首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The majority of infectious diseases are initiated by adhesion of pathogenic organisms to the tissues of the host. In many cases, this adhesion is mediated by lectins present on the surface of the infectious organism that bind to complementary carbohydrates on the surface of the host tissues. Lectin-deficient mutants often lack ability to initiate infection. Soluble carbohydrates recognized by the bacterial lectins block the adhesion of the bacteria to animal cells in vitro. Moreover, they have also been shown to protect against experimental infection by lectin-carrying bacteria in different organs of mammals such as mice, rabbits, calves and monkeys.In a phase II clinical trial, a pentasaccharide shown to have anti-adhesive activity against Streptococcus pneumoniae and Hemophilus influenzae in vitro failed to protect young children from nasopharyngeal colonization with these organisms and from developing otitis media. This could be because insufficient drug was delivered via nasal spray, because bacteria express multiple specificities, the inhibition of which may require a cocktail of oligosaccharides, or because children have different carbohydrate receptors from those of adults. The results of a clinical trial in which N-acetylneuraminyl(2-3)lactose was administered orally to Helicobacter pylori positive patients in an effort to reduce or eradicate bacterial colonization, are awaited with interest.Although the high cost of production of the required oligosaccharides is falling with the recent introduction of enzymatic methods of synthesis, new technologies, in particular the use of engineered bacteria, promise to lower it even further. Attachment of the oligosaccharides to soluble polymeric carriers will increase greatly their effectiveness as anti-adhesion agents. There is no doubt that anti-adhesive oligosaccharides will in the near future join the arsenal of drugs for the therapy of bacterial diseases.  相似文献   

2.
Bacterial lectins, cell-cell recognition and infectious disease   总被引:24,自引:0,他引:24  
N Sharon 《FEBS letters》1987,217(2):145-157
Numerous bacterial strains produce surface lectins, commonly in the form of fimbriae that are filamentous assemblies of protein subunits. Among the best characterized of these are the type 1 (mannose specific) fimbrial lectins of Escherichia coli that consist almost exclusively of one class of subunit with a molecular mass of 17 kDa. They possess an extended combining site corresponding to a trisaccharide and preferentially bind carbohydrate units of oligomannose or hybrid type. Type 1 fimbriae also possess a hydrophobic region close to the carbohydrate-binding site, since aromatic alpha-mannosides inhibit strongly (up to 1000-times more than methyl alpha-mannoside) the agglutination of yeasts by the bacteria and the adherence of the latter to pig ileal epithelial cells. The combining sites of type 1 fimbriae of the salmonellae and of other enteric bacteria are different from those of E. coli in that they are smaller and do not possess a hydrophobic region. The various bacterial surface lectins appear to function primarily in the initiation of infection by mediating bacterial adherence to epithelial cells, e.g. in the urinary and gastrointestinal tracts. The mannose specific lectins also act as recognition molecules in lectinophagocytosis (i.e. phagocytosis of the bacteria in the absence of opsonins) by mouse, rat and human peritoneal macrophages, and human polymorphonuclear leukocytes. Affinity chromatography of membrane lysates from human polymorphonuclear leukocytes on immobilized type 1 fimbrial lectin, using methyl alpha-mannoside as eluent, showed that glycoproteins with apparent molecular masses of 70-80, 100 and 150 kDa act as receptors for the bacteria. Inhibition experiments with monoclonal antibodies suggest that the glycoprotein bands of 100 and 150 kDa may be identical with the alpha and beta subunits of leukocyte complement receptors and adhesion glycoproteins involved in complement-mediated opsonophagocytosis. The systems described serve as a fine illustration for the biological role of lectin-carbohydrate interactions. Further studies of these systems will lead to a deeper understanding of the molecular basis of infectious diseases, and perhaps also to new approaches for their prevention.  相似文献   

3.
Proteinaceous stalks produced by Gram-negative bacteria are often used to adhere to environmental surfaces. Among them, chaperone-usher (CU) fimbriae adhesins, related to prototypical type 1 fimbriae, interact in highly specific ways with different ligands at different stages of bacterial infection or surface colonisation. Recent analyses revealed a large number of potential and often "cryptic" CU fimbriae homologues in the genome of commensal and pathogenic Escherichia coli and closely related bacteria. We propