions

The present study showed that RAGE/MT1-MMP axis modified HMBG-1-mediated TF expression through RhoA and Rac1 activation and NF-κB phosphorylation in endothelial cells. These results suggested that MT1-MMP was involved in vascular inflammation and might be a good target for treating atherosclerosis.  相似文献   

2.
Pigment epithelium-derived factor (PEDF) is the most potent inhibitor of angiogenesis, suggesting that loss of PEDF contributes to proliferative diabetic retinopathy. However, the role of PEDF against retinal vascular hyperpermeability remains to be elucidated. We investigated here whether and how PEDF could inhibit the advanced glycation end product (AGE) signaling to vascular hyperpermeability. Intravenous administration of AGEs to normal rats not only increased retinal vascular permeability by stimulating vascular endothelial growth factor (VEGF) expression but also decreased retinal PEDF levels. Simultaneous treatments with PEDF inhibited the AGE-elicited VEGF-mediated permeability by down-regulating mRNA levels of p22(phox) and gp91(phox), membrane components of NADPH oxidase, and subsequently decreasing retinal levels of an oxidative stress marker, 8-hydroxydeoxyguanosine. PEDF also inhibited the AGE-induced vascular hyperpermeability evaluated by transendothelial electrical resistance by suppressing VEGF expression. Furthermore, PEDF decreased reactive oxygen species (ROS) generation in AGE-exposed endothelial cells by suppressing NADPH oxidase activity via down-regulation of mRNA levels of p22(PHOX) and gp91(PHOX). This led to blockade of the AGE-elicited Ras activation and NF-kappaB-dependent VEGF gene induction in endothelial cells. These results indicate that the central mechanism for PEDF inhibition of the AGE signaling to vascular permeability is by suppression of NADPH oxidase-mediated ROS generation and subsequent VEGF expression. Substitution of PEDF may offer a promising strategy for halting the development of diabetic retinopathy.  相似文献   

3.
Engagement of the receptor for advanced glycation end products (RAGE) by products of nonenzymatic glycation/oxidation triggers the generation of reactive oxygen species (ROS), thereby altering gene expression. Because dissection of the precise events by which ROS are generated via RAGE is relevant to the pathogenesis of complications in AGE-related disorders, such as diabetes and renal failure, we tested the hypothesis that activation of NADPH oxidase contributed, at least in part, to enhancing oxidant stress via RAGE. Here we show that incubation of human endothelial cells with AGEs on the surface of diabetic red blood cells, or specific AGEs, (carboxymethyl)lysine (CML)-modified adducts, prompted intracellular generation of hydrogen peroxide, cell surface expression of vascular cell adhesion molecule-1, and generation of tissue factor in a manner suppressed by treatment with diphenyliodonium, but not by inhibitors of nitric oxide. Consistent with an important role for NADPH oxidase, although macrophages derived from wild-type mice expressed enhanced levels of tissue factor upon stimulation with AGE, macrophages derived from mice deficient in a central subunit of NADPH oxidase, gp91phox, failed to display enhanced tissue factor in the presence of AGE. These findings underscore a central role of NADPH oxidase in AGE-RAGE-mediated generation of ROS and provide a mechanism for altered gene expression in AGE-related disorders.  相似文献   

