首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To investigate the cause of variation in the interspecific crossability of Brassica napus, three different genotypes were studied in respect of their reproductive behavior after pollination with B. juncea. There were great differences among maternal genotypes in allowing foreign pollen to germinate on and penetrate into their stigmas, leading to a wide diversity of interspecific fertilization. The division of the hybrid primary endosperm nucleus and zygote appeared normal in all combinations of crosses. While the abundant free nuclei of the endosperm developed properly and never became cellular, the embryos degenerated as early as 10 days after pollination when the cultivar Rucabo, which had the highest fertilization record with species of B. juncea, was involved. When 81007 was used as female parent, the endosperm grew a little but the embryo halted at the heart-torpedo stage. Lack of nourishment might be responsible for the observed embryo abortion. Among the sic hybrid combinations, the cross 84014A x Changyang hunagjie was the only one where endosperm tissue was observable and an abnormal embryo occurred prior to cellular endosperm formation. Apart from the three typical embryological features, significant variation was also demonstrated among each of the cross combinations. Genetic diversity appears to exist not only between varieties, but also within cultivars. In addition, methods for developing interspecific crossable lines are discussed.  相似文献   

2.
B. M. Kapoor 《Genetica》1966,37(1):557-568
A study of the cytology of endosperm ofPisum sativum, pea, fixed at different stages of development reveals that it remains free nuclear throughout its entire life. The nuclei are extremely polymorphic and differ in size from each other. The nuclei increase proportionately in size with the advancement in endosperm age.The haploid chromosome number of the taxon was verified asn=7. The endosperm nuclei were normally triploid with 3n=21 chromosomes, but higher polyploidy (6n and 12n) and aneuploidy were also recorded in small proportions. Nuclear fusions and aberrations such as irregular separation of chromosomes, sticky bridges and laggards are believed to be responsible for the origin of polyploid nuclei.Accumulation of mitotic aberrations including bridges and laggards are considered to result in reduced divisional activity thereby leading to endosperm breakdown with the consequent low seed set in some cases.  相似文献   

3.
Cytological observations on the endosperm ofZephyranthes grandiflora have shown that the endosperm is triploid in general, with 3n=36 chromosomes, but that nuclei of higher polyploidy also occur. Wall formation started at 7 days after pollination and the 9 day old endosperm was completely cellular. Maximum variation in size and shape of nuclei was recorded in the 8 day old endosperm. No, similar variation was observed in the root tip nuclei. Polyploidy by endomitosis, and probably also by fusion of nuclei, together with aneuploidy may be responsible for the nuclear variation in the endosperm. The low seed setting has been attributed to the failure of endosperm resulting from the mitotic irregularities which characterized the collapsing endosperm.  相似文献   

4.
Gametophytic apomixis, asexual reproduction involving megagametophytes, occurs in many flowering-plant families and as several variant mechanisms. Developmental destabilization of sexual reproduction as a result of hybridization and/or polyploidy appears to be a general trigger for its evolution, but the evidence is complicated by ploidy-level changes and hybridization occurring with facultative apomixis. The repeated origins of polyploid apomictic complexes in the palaeopolyploid Maloid Rosaceae suggest a new model of evolutionary transitions that may have wider applicability. Two conjectures are fundamental to this model: (1) that as previously suggested by Rutishauser, like many sexual flowering plants the polyploid apomicts require maternal–paternal balance in the second fertilization event that gives rise to the endosperm, and (2) that the observed variation in endosperm ploidy levels relates less to flexibility late in development than to the known variation in developmental origin of the megagametophyte between mechanisms loosely categorized as diplospory and apospory. The model suggests explanations for the relative frequencies of apospory and diplospory, and for the wide but incomplete associations of apospory with a pollination requirement (pseudogamy) and of diplospory with autonomous development of the endosperm. It is suggested that pollination from other taxa may provide some adaptive advantage to pseudogamous apospory. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Summary Chromatin structure was studied in nuclei of the endosperm of durum wheat (Triticum durum Desf., cv. Creso), where a large number of cells undergo chromosome endoreduplication during caryopsis development. Optical density profiles of interphase nuclei at different ploidy levels after Feulgen staining were determined cytophotometrically. It was observed that, within each development stage, polyploid nuclei (6–12C and 12–24C) show more condensed chromatin than euploid nuclei (3–6C): this should indicate that endoreduplication is accompanied by some reduction of nuclear activity. Within the same ploidy level, 3–6C and 6–12C nuclei become increasingly condensed with development (except for the last stage), while 12-24C nuclei are identical at all stages. DNA methylation at different stages of caryopsis development was then analyzed in genomic DNA, highly repeated sequences and ribosomal DNA, by digestion with cytosine-methylation-sensitive restriction enzymes. We observed that (i), depending on the enzyme, DNA from caryopses may show higher mean length than DNA from shoot apices and variations occur during endosperm development; (ii) highly repeated DNA sequences also show some variation in base methylation between apices and endosperms and among endosperm development stages, even though to a lesser extent than genomic DNA; (iii) rDNA shows variations only between endosperm and apices while no variation was observed among endosperm development stages in relation to chromosome endoreduplication. Our data may be explained by assuming the occurrence, during endosperm development, of processes of chromatin condensation possibly involved in silencing the activity of extra copies of DNA resulting from chromosome endoreduplication. At least in part, DNA methylation is involved in the process of chromatin condensation. rDNA shows no variation during endosperm development: this suggests that rDNA copies are actively transcribed in both triploid and endoreduplicated nuclei.  相似文献   

6.
 It is generally accepted that most angiosperms require an accurate balance between maternal and paternal genome contribution for endosperm development. The endosperm balance number (EBN) hypothesis postulates that each species has an effective number which must be in a 2:1 maternal to paternal ratio for normal endosperm development and seed formation. The aim of this work was to investigate the effect of different sources and ploidy levels of pollen donors on endosperm formation and seed production of aposporous tetraploid (2n=4×=40) Paspalum notatum. Hand-emasculated spikelets of an apomictic 4× plant were dusted with pollen of 2×, 4×, 5×, 6× and 8× races of the same species; 3× and 4× races of a phylogenetically closely related species, P. cromyorrhizon; and 2× and 4× races of P. simplex, a species of a different subgenus. Experiments including self-pollination as well as emasculation without pollination were conducted for controls. Results indicated that apomictic 4×P. notatum is a pseudogamous species with effective fertilization of the two unreduced (2n) polar nuclei by a reduced (n) sperm. Endosperm development and seed production occurred independently of the species or the ploidy level of the pollen donor. However, seed germination rates were significantly lower than in the self-pollinated control when the pollen donor was 3×P. cromyorrhizon or 2× and 4×P. simplex. Aposporous embryo sacs in Paspalum contribute to endosperm formation with two unreduced (2n) polar nuclei, while the male contribution is the same as in sexual plants (n). Since sexual Paspalum plants fit the EBN hypothesis, the EBN insensitivity observed in apomictic plants might be a prerequisite for the spread of pseudogamous apomixis. The EBN insensitivity could have arisen as an imprinting consequence of a high maternal genome contribution. Received: 20 February 1998 / Revision accepted: 21 October 1998  相似文献   

7.
Summary The boeoticum () X urartu () F1 hybrids gave small, plump and viable seeds while the reciprocal crosses with T. urartu as the female parent had long, shrivelled and non-viable seeds. Reciprocal nuclear-substitution lines comprising the nucleus of one species into the cytoplasm of the other were developed through repeated backcrossing and were crossed as female parents with respective non-recurrent parents (the cytoplasm donors). The difference between the reciprocal crosses was presumably attributable to different boeoticum urartu genomic ratios in the triploid endosperm rather than to the cytoplasmic difference between the diploid wheats. The endosperm with two doses of the boeoticum and one of the urartu genome resulted in small, plump and viable seed while the endosperm of the reciprocal crosses with two doses of the urartu and one of the boeoticum genome led to large but shrivelled and non-viable seeds irrespective of the cytoplasmic type. One dose of the paternal genome in the triploid endosperm is probably not expressed in the presence of two doses of the maternal genome thereby leading to the difference between the reciprocal crosses. The results reported here indicate that difference between reciprocal crosses may not always be attributed to cytoplasmic difference between the parental species.  相似文献   

8.
Autonomous endosperm was found in unfertilized ovules of V. odorata L. cultured on MS medium supplemented with 2,4-D as a sole growth regulator or on media with 2,4-D and BAP or kinetin. Frequency of endosperm induction was approximately 9% in ovules analyzed. The induction rate depended mainly on genotype of the donor plant, and to lesser degrees, on floral stage, flower series and medium type. Multinuclear endosperms consisting of 10–37 nuclei were found in ovules after as few as 4 days of culture. In some ovules at this stage, the egg cell and two polar nuclei were present. The process of endosperm degeneration began after 3 weeks of culture. In some ovules, degenerating autonomous endosperm was observed up to the 7th week. Parthenogenetic development of egg cells or apogamy did not accompany autonomous endosperm, supporting the hypothesis of independent pathways for embryo and endosperm development. Received: 1 December 1998 / Revision accepted: 6 April 1999  相似文献   

9.
The mechanism and regulation of coffee seed germination were studied in Coffea arabica L. cv. Rubi. The coffee embryo grew inside the endosperm prior to radicle protrusion and abscisic acid (ABA) inhibited the increase in its pressure potential. There were two steps of endosperm cap weakening. An increase in cellulase activity coincided with the first step and an increase in endo--mannanase (EBM) activity with the second step. ABA inhibited the second step of endosperm cap weakening, presumably by inhibiting the activities of at least two EBM isoforms and/or, indirectly, by inhibiting the pressure force of the radicle. The increase in the activities of EBM and cellulase coincided with the decrease in the force required to puncture the endosperm and with the appearance of porosity in the cell walls as observed by low-temperature scanning electronic microscopy. Tissue printing showed that EBM activity was spatially regulated in the endosperm. Activity was initiated in the endosperm cap whereas later during germination it could also be detected in the remainder of the endosperm. Tissue printing revealed that ABA inhibited most of the EBM activity in the endosperm cap, but not in the remainder of the endosperm. ABA did not inhibit cellulase activity. There was a transient rise in ABA content in the embryo during imbibition, which was likely to be responsible for slow germination, suggesting that endogenous ABA also may control embryo growth potential and the second step of endosperm cap weakening during coffee seed germination.  相似文献   

10.
Partial endosperm development without paternal genome involvement was induced in unpollinated ovaries of wild-type Arabidopsis thaliana cultured in vitro. Unpollinated pistils were cultured on hormone-free Murashige and Skoog (MS) medium with addition of 6% sucrose and supplemented with: benzylaminopurine (BAP; 2 mg l–1) combined with naphthylacetic acid (NAA; 0.1 mg l–1), 2,4-dichlorophenoxyacetic acid (2,4-D; explants exposed to 1-h auxin shock 20 or 40 mg l–1, and transferred to hormone-free MS medium). Initiation of autonomous endosperm (AE) development was induced on all media used in 54 ovules from 39 cultured ovaries (26%), with an average frequency of 1.4 ovules/ovary. The highest frequency of partial endosperm formation occurred on media combining the two growth regulators BAP and NAA (59% of ovaries had ovules with AE), although endosperm development was also induced on hormone-free medium (in 20.5% of ovaries). The number of AE nuclei ranged from 2 to ~50, depending on the day of culture and medium; neither cellularization nor differentiation on specific regions typical for endosperm of wild-type Arabidopsis, were noted. Fertilization independent endosperm most probably originated from the secondary nucleus, but involvement of the polar nuclei could not be excluded, as indicated by nuclear size and structure. In vitro conditions did not influence egg cell proliferation. Gynogenic embryos were observed neither in the ovules with autonomous endosperm nuclei nor in ovules without endosperm induction.  相似文献   

11.
Duan  Luning  Han  Shichen  Wang  Ke  Jiang  Peihong  Gu  Yunsong  Chen  Lin  Mu  Junyi  Ye  Xingguo  Li  Yaxuan  Yan  Yueming  Li  Xiaohui 《Plant molecular biology》2020,102(1-2):225-237
Key message

The specific and high-level expression of 1Ax1 is determined by different promoter regions. HMW-GS synthesis occurs in aleurone layer cells. Heterologous proteins can be stored in protein bodies.

