首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clustered DNA damage sites, in which two or more lesions are formed within a few helical turns of the DNA after passage of a single radiation track, are signatures of DNA modifications induced by ionizing radiation in mammalian cells. Mutant hamster cells (xrs-5), deficient in non-homologous end joining (NHEJ), were irradiated at 37 degrees C to determine whether any additional double-strand breaks (DSBs) are formed during processing of gamma-radiation-induced DNA clustered damage sites. A class of non-DSB clustered DNA damage, corresponding to approximately 30% of the initial yield of DSBs, is converted into DSBs reflecting an artefact of preparation of genomic DNA for pulsed field gel electrophoresis. These clusters are removed within 4 min in both NHEJ-deficient and wild-type CHO cells. In xrs-5 cells, a proportion of non-DSB clustered DNA damage, representing approximately 10% of the total yield of non-DSB clustered DNA damage sites, are also converted into DSBs within approximately 30 min post-gamma but not post-alpha irradiation through cellular processing at 37 degrees C. That the majority of radiation-induced non-DSB clustered DNA damage sites are resistant to conversion into DSBs may be biologically significant at environmental levels of radiation exposure, as a non-DSB clustered damage site rather than a DSB, which only constitutes a minor proportion, is more likely to be induced in irradiated cells.  相似文献   

2.
3.
Cytolethal distending toxin (CDT) is a unique genotoxin produced by several pathogenic bacteria. The tripartite protein toxin is internalized into mammalian cells via endocytosis followed by retrograde transport to the ER. Upon translocation into the nucleus, CDT catalyzes the formation of DNA double-strand breaks (DSBs) due to its intrinsic endonuclease activity. In the present study, we compared the DNA damage response (DDR) in human fibroblasts triggered by recombinant CDT to that of ionizing radiation (IR), a well-known DSB inducer. Furthermore, we dissected the pathways involved in the detection and repair of CDT-induced DNA lesions. qRT-PCR array-based mRNA and western blot analyses showed a partial overlap in the DDR pattern elicited by CDT and IR, with strong activation of both the ATM-Chk2 and the ATR-Chk1 axis. In line with its in vitro DNase I-like activity on plasmid DNA, neutral and alkaline Comet assay revealed predominant induction of DSBs in CDT-treated fibroblasts, whereas irradiation of cells generated higher amounts of SSBs and alkali-labile sites. Using confocal microscopy, the dynamics of the DSB surrogate marker γ-H2AX was monitored after pulse treatment with CDT or IR. In contrast to the fast induction and disappearance of γ-H2AX-foci observed in irradiated cells, the number of γ-H2AX-foci induced by CDT were formed with a delay and persisted. 53BP1 foci were also generated following CDT treatment and co-localized with γ-H2AX foci. We further demonstrated that ATM-deficient cells are very sensitive to CDT-induced DNA damage as reflected by increased cell death rates with concomitant cleavage of caspase-3 and PARP-1. Finally, we provided novel evidence that both homologous recombination (HR) and non-homologous end joining (NHEJ) protect against CDT-elicited DSBs. In conclusion, the findings suggest that CDT functions as a radiomimetic agent and, therefore, is an attractive tool for selectively inducing persistent levels of DSBs and unveiling the associated cellular responses.  相似文献   

4.
The DNA damage response (DDR) arrests cell cycle progression until DNA lesions, like DNA double‐strand breaks (DSBs), are repaired. The presence of DSBs in cells is usually detected by indirect techniques that rely on the accumulation of proteins at DSBs, as part of the DDR. Such detection may be biased, as some factors and their modifications may not reflect physical DNA damage. The dependency on DDR markers of DSB detection tools has left questions unanswered. In particular, it is known that senescent cells display persistent DDR foci, that we and others have proposed to be persistent DSBs, resistant to endogenous DNA repair activities. Others have proposed that these peculiar DDR foci might not be sites of damaged DNA per se but instead stable chromatin modifications, termed DNA‐SCARS. Here, we developed a method, named ‘DNA damage in situ ligation followed by proximity ligation assay’ (DI‐PLA) for the detection and imaging of DSBs in cells. DI‐PLA is based on the capture of free DNA ends in fixed cells in situ, by ligation to biotinylated double‐stranded DNA oligonucleotides, which are next recognized by antibiotin anti‐bodies. Detection is enhanced by PLA with a partner DDR marker at the DSB. We validated DI‐PLA by demonstrating its ability to detect DSBs induced by various genotoxic insults in cultured cells and tissues. Most importantly, by DI‐PLA, we demonstrated that both senescent cells in culture and tissues from aged mammals retain true unrepaired DSBs associated with DDR markers.  相似文献   