4.
5.
The major complication of diabetes is accelerated atherosclerosis, the progression of which entails complex interactions between the modified low‐density lipoproteins (LDL) and the cells of the arterial wall. Advanced glycation end product‐modified‐LDL (AGE‐LDL) that occurs at high rate in diabetes contributes to diabetic atherosclerosis, but the underlying mechanisms are not fully understood. The aim of this study was to assess the direct effect of AGE‐LDL on human vascular smooth muscle cells (hSMC) dysfunction. Cultured hSMC incubated (24 hrs) with human AGE‐LDL, native LDL (nLDL) or oxidized LDL (oxLDL) were subjected to: (i) quantification of the expression of the receptors for modified LDL and AGE proteins (LRP1, CD36, RAGE) and estimation of lipid loading, (ii) determination of NADPH oxidase activity and reactive oxygen species (ROS) production and (iii) evaluation of the expression of monocyte chemoattractant protein‐1 (MCP‐1). The results show that exposure of hSMC to AGE‐LDL (compared to nLDL) induced: (a) increased NADPH oxidase activity (30%) and ROS production (28%) by up‐regulation of NOX1, NOX4, p22phox and p67phox expression, (b) accumulation of intracellular cholesteryl esters, (c) enhanced gene expression of LRP1 (160%) and CD36 (35%), and protein expression of LRP1, CD36 and RAGE, (d) increased MCP‐1 gene expression (160%) and protein secretion (300%) and (e) augmented cell proliferation (30%). In conclusion, AGE‐LDL activates hSMC (increasing CD36, LRP1, RAGE), inducing a pro‐oxidant state (activation of NADPHox), lipid accumulation and a pro‐inflammatory state (expression of MCP‐1). These results may partly explain the contribution of AGE‐LDL and hSMC to the accelerated atherosclerosis in diabetes.  相似文献   

6.
Cross-talk between Rho GTPase family members (Rho, Rac, and Cdc42) plays important roles in modulating and coordinating downstream cellular responses resulting from Rho GTPase signaling. The NADPH oxidase of phagocytes and nonphagocytic cells is a Rac GTPase-regulated system that generates reactive oxygen species (ROS) for the purposes of innate immunity and intracellular signaling. We recently demonstrated that NADPH oxidase activation involves sequential interactions between Rac and the flavocytochrome b(558) and p67(phox) oxidase components to regulate electron transfer from NADPH to molecular oxygen. Here we identify an antagonistic interaction between Rac and the closely related GTPase Cdc42 at the level of flavocytochrome b(558) that regulates the formation of ROS. Cdc42 is unable to stimulate ROS formation by NADPH oxidase, but Cdc42, like Rac1 and Rac2, was able to specifically bind to flavocytochrome b(558) in vitro. Cdc42 acted as a competitive inhibitor of Rac1- and Rac2-mediated ROS formation in a recombinant cell-free oxidase system. Inhibition was dependent on the Cdc42 insert domain but not the Switch I region. Transient expression of Cdc42Q61L inhibited ROS formation induced by constitutively active Rac1 in an NADPH oxidase-expressing Cos7 cell line. Inhibition of Cdc42 activity by transduction of the Cdc42-binding domain of Wiscott-Aldrich syndrome protein into human neutrophils resulted in an enhanced fMetLeuPhe-induced oxidative response, consistent with inhibitory cross-talk between Rac and Cdc42 in activated neutrophils. We propose here a novel antagonism between Rac and Cdc42 GTPases at the level of the Nox proteins that modulates the generation of ROS used for host defense, cell signaling, and transformation.  相似文献   

7.
We hypothesized that impaired nitric oxide (NO)-dependent dilation (endothelial dysfunction) in type 2 diabetes results, in part, from elevated production of superoxide (O(2)(*-)) induced by the interaction of advanced glycation end products (AGE)/receptor for AGE (RAGE) and TNF-alpha signaling. We assessed the role of AGE/RAGE and TNF-alpha signaling in endothelial dysfunction in type 2 diabetic (Lepr(db)) mice by evaluation of endothelial function in isolated coronary resistance vessels of normal control (nondiabetic, m Lepr(db)) and diabetic mice. Although dilation of vessels to the endothelium-independent vasodilator sodium nitroprusside (SNP) was not different between diabetic and control mice, dilation to the endothelium-dependent agonist acetylcholine (ACh) was reduced in diabetic vs. control mice. The activation of RAGE with RAGE agonist S100b eliminated SNP-potentiated dilation to ACh in Lepr(db) mice. Administration of a soluble form of RAGE (sRAGE) partially restored dilation in diabetic mice but did not affect dilation in control mice. The expression of RAGE in coronary arterioles was markedly increased in diabetic vs. control mice. We also observed in diabetic mice that augmented RAGE signaling augmented expression of TNF-alpha, because this increase was attenuated by sRAGE or NF-kappaB inhibitor MG132. Protein and mRNA expression of NAD(P)H oxidase subunits including NOX-2, p22(phox), and p40(phox) increased in diabetic compared with control mice. sRAGE significantly inhibited the expression of NAD(P)H oxidase in diabetic mice. These results indicate that AGE/RAGE signaling plays a pivotal role in regulating the production/expression of TNF-alpha, oxidative stress, and endothelial dysfunction in type 2 diabetes.  相似文献   