Abstract

High-molecular-weight glutenin subunit (HMW-GS) is highly expressed in the endosperm of wheat and relative species, where their expression level and allelic variation affect the bread-making quality and nutrient quality of flour. However, the mechanism regulating HMW-GS expression remains elusive. In this study, we analyzed the distribution of cis-acting elements in the 2659-bp promoter region of the HMW-GS gene 1Ax1, which can be divided into five element-enriched regions. Fragments derived from progressive 5′ deletions were used to drive GUS gene expression in transgenic wheat, which was confirmed in aleurone layer cells, inner starchy endosperm cells, starchy endosperm transfer cells, and aleurone transfer cells by histochemical staining. The promoter region ranging from ??297 to ??1 was responsible for tissue-specific expression, while fragments from ??1724 to ??618 and from ??618 to ??297 were responsible for high-level expression. Under the control of the 1Ax1 promoter, heterologous protein could be stored in the form of protein bodies in inner starchy endosperm cells, even without a special location signal. Our findings not only deepen our understanding of glutenin expression regulation, trafficking, and accumulation but also provide a strategy for the utilization of wheat endosperm as a bioreactor for the production of nutrients and metabolic products.

  相似文献   

12.
Barron C  Parker ML  Mills EN  Rouau X  Wilson RH 《Planta》2005,220(5):667-677
Endosperm cell walls of cultivars of wheat (Triticum aestivum L.) selected for their endosperm texture (two soft and two hard) were analysed in situ by Fourier transform infrared (FTIR) microspectroscopy. FTIR imaging coupled with statistical analysis was used to map the compositional and structural heterogeneity within transverse sections from which cell contents had been removed by sonication. In the majority of grains analysed, two distinct populations of endosperm cells could be identified by spectral features that were related to cell morphology and age, regardless of cultivar. The main cell-wall component responsible for these differences was the polysaccharide arabinoxylan. In a few samples, this heterogeneity was absent, for reasons that are not understood, but this was not correlated to endosperm texture or growth conditions. Within the same population of endosperm cells, cell walls of hard endosperm could be distinguished from those of soft endosperm by their spectral features. Compared to hard cultivars, the peripheral endosperm of soft cultivars was characterised by a higher amount of polymer, whose spectral feature was similar to water-extractable arabinoxylan. In contrast, no specific compound has been identified in the central endosperm: structural differences within the polysaccharides probably contribute to the distinction between hard and soft cultivars. In developing grain, a clear difference in the composition of the endosperm cell walls of hard and soft wheat cultivars was observed as early as 15 days after anthesis.  相似文献   

13.
Abstract

The process of cellularization of the endosperm was studied in Ipomoea purpurea Roth and Cytinus hypocistis L. In both the examined species normal cytochinesis, involving the formation of the phragmoplast, characterizes the change from the nuclear to cellular condition. Nevertheless, some ultrastructural aspects of the cell wall initiation seem to indicate that the modality of freely-growing walls cannot be excluded. The hypothesis of a unique method of wall initiation for the endosperm of the nuclear type, formulated by some Authors, is discussed.  相似文献   

14.
Summary Using techniques of starch gel zone electrophoresis, a considerable variation among esterase and leucine aminopeptidase isoenzyme patterns was found in the endosperm of dormant seeds of Norway spruce (Picea abies). Since the so-called primary endosperm of conifers is only a further developmental stage of the haploid female gametophyte, simple Mendelian segregations can be determined in seeds of individual open-pollinated trees. It was therefore possible to identify some esterase and leucine aminopeptidase loci only with regard to phenotypic frequency distributions without difficult crossing procedures.