5.
Rydberg B 《Radiation research》2000,153(6):805-812
The yield of DNA double-strand breaks (DSBs) in SV40 DNA irradiated in aqueous solution was found to increase by more than a factor of two as a result of postirradiation incubation of the DNA at 50 degrees C and pH 8.0 for 24 h. This is in agreement with data from studies performed at 37 degrees C that were published previously. Importantly, similar results were also obtained from irradiation of mammalian DNA in agarose plugs. These results suggest that heat-labile sites within locally multiply damaged sites are produced by radiation and are subsequently transformed into DSBs. Since incubation at 50 degrees C is typically employed for lysis of cells in commonly used pulsed-field gel assays for detection of DSBs in mammalian cells, the possibility that heat-labile sites are present in irradiated cells was also studied. An increase in the apparent number of DSBs as a function of lysis time at 50 degrees C was found with kinetics that was similar to that for irradiated DNA, although the magnitude of the increase was smaller. This suggests that heat-labile sites are also formed in the cell. If this is the case, a proportion of DSBs measured by the pulsed-field gel assays may occur during the lysis step and may not be present in the cell as breaks but as heat-labile sites. It is suggested that such sites consist mainly of heat-labile sugar lesions within locally multiply damaged sites. Comparing rejoining of DSBs measured with short and long lysis procedure indicates that the heat-labile sites are repaired with fast kinetics in comparison with repair of the bulk of DSBs.  相似文献   

6.
The DNA damage response (DDR) involves both the control of DNA damage repair and signaling to cell cycle checkpoints. Therefore, unraveling the underlying mechanisms of the DDR is important for understanding tumor suppression and cellular resistance to clastogenic cancer therapeutics. Because the DDR is likely to be influenced by chromatin regulation at the sites of DNA damage, we investigated the role of heterochromatin protein 1 (HP1) during the DDR process. We monitored double-strand breaks (DSBs) using the γH2AX foci marker and found that depleting cells of HP1 caused genotoxic stress, a delay in the repair of DSBs and elevated levels of apoptosis after irradiation. Furthermore, we found that these defects in repair were associated with impaired BRCA1 function. Depleting HP1 reduced recruitment of BRCA1 to DSBs and caused defects in two BRCA1-mediated DDR events: (i) the homologous recombination repair pathway and (ii) the arrest of cell cycle at the G2/M checkpoint. In contrast, depleting HP1 from cells did not affect the non-homologous end-joining (NHEJ) pathway: instead it elevated the recruitment of the 53BP1 NHEJ factor to DSBs. Notably, all three subtypes of HP1 seemed to be almost equally important for these DDR functions. We suggest that the dynamic interaction of HP1 with chromatin and other DDR factors could determine DNA repair choice and cell fate after DNA damage. We also suggest that compromising HP1 expression could promote tumorigenesis by impairing the function of the BRCA1 tumor suppressor.  相似文献   

7.
Low- and high-linear energy transfer (LET) ionising radiation are effective cancer therapies, but produce structurally different forms of DNA damage. Isolated DNA damage is repaired efficiently; however, clustered lesions may be more difficult to repair, and are considered as significant biological endpoints. We investigated the formation and repair of DNA double-strand breaks (DSBs) and clustered lesions in human fibroblasts after exposure to sparsely (low-LET; delivered by photons) and densely (high-LET; delivered by carbon ions) ionising radiation. DNA repair factors (pKu70, 53BP1, γH2AX, and pXRCC1) were detected using immunogold-labelling and electron microscopy, and spatiotemporal DNA damage patterns were analysed within the nuclear ultrastructure at the nanoscale level. By labelling activated Ku-heterodimers (pKu70) the number of DSBs was determined in electron-lucent euchromatin and electron-dense heterochromatin. Directly after low-LET exposure (5 min post-irradiation), single pKu70 dimers, which reflect isolated DSBs, were randomly distributed throughout the entire nucleus with a linear dose correlation up to 30 Gy. Most euchromatic DSBs were sensed and repaired within 40 min, whereas heterochromatic DSBs were processed with slower kinetics. Essentially all DNA lesions induced by low-LET irradiation were efficiently rejoined within 24 h post-irradiation. High-LET irradiation caused localised energy deposition within the particle tracks, and generated highly clustered DNA lesions with multiple DSBs in close proximity. The dimensions of these clustered lesions along the particle trajectories depended on the chromatin packing density, with huge DSB clusters predominantly localised in condensed heterochromatin. High-LET irradiation-induced clearly higher DSB yields than low-LET irradiation, with up to ∼500 DSBs per μm3 track volume, and large fractions of these heterochromatic DSBs remained unrepaired. Hence, the spacing and quantity of DSBs in clustered lesions influence DNA repair efficiency, and may determine the radiobiological outcome.  相似文献   

8.
Ionizing radiation induces prompt single-strand breaks and double-strand breaks in DNA. In addition, labile sites are induced that can be converted to breaks by heat or mild alkali. When such labile lesions are present within multiply damaged sites, additional double-strand breaks can form. Current protocols for measurement of DNA double-strand breaks involve a lysis step at an elevated temperature, and consequently breaks from heat-labile sites will be generated during lysis and will be included in the measurement. However, such sites may not develop into breaks within the cell and therefore may not need DNA double-strand break repair processes for elimination. We present here a new lysis and pulsed-field gel electrophoresis protocol that is carried out entirely at 0-4 degrees C and thus avoids inclusion of heat-labile sites in the measurement. The new recommended lysis procedure involves two steps: The first step includes proteinase K, which has sufficient activity at 0 degrees C to support lysis, and the second step includes a high-salt buffer to further free the DNA from proteins and other cellular structures. Using various tests, we conclude that lysis is sufficient with this procedure to allow accurate determination of double-strand breaks by pulsed-field gel electrophoresis. Using the new protocol, it was found that heat-labile sites account for 30% of the initial number of double-strand breaks measured by conventional protocols after exposure to low-LET radiation. In addition, we show that heat-labile sites that can be converted to double-strand breaks are repaired with fast kinetics and are almost completely eliminated after 1 h at 37 degrees C. A study of cells deficient in nonhomologous end joining reveals that the residual fast repair response typically seen in such cells is solely due to repair at heat-labile sites and is not due to repair of prompt DSBs.  相似文献   

9.
DNA double-strand breaks (DSBs) are extremely cytotoxic lesions with a single unrepaired DSB being sufficient to induce cell death. A complex signaling cascade, termed the DNA damage response (DDR), is in place to deal with such DNA lesions and maintain genome stability. Recent work by us and others has found that the signaling cascade activated by DSBs in mitosis is truncated, displaying apical, but not downstream, components of the DDR. The E3 Ubiquitin ligases RNF8, RNF168 and BRCA1, along with the DDR mediator 53BP1, are not recruited to DSB sites in mitosis, and activation of downstream checkpoint kinases is also impaired. Here, we show that RNF8 and RNF168 are recruited to DNA damage foci in late mitosis, presumably to prime sites for 53BP1 recruitment in early G1. Interestingly, we show that, although RNF8, RNF168 and 53BP1 are excluded from DSB sites during most of mitosis, they associate with mitotic structures such as the kinetochore, suggesting roles for these DDR factors during mitotic cell division. We discuss these and other recent findings and suggest how these novel data collectively contribute to our understanding of mitosis and how cells deal with DNA damage during this crucial cell cycle stage.Key words: mitosis, DNA damage response, DNA double-strand breaks, signaling cascade, chromatin  相似文献   