8.
Reactive oxygen species (ROS) are important mediators of cellular signal transduction cascades such as proliferation, migration, and apoptosis. Chronic exposure of isolated β-cells to proinflammatory cytokines elevates intracellular oxidative stress leading to the demise of pancreatic β-cells culminating in the onset of diabetes. Although the mitochondrial electron transport chain is felt to be the primary source of ROS, several lines of recent evidence suggest that phagocyte-like NADPH oxidase plays a central role in cytokine-mediated ROS generation and apoptosis of β-cells. However, the precise mechanisms underlying the regulation of NADPH oxidase remain unknown. To address this, insulin-secreting INS 832/13 cells were treated with cytomix (IL-1β, IFN-γ, and TNF-α; 10 ng/ml each) for different time intervals (0-24 h). A significant, time-dependent increase in NADPH oxidase activation/intracellular ROS production, p47(phox) subunit, but not p67(phox) subunit, expression of the phagocyte-like NADPH oxidase were demonstrable under these conditions. Furthermore, siRNA-p47(phox) transfection or exposure of INS 832/13 cells to apocynin, a selective inhibitor of NADPH oxidase, markedly attenuated cytomix-induced ROS generation in these cells. Cytomix-mediated mitochondrial dysfunction in INS 832/13 cells was evident by a significant loss of mitochondrial membrane potential (MMP) and upregulated caspase 3 activity. Cytomix treatment also caused a transient (within 15 min) activation of Rac1, a component of the NADPH oxidase holoenzyme. Furthermore, GGTI-2147 and NSC23766, known Rac1 inhibitors, not only attenuated the cytomix-induced Rac1 activation but also significantly prevented loss of MMP (NSC23766 > GGTI-2147). However, NSC23766 had no effect on cytomix-induced NO generation or caspase 3 activation, suggesting additional regulatory mechanisms might underlie these signaling steps. Together, these findings suggested that Rac1-mediated regulation of phagocyte-like NADPH oxidase contributes to cytokine-mediated mitochondrial dysfunction in the β-cell.  相似文献   

9.
Advanced glycation end product (AGE)-their receptor (RAGE) and angiotensin II (AII) are implicated in diabetic retinopathy. However, a crosstalk between the two is not fully understood. In vivo, AGE injection stimulated RAGE expression in the eye of spontaneously hypertensive rats, which was blocked by an AII-type 1 receptor blocker, telmisartan. In vitro, AII-type 1 receptor-mediated reactive oxygen species generation elicited RAGE gene expression in pericytes through NF-kappaB activation. Further, AII augmented AGE-induced pericyte apoptosis, the earliest hallmark of diabetic retinopathy. Our present study may implicate a crosstalk between AGE-RAGE system and AII in diabetic retinopathy.  相似文献   

10.
Oxidative stress has been implicated in several steps leading to the development of diabetic vascular complications. The purpose of this study was to determine the efficacy and the possible mechanism of puerarin on high-glucose (HG; 25 mM)-induced proliferation of cultured rat vascular smooth muscle cells (VSMCs) and neointimal formation in a carotid arterial balloon injury model of obese Zucker rats. Our data demonstrated that puerarin significantly inhibited rat VSMC proliferation as well as reactive oxygen species (ROS) generation and NADPH oxidase activity induced by HG treatment. Further studies revealed that HG treatment resulted in phosphorylation and membrane translocation of PKCβ2 as well as Rac1, p47phox, and p67phox subunits, leading to NADPH oxidase activation. Puerarin treatment remarkably disrupted the phosphorylation and membrane translocation of PKCβ2 as well as Rac1, p47phox, and p67phox subunits. Blocking PKCβ2 by infection with AdDNPKCβ2 also abolished HG-induced phosphorylation and membrane translocation of Rac1, p47phox, and p67phox subunits as well as ROS production and NADPH oxidase activation in VSMCs. In vivo neointimal formation of obese Zucker rats evoked by balloon injury was evidently attenuated by the administration of puerarin. These results demonstrate that puerarin may exert inhibitory effects on HG-induced VSMC proliferation via interfering with PKCβ2/Rac1-dependent ROS pathways, thus resulting in the attenuation of neointimal formation in the context of hyperglycemia in diabetes mellitus.  相似文献   

11.
Interactions between advanced glycation endproducts (AGE) and the receptor for AGE (RAGE) have been implicated in the development of diabetic vascular complications. RAGE has two N-glycosylation sites in and near the AGE-binding domain, and G82S mutation in the second N-glycosylation motif was recently reported in human. In this study, we examined whether de-N-glycosylation or G82S of RAGE affect its ability to bind AGE and cellular response to AGE. Recombinant wild-type, de-N-glycosylation and G82S RAGE proteins were produced in COS-7 cells, purified and assayed for ligand-binding abilities. De-N-glycosylation at N81 and G82S mutation decreased Kd for glycolaldehyde-derived AGE to three orders of magnitude lower levels compared with wild-type. AGE-induced upregulation of VEGF mRNA was significantly augmented in endothelial cell-derived ECV304 cells expressing de-N-glycosylated and G82S RAGE when compared with wild-type expressor. Exposure to low glucose resulted in the appearance of RAGE proteins of deglycosylated size in wild-type RAGE-expressing cells and significantly enhanced glycolaldehyde-derived AGE-induced VEGF mRNA expression. De-N-glycosylation or G82S mutation of RAGE increases affinity for AGE ligands, and may sensitize cells or conditions with it to AGE.  相似文献   

12.
The receptor for advanced glycation end products (RAGE) plays an important role in host defense against bacterial infection. In the present experiments, we investigated the mechanisms by which RAGE contributes to the ability of neutrophils to eradicate bacteria. Wild-type (RAGE(+/+)) neutrophils demonstrated significantly greater ability to kill Escherichia coli compared with RAGE(-/-) neutrophils. After intraperitoneal injection of E. coli, increased numbers of bacteria were found in the peritoneal fluid from RAGE(-/-) as compared with RAGE(+/+) mice. Exposure of neutrophils to the protypical RAGE ligand AGE resulted in activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and enhanced killing of E. coli, and intraperitoneal injection of AGE enhanced bacterial clearance during peritonitis. However, incubation of neutrophils with high mobility group box 1 protein (HMGB1), which also binds to RAGE, diminished E. coli-induced activation of NADPH oxidase in neutrophils and bacterial killing both in vitro and in vivo. Deletion of the COOH-terminal tail of HMGB1, a region necessary for binding to RAGE, abrogated the ability of HMGB1 to inhibit bacterial killing. Incubation of neutrophils with HMGB1 diminished bacterial or AGE-dependent activation of NADPH oxidase. The increase in phosphorylation of the p40(phox) subunit of NADPH oxidase that occurred after culture of neutrophils with E. coli was inhibited by exposure of the cells to HMGB1. These results showing that HMGB1, through RAGE-dependent mechanisms, diminishes bacterial killing by neutrophils as well as NADPH oxidase activation provide a novel mechanism by which HMGB1 can potentiate sepsis-associated organ dysfunction and mortality.  相似文献   