Angenommen durch G. Melchers  相似文献   

15.
Many endosperm traits are related to grain quality in cereal crops. Endosperm traits are mainly controlled by the endosperm genome but may be affected by the maternal genome. Studies have shown that maternal genotypic variation could greatly influence the estimation of the direct effects of quantitative trait loci (QTLs) underlying endosperm traits. In this paper, we propose methods of interval mapping of endosperm QTLs using seeds of F2 or BC1 (an equal mixture of F1 x P1 and F1 x P2 with F1 as the female parent) derived from a cross between 2 pure lines (P1 x P2). The most significant advantage of our experimental designs is that the maternal effects do not contribute to the genetic variation of endosperm traits and therefore the direct effects of endosperm QTLs can be estimated without the influence of maternal effects. In addition, the experimental designs can greatly reduce environmental variation because a few F1 plants grown in a small block of field will produce sufficient F2 or BC1 seeds for endosperm QTL analysis. Simulation studies show that the methods can efficiently detect endosperm QTLs and unbiasedly estimate their positions and effects. The BC1 design is better than the F2 design.  相似文献   

16.
Baroux C  Fransz P  Grossniklaus U 《Planta》2004,220(1):38-46
Somatic polyploidization is recognized as a means to increase gene expression levels in highly active metabolic cells. The most common mechanisms are endoreplication, endomitosis and cell fusion. In animals and plants the nuclei of multinucleate cells are usually prevented from fusing. Here, we report that the nuclei from the syncytial cyst of the chalazal endosperm of Arabidopsis thaliana (L.) Heynh. are polyploid with some intermediate ploidy levels that cannot be attributed to endoreplication, suggesting nuclear fusion. Analysis of isolated nuclei, together with fluorescent in situ hybridization (FISH), revealed that nuclei from the chalazal endosperm are two or three times bigger than the nuclei from the peripheral endosperm and have a corresponding increase in ploidy. Together with the consistent observation of adjoined nuclei, we propose that nuclear fusion contributes, at least in part, to the process of polyploidization in the chalazal endosperm. Confocal analysis of intact seeds further suggested that free nuclei from the peripheral endosperm get incorporated into the chalazal cyst and likely participate in nuclear fusions.Abbreviations BAC Bacterial artificial chromosome - CZE Chalazal endosperm - DAPI 4,6-Diamino-2-phenylindole - FISH Fluorescent in situ hybridization - NOR Nucleolar organizing region - NCD Nuclear cytoplasmic domain - PEN Peripheral endosperm  相似文献   

17.
In most eudicot and monocot species, interspecific and interploidy crosses generally display abnormalities in the endosperm that are the major cause of a post‐zygotic hybridization barrier. In some eudicot species, however, this type of hybridization barrier can be overcome by the manipulation of ploidy levels of one parental species, suggesting that the molecular mechanisms underlying the species hybridization barrier can be circumvented by genome dosage. We previously demonstrated that endosperm barriers in interspecific and interploidy crosses in the genus Oryza involve overlapping but different mechanisms. This result contrasts with those in the genus Arabidopsis, which shows similar outcomes in both interploidy and interspecific crosses. Therefore, we postulated that an exploration of pathways for overcoming the species hybridization barrier in Oryza endosperm, by manipulating the ploidy levels in one parental species, might provide novel insights into molecular mechanisms. We showed that fertile hybrid seeds could be produced by an interspecific cross of female tetraploid Oryza sativa and male diploid Oryza longistaminata. Although the rate of nuclear divisions did not return to normal levels in the hybrid endosperm, the timing of cellularization, nucellus degeneration and the accumulation of storage products were close to normal levels. In addition, the expression patterns of the imprinted gene MADS87 and YUCCA11 were changed when the species barrier was overcome. These results suggest that the regulatory machinery for developmental transitions and imprinted gene expression are likely to play a central role in overcoming species hybridization barriers by genome dosage in the genus Oryza.  相似文献   