10.
Viruses can interact with host cell molecules responsible for the recognition and repair of DNA lesions, resulting in dysfunctional DNA damage response (DDR). Cells with inefficient DDR are more vulnerable to therapeutic approaches that target DDR, thereby raising DNA damage to a threshold that triggers apoptosis. Here, we demonstrate that 2 Jurkat-derived cell lines with incorporated silent HIV-1 provirus show increases in DDR signaling that responds to formation of double strand DNA breaks (DSBs). We found that phosphorylation of histone H2AX on Ser139 (gamma-H2AX), a biomarker of DSBs, and phosphorylation of ATM at Ser1981, Chk2 at Thr68, and p53 at Ser15, part of signaling pathways associated with DSBs, are elevated in these cells. These results indicate a DDR defect even though the virus is latent. DDR-inducing agents, specifically high doses of nucleoside RT inhibitors (NRTIs), caused greater increases in gamma-H2AX levels in latently infected cells. Additionally, latently infected cells are more susceptible to long-term exposure to G-quadruplex stabilizing agents, and this effect is enhanced when the agent is combined with an inhibitor targeting DNA-PK, which is crucial for DSB repair and telomere maintenance. Moreover, exposing these cells to the cancer drug etoposide resulted in formation of DSBs at a higher rate than in un-infected cells. Similar effects of etoposide were also observed in population of primary memory T cells infected with latent HIV-1. Sensitivity to these agents highlights a unique vulnerability of latently infected cells, a new feature that could potentially be used in developing therapies to eliminate HIV-1 reservoirs.  相似文献   

11.
DNA double-strand breaks (DSBs) are extremely cytotoxic with a single unrepaired DSB being sufficient to induce cell death. A complex signalling cascade, termed the DNA damage response (DDR), is in place to deal with such DNA lesions and maintain genome stability. Recent work by us and others has found that the signalling cascade activated by DSBs in mitosis is truncated, displaying apical, but not downstream, components of the DDR. The E3 Ubiquitin ligases RNF8, RNF168 and BRCA1, along with the DDR mediator 53BP1, are not recruited to DSB sites in mitosis, and activation of downstream checkpoint kinases is also impaired. Here, we show that RNF8 and RNF168 are recruited to DNA damage foci in late mitosis, presumably to prime sites for 53BP1 recruitment in early G1. Interestingly, we show that, although RNF8, RNF168 and 53BP1 are excluded from DSB sites during most of mitosis, they associate with mitotic structures such as the kinetochore, suggesting roles for these DDR factors during mitotic cell division. We discuss these and other recent findings and suggest how these novel data collectively contribute to our understanding of mitosis and how cells deal with DNA damage during this crucial cell cycle stage.  相似文献   

12.
During the DNA damage response (DDR), ubiquitination plays an important role in the recruitment and regulation of repair proteins. However, little is known about elimination of the ubiquitination signal after repair is completed. Here we show that the ubiquitin-specific protease 5 (USP5), a deubiquitinating enzyme, is involved in the elimination of the ubiquitin signal from damaged sites and is required for efficient DNA double-strand break (DSB) repair. Depletion of USP5 sensitizes cells to DNA damaging agents, produces DSBs, causes delayed disappearance of γH2AX foci after Bleocin treatment, and influences DSB repair efficiency in the homologous recombination pathway but not in the non-homologous end joining pathway. USP5 co-localizes to DSBs induced by laser micro-irradiation in a RAD18-dependent manner. Importantly, polyubiquitin chains at sites of DNA damage remained for longer periods in USP5-depleted cells. Our results show that disassembly of polyubiquitin chains by USP5 at sites of damage is important for efficient DSB repair.  相似文献   

13.
The cellular DNA damage response (DDR) machinery that maintains genomic integrity and prevents severe pathologies, including cancer, is orchestrated by signaling through protein modifications. Protein ubiquitylation regulates repair of DNA double-strand breaks (DSBs), toxic lesions caused by various metabolic as well as environmental insults such as ionizing radiation (IR). Whereas several components of the DSB-evoked ubiquitylation cascade have been identified, including RNF168 and BRCA1 ubiquitin ligases, whose genetic defects predispose to a syndrome mimicking ataxia-telangiectasia and cancer, respectively, the identity of the apical E1 enzyme involved in DDR has not been established. Here, we identify ubiquitin-activating enzyme UBA1 as the E1 enzyme required for responses to IR and replication stress in human cells. We show that siRNA-mediated knockdown of UBA1, but not of another UBA family member UBA6, impaired formation of both ubiquitin conjugates at the sites of DNA damage and IR-induced foci (IRIF) by the downstream components of the DSB response pathway, 53BP1 and BRCA1. Furthermore, chemical inhibition of UBA1 prevented IRIF formation and severely impaired DSB repair and formation of 53BP1 bodies in G1, a marker of response to replication stress. In contrast, the upstream steps of DSB response, such as phosphorylation of histone H2AX and recruitment of MDC1, remained unaffected by UBA1 depletion. Overall, our data establish UBA1 as the apical enzyme critical for ubiquitylation-dependent signaling of both DSBs and replication stress in human cells, with implications for maintenance of genomic integrity, disease pathogenesis and cancer treatment.  相似文献   