13.
The renin-angiotensin system (RAS) and reactive oxygen species (ROS) have been implicated in the development of insulin resistance and its related complications. There is also evidence that angiotensin II (Ang II)-induced generation of ROS contributes to the development of insulin resistance in skeletal muscle, although the precise mechanisms remain unknown. In the present study, we found that Ang II markedly enhanced NADPH oxidase activity and consequent ROS generation in L6 myotubes. These effects were blocked by the angiotensin II type 1 receptor blocker losartan, and by the NADPH oxidase inhibitor apocynin. Ang II also promoted the translocation of NADPH oxidase cytosolic subunits p47phox and p67phox to the plasma membrane within 15 min. Furthermore, Ang II abolished insulin-induced tyrosine phosphorylation of insulin receptor substrate 1 (IRS1), activation of protein kinase B (Akt), and glucose transporter-4 (GLUT4) translocation to the plasma membrane, which was reversed by pretreating myotubes with losartan or apocynin. Finally, small interfering RNA (siRNA)-specific gene silencing targeted specifically against p47phox (p47siRNA), in both L6 and primary myotubes, reduced the cognate protein expression, decreased NADPH oxidase activity, restored Ang II-impaired IRS1 and Akt activation as well as GLUT4 translocation by insulin. These results suggest a pivotal role for NADPH oxidase activation and ROS generation in Ang II-induced inhibition of insulin signaling in skeletal muscle cells.  相似文献   

14.
The matrix metalloproteinases (MMPs), in particular, membrane type 1 MMP (MT1-MMP), are increased in the context of myocardial ischemia and reperfusion (I/R) and likely contribute to myocardial dysfunction. One potential upstream induction mechanism for MT1-MMP is endothelin (ET) release and subsequent protein kinase C (PKC) activation. Modulation of ET and PKC signaling with respect to MT1-MMP activity with I/R has yet to be explored. Accordingly, this study examined in vivo MT1-MMP activation during I/R following modification of ET signaling and PKC activation. With the use of a novel fluorogenic microdialysis system, myocardial interstitial MT1-MMP activity was measured in pigs (30 kg; n = 9) during I/R (90 min I/120 min R). Local ET(A) receptor antagonism (BQ-123, 1 microM) and PKC inhibition (chelerythrine, 1 microM) were performed in parallel microdialysis probes. MT1-MMP activity was increased during I/R by 122 +/- 10% (P < 0.05) and was unchanged from baseline with ET antagonism and/or PKC inhibition. Selective PKC isoform induction occurred such that PKC-betaII increased by 198 +/- 31% (P < 0.05). MT1-MMP phosphothreonine, a putative PKC phosphorylation site, was increased by 121 +/- 8% (P < 0.05) in the I/R region. These studies demonstrate for the first time that increased interstitial MT1-MMP activity during I/R is a result of the ET/PKC pathway and may be due to enhanced phosphorylation of MT1-MMP. These findings identify multiple potential targets for modulating a local proteolytic pathway operative during I/R.  相似文献   

15.
Membrane-type matrix metalloproteinases-1 and -3 (MT1- and MT3-MMPs) are expressed by activated smooth muscle cells (SMCs) both in vitro and in vivo (19). To define their functions in SMCs, we transduced MT1- and MT3-MMP cDNAs into baboon SMCs by using adenoviral vectors. Overexpression of MT1-MMP increased the conversion of proMMP-2 to the intermediate and active forms. In contrast, in MT3-MMP-overexpressing cells, MMP-2 was activated partially. Immunoblot analyses revealed that MT1-MMP protein was present in the SMCs and accumulated in the presence of the synthetic MMP inhibitor, BB94, or tissue inhibitor of metalloproteinase-2 (TIMP-2). However, MT3-MMP protein was detectable only when BB94, but not TIMP-2, was present. Zymographic analyses showed that MT3-MMP had much stronger casein- and gelatin-degrading activities than did MT1-MMP. Furthermore, when MT3-MMP and MT1-MMP were coexpressed, MT1-MMP degradation was enhanced; this result supports the possibility that MT3-MMP can degrade MT1-MMP. SMCs overexpressing either MT1- or MT3-MMP exhibited altered morphology, without changing their proliferation. This alteration was prevented by BB94 addition. The cells, which underwent this change, showed reduced adhesion to both collagen and fibronectin and increased migration in a Boyden chamber. The present study demonstrates that MT1- and MT3-MMPs have different enzymatic activities but may nevertheless affect SMC function in the same way.  相似文献   