18.
Among angiosperms there is a high degree of variation in embryo/endosperm size in mature seeds. However, little is known about the molecular mechanism underlying size control between these neighboring tissues. Here we report the rice GIANT EMBRYO (GE) gene that is essential for controlling the size balance. The function of GE in each tissue is distinct, controlling cell size in the embryo and cell death in the endosperm. GE, which encodes CYP78A13, is predominantly expressed in the interfacing tissues of the both embryo and endosperm. GE expression is under negative feedback regulation; endogenous GE expression is upregulated in ge mutants. In contrast to the loss‐of‐function mutant with large embryo and small endosperm, GE overexpression causes a small embryo and enlarged endosperm. A complementation analysis coupled with heterofertilization showed that complementation of ge mutation in either embryo or endosperm failed to restore the wild‐type embryo/endosperm ratio. Thus, embryo and endosperm interact in determining embryo/endosperm size balance. Among genes associated with embryo/endosperm size, REDUCED EMBRYO genes, whose loss‐of‐function causes a phenotype opposite to ge, are revealed to regulate endosperm size upstream of GE. To fully understand the embryo–endosperm size control, the genetic network of the related genes should be elucidated.  相似文献   

19.
Summary In the endosperm ofEchinocystis lobata the endopolyploid nuclei show structural changes of chromocentres typical of the process of endomitosis in Angiosperms.The cytological differentiation of the endosperm proper and the chalazal haustorium in three further representatives of theCucurbitaceae: Sicyos angulata, Cyclanthera pedata andCitrullus colocynthis is also connected with endomitotic polyploidisation. The nuclei of the endosperm proper attain in the different species different levels of polyploidy, 384n, as a maximum. In the nuclei of the chalazal haustorium the degree of polyploidy is lower (as a maximum 24n).The structure of polyploid nuclei which did not undergo postendomitotic mitoses shows some differences in the species studied in the course of the present work.Sicyos angulata has prochromosomic diploid nuclei, whereas those ofCitrullus colocynthis andCyclanthera pedata can be assigned to chromomeric nuclei with a dense structure. Endopolyploid nuclei of all three species studied are characterized by the occurence of compact chromocentres of different size; besides in some nuclei ofSicyos angulata andCyclanthera pedata the chromocentres within the resting nucleus reveal their chromomere structure. In addition, inCitrullus colocynthis nuclei with numerous thin threads of various degrees of spiralisation have been observed. — In all three species the endopolyploid nuclei after mitotic divisions have notably higher numbers of nucleoli and small chromocentres.Dedicated to Professor L.Geitler on the occasion of his 70th birthday.  相似文献   

20.
The cellular pathway of sucrose transfer from the endosperm cavity to the starchy endosperm of developing grains of wheat (Triticum turgidum) has been elucidated. The modified aleurone and sub-aleurone cells exhibit a dense cytoplasm enriched in mitochondria and endoplasmic relicilium. Significantly, the sub-aleurone cells are characterized by secondary wall ingrowths. Numerous plasmodesmata interconnect all cells between the modified aleurone and starchy endosperm. The pro-tonophore carbonylcyanide-m-chlorophenyl hydrazone (CCCP) slowed [14C]sucrose uptake by grain tissue slices enriched in modified aleurone and sub-aleurone cells but had no effect on uptake by the starchy endosperm. The fluorescent weak acid sulphorhodamine G (SRG) was preferentially accumulated by the modified aleurone and sub-aleurone cells, and this uptake was sensitive to CCCP. The combined plasma membrane surface areas of the modified aleurone and sub-aleurone cells appeared to be sufficient to support the in vivo rates of sucrose transfer to the starchy endosperm. Plasmolysis of intact excised grain inhibited [14C]sucrose transfer from the endosperm cavity to the starchy endosperm. The sulphydryl group modifier p-chloromercuribenzenesulphonie acid (PCMBS) decreased [14C]sucrose uptake by the modified aleurone and sub-aleurone cells but had little effect on uptake by the starchy endosperm. In contrast, when PCMBS and [14C]sucrose were supplied to the endosperm cavity of intact excised grain, PCMBS slowed accumulation by all tissues equally. Estimates of potential sucrose fluxes through the interconnecting plasmodesmata were found to be within the published range. It is concluded that the bulk of sucrose is accumulated from the endosperm cavity by the modified aleurone and sub-aleurone cells and subsequently transferred through the symplast to the starchy endosperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号