14.
15.
During the DNA damage response (DDR), chromatin modifications contribute to localization of 53BP1 to sites of DNA double-strand breaks (DSBs). 53BP1 is phosphorylated during the DDR, but it is unclear whether phosphorylation is directly coupled to chromatin binding. In this study, we used human diploid fibroblasts and HCT116 tumor cells to study 53BP1 phosphorylation at Serine-25 and Serine-1778 during endogenous and exogenous DSBs (DNA replication and whole-cell or sub-nuclear microbeam irradiation, respectively). In non-stressed conditions, endogenous DSBs in S-phase cells led to accumulation of 53BP1 and γH2AX into discrete nuclear foci. Only the frank collapse of DNA replication forks following hydroxyurea treatment initiated 53BP1Ser25 and 53BP1Ser1778 phosphorylation. In response to exogenous DSBs, 53BP1Ser25 and 53BP1Ser1778 phosphoforms localized to sites of initial DSBs in a cell cycle-independent manner. 53BP1 phosphoforms also localized to late residual foci and associated with PML-NBs during IR-induced senescence. Using isogenic cell lines and small-molecule inhibitors, we observed that DDR-induced 53BP1 phosphorylation was dependent on ATM and DNA-PKcs kinase activity but independent of MRE11 sensing or RNF168 chromatin remodeling. However, loss of RNF168 blocked recruitment of phosphorylated 53BP1 to sites of DNA damage. Our results uncouple 53BP1 phosphorylation from DSB localization and support parallel pathways for 53BP1 biology during the DDR. As relative 53BP1 expression may be a biomarker of DNA repair capacity in solid tumors, the tracking of 53BP1 phosphoforms in situ may give unique information regarding different cancer phenotypes or response to cancer treatment.  相似文献   

16.
Ramadan K  Meerang M 《FEBS letters》2011,585(18):2868-2875
Damaged DNA leads to genomic instability that causes many diseases such as cancer. Cells evolved the DNA damage response (DDR), which recognizes and efficiently repairs damaged DNA through the action of highly coordinated signalling mechanisms. Recently, a non-degradation-linked Lys(K)63-ubiquitin signal emerged as a signalling pathway essential for orchestration of the DDR after DNA double strand breaks (DSBs). How the ubiquitin-dependent proteasomal degradation system (UPS) coordinates DDR after DSBs is still poorly understood. Here, we review the evidence, suggesting the involvement of the degradation-linked K48-ubiquitin signal and the proteasome at the sites of DSBs. Based on this we propose the UPS as a central element in the orchestration of the DDR at the sites of DSBs. The suggested model is also discussed in the context of anti-cancer therapy.  相似文献   

17.
DNA double-strand breaks (DSBs) and locally multiply damaged sites (LMDS) induced by ionizing radiation (IR) are considered to be very genotoxic in mammalian cells. LMDS consist of two or more clustered DNA lesions including oxidative damage locally formed within one or two helical turns by single radiation tracks following local energy deposition. They are thought to be frequently induced by IR but not by normal oxidative metabolism. In mammalian cells, LMDS are detected after specific enzymatic treatments transforming these lesions into additional DSBs that can be revealed by pulsed-field gel electrophoresis (PFGE). Here, we studied radiation-induced DSBs and LMDS in Chinese hamster ovary cells (CHO-K1). After addition of the iron chelator deferoxamine (DFO) or the antioxidant glutathione (GSH) to the cell lysis solution, we observed reduced spontaneous DNA fragmentation and a clear dose-dependent increase of radiation-induced DSBs. LMDS induction, however, was close to background levels, independently of dose, dose rate, temperature and radiation quality (low and high LET). Under these experimental conditions, artefactual oxidative DNA damage during cell lysis could not anymore be confounded with LMDS. We thus show that radiation-induced LMDS composed of oxidized purines or pyrimidines are much less frequent than hitherto reported, and suggest that they may be of minor importance in the radiation response than DSBs. We speculate that complex DSBs with oxidized ends may constitute the main part of radiation-induced clustered lesions. However, this needs further studies.  相似文献   

18.
High linear energy transfer (LET) ionising radiation (IR) such as radon-derived alpha particles and high mass, high energy (HZE) particles of cosmic radiation are the predominant forms of IR to which humanity is exposed throughout life. High-LET forms of IR are established carcinogens relevant to human cancer, and their potent mutagenicity is believed, in part, to be due to a greater incidence of clustered DNA double strand breaks (DSBs) and associated lesions, as ionization events occur within a more confined genomic space. The repair of such DNA damage is now well-documented to occur with slower kinetics relative to that induced by low-LET IR, and to be more reliant upon homology-directed repair pathways. Underlying these phenomena is the relative inability of non-homologous end-joining (NHEJ) to adequately resolve high-LET IR-induced DSBs. Current findings suggest that the functionality of the DNA-dependent protein kinase (DNA-PK), comprised of the Ku70-Ku80 heterodimer and the DNA-PK catalytic subunit (DNA-PKcs), is particularly perturbed by high-LET IR-induced clustered DSBs, rendering DNA-PK dependent NHEJ less relevant to resolving these lesions. By contrast, the NHEJ-associated DNA processing endonuclease Artemis shows a greater relevance to high-LET IR-induced DSB repair. Here, we will review the cellular response to high-LET irradiation, the implications of the chronic, low-dose modality of this exposure and molecular pathways that respond to high-LET irradiation induced DSBs, with particular emphasis on NHEJ factors.  相似文献   

19.
Chromatin modifications are an important component of the of DNA damage response (DDR) network that safeguard genomic integrity. Recently, we demonstrated nucleotide excision repair (NER)–dependent histone H2A ubiquitination at sites of ultraviolet (UV)-induced DNA damage. In this study, we show a sustained H2A ubiquitination at damaged DNA, which requires dynamic ubiquitination by Ubc13 and RNF8. Depletion of these enzymes causes UV hypersensitivity without affecting NER, which is indicative of a function for Ubc13 and RNF8 in the downstream UV–DDR. RNF8 is targeted to damaged DNA through an interaction with the double-strand break (DSB)–DDR scaffold protein MDC1, establishing a novel function for MDC1. RNF8 is recruited to sites of UV damage in a cell cycle–independent fashion that requires NER-generated, single-stranded repair intermediates and ataxia telangiectasia–mutated and Rad3-related protein. Our results reveal a conserved pathway of DNA damage–induced H2A ubiquitination for both DSBs and UV lesions, including the recruitment of 53BP1 and Brca1. Although both lesions are processed by independent repair pathways and trigger signaling responses by distinct kinases, they eventually generate the same epigenetic mark, possibly functioning in DNA damage signal amplification.  相似文献   

20.
DNA damage generated by high-energy and high-Z (HZE) particles is more skewed toward multiply damaged sites or clustered DNA damage than damage induced by low-linear energy transfer (LET) X and gamma rays. Clustered DNA damage includes abasic sites, base damages and single- (SSBs) and double-strand breaks (DSBs). This complex DNA damage is difficult to repair and may require coordinated recruitment of multiple DNA repair factors. As a consequence of the production of irreparable clustered lesions, a greater biological effectiveness is observed for HZE-particle radiation than for low-LET radiation. To understand how the inability of cells to rejoin DSBs contributes to the greater biological effectiveness of HZE particles, the kinetics of DSB rejoining and cell survival after exposure of normal human skin fibroblasts to a spectrum of HZE particles was examined. Using gamma-H2AX as a surrogate marker for DSB formation and rejoining, the ability of cells to rejoin DSBs was found to decrease with increasing Z; specifically, iron-ion-induced DSBs were repaired at a rate similar to those induced by silicon ions, oxygen ions and gamma radiation, but a larger fraction of iron-ion-induced damage was irreparable. Furthermore, both DNA-PKcs (DSB repair factor) and 53BP1 (DSB sensing protein) co-localized with gamma-H2AX along the track of dense ionization produced by iron and silicon ions and their focus dissolution kinetics was similar to that of gamma-H2AX. Spatial co-localization analysis showed that unlike gamma-H2AX and 53BP1, phosphorylated DNA-PKcs was localized only at very specific regions, presumably representing the sites of DSBs within the tracks. Examination of cell survival by clonogenic assay indicated that cell killing was greater for iron ions than for silicon and oxygen ions and gamma rays. Collectively, these data demonstrate that the inability of cells to rejoin DSBs within clustered DNA lesions likely contributes to the greater biological effectiveness of HZE particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号