16.
Tumor necrosis factor alpha (TNF-alpha) receptor-associated factors (TRAFs) play important roles in TNF-alpha signaling by interacting with downstream signaling molecules, e.g., mitogen-activated protein kinases (MAPKs). However, TNF-alpha also signals through reactive oxygen species (ROS)-dependent pathways. The interrelationship between these pathways is unclear; however, a recent study suggested that TRAF4 could bind to the NADPH oxidase subunit p47phox. Here, we investigated the potential interaction between p47phox phosphorylation and TRAF4 binding and their relative roles in acute TNF-alpha signaling. Exposure of human microvascular endothelial cells (HMEC-1) to TNF-alpha (100 U/ml; 1 to 60 min) induced rapid (within 5 min) p47phox phosphorylation. This was paralleled by a 2.7- +/- 0.5-fold increase in p47phox-TRAF4 association, membrane translocation of p47phox-TRAF4, a 2.3- +/- 0.4-fold increase in p47phox-p22phox complex formation, and a 3.2- +/- 0.2-fold increase in NADPH-dependent O2- production (all P < 0.05). TRAF4-p47phox binding was accompanied by a progressive increase in extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38(MAPK) activation, which was inhibited by an O2- scavenger, tiron. TRAF4 predominantly bound the phosphorylated form of p47phox, in a protein kinase C-dependent process. Knockdown of TRAF4 expression using siRNA had no effect on p47phox phosphorylation or binding to p22phox but inhibited TNF-alpha-induced ERK1/2 activation. In coronary microvascular EC from p47phox-/- mice, TNF-alpha-induced NADPH oxidase activation, ERK1/2 activation, and cell surface intercellular adhesion molecule 1 (ICAM-1) expression were all inhibited. Thus, both p47phox phosphorylation and TRAF4 are required for acute TNF-alpha signaling. The increased binding between p47phox and TRAF4 that occurs after p47phox phosphorylation could serve to spatially confine ROS generation from NADPH oxidase and subsequent MAPK activation and cell surface ICAM-1 expression in EC.  相似文献   

17.

Background

Reactive oxygen species (ROS) are largely considered to be pathogenic to normal endothelial function in disease states such as sepsis. We hypothesized that Angiopoietin-1 (Angpt-1), an endogenous agonist of the endothelial-specific receptor, Tie-2, promotes barrier defense by activating NADPH oxidase (NOX) signaling.

Methods and Findings

Using primary human microvascular endothelial cells (HMVECs), we found that Angpt-1 stimulation induces phosphorylation of p47phox and a brief oxidative burst that is lost when chemical inhibitors of NOX activity or siRNA against the NOX component p47phox were applied. As a result, there was attenuated ROS activity, disrupted junctional contacts, enhanced actin stress fiber accumulation, and induced gap formation between confluent HMVECs. All of these changes were associated with weakened barrier function. The ability of Angpt-1 to prevent identical changes induced by inflammatory permeability mediators, thrombin and lipopolysaccharides (LPS), was abrogated by p47phox knockdown. P47phox was required for Angpt-1 to activate Rac1 and inhibit mediator-induced activation of the small GTPase RhoA. Finally, Angpt-1 gene transfer prevented vascular leakage in wildtype mice exposed to systemically administered LPS, but not in p47phox knock out (p47−/−) littermates.

Conclusions

These results suggest an essential role for NOX signaling in Angpt-1-mediated endothelial barrier defense against mediators of systemic inflammation. More broadly, oxidants generated for signal transduction may have a barrier-promoting role in vascular endothelium.  相似文献   

18.
Cell migration and proteolysis are two essential processes during tumor invasion and metastasis. Matrix metalloproteinase (MMP)-2 (type IV collagenase; gelatinase A), is implicated in tumor metastasis as well as in primary tumor growth. The Rho family of small GTPases regulates the dynamics of actin cytoskeleton associated with cell motility. In this report, we provide evidence that Rac1, one member of Rho-related small GTPases, is a mediator of MMP-2 activation in HT1080 fibrosarcoma cells cultured in three-dimensional collagen gel (3D-col) and that MMP-2 activation is required for Rac1-promoted cell invasion through collagen barrier. Stable expression of dominant negative (Rac1V12N17) and constitutively active Rac1 (Rac1V12), respectively, in HT1080 cells demonstrates that Rac1 promoted cell invasiveness across type I collagen and collagen-dependent MMP-2 activation. Active Rac1 is sufficient to induce MMP-2 activation in cells cultured in fibrin gel, an extracellular matrix component that does not support MMP-2 activation. The Rac1-dependent MMP-2 activation occurred in a cell-associated fashion and required MMP activities. Because the cell membrane-mediated MMP-2 activation requires MT1-MMP and low amount of issue inhibitor of matrix metalloproteinase-2 (TIMP-2), their expression was examined. Rac1 modulated MT1-MMP mRNA level and the accumulation of a 43-kDa form of MT1-MMP protein, in correlation with MMP-2 activation profile. However, TIMP-2 expression was independent of Rac1 activity. The coordinate modulation of MMP-2 activity and MT1-MMP expression/processing by Rac1 is consistent with cell collagenolytic activity. The C-terminal hemopexin-like domain of MMP-2, which interferes with the cell membrane activation of MMP-2, reduced Rac1-promoted cell invasiveness as monitored by collagen invasion assay. These results suggest that collagen-dependent MMP-2 activation and MT1-MMP expression/processing contribute to Rac-promoted tumor cell invasion through interstitial collagen barrier.  相似文献   

19.
20.
The superoxide (O(2))-generating NADPH oxidase complex of phagocytes consists of a membrane-associated flavocytochrome (cytochrome b(559)) and four cytosolic proteins, p47(phox), p67(phox), p40(phox), and the small GTPase Rac (Rac1 or -2). NADPH oxidase activation (O(2) production) is elicited as the consequence of assembly of some or all cytosolic components with cytochrome b(559). This process can be reproduced in an in vitro system consisting of phagocyte membranes, p47(phox), p67(phox), and Rac, activated by an anionic amphiphile. We now show that post-translationally processed (prenylated) Rac1 initiates NADPH oxidase assembly, expressed in O(2) production, in a cell-free system containing phagocyte membrane vesicles and p67(phox), in the absence of an activating amphiphile and of p47(phox). Prenylated Cdc42Hs, a GTPase closely related to Rac, is inactive under the same conditions. Results obtained with phagocyte membrane vesicles can be reproduced fully by replacing these with partially purified cytochrome b(559), incorporated in phosphatidylcholine vesicles. Prenylated, but not nonprenylated, Rac1 binds spontaneously to phagocyte membrane vesicles and also to artificial, protein-free, phosphatidylcholine vesicles, a process counteracted by GDP dissociation inhibitor for Rho. Binding of prenylated Rac1 to membrane vesicles is accompanied by the recruitment of p67(phox) to the same location and the formation of an assembled NADPH oxidase complex, producing O(2) upon the addition of NADPH. Amphiphile and p47(phox)-independent NADPH oxidase activation by prenylated Rac1 is inhibited by Rho GDP dissociation inhibitor and by phosphatidylcholine vesicles, both competing with membrane for prenylated Rac1. We conclude that, in vitro, targeting of Rac to the phagocyte membrane is sufficient for the induction of NADPH oxidase assembly, suggesting that the principal or, possibly, the only role of Rac is to recruit cytosolic p67(phox) to the membrane environment, to be followed by the interaction of p67(phox) with cytochrome b(559).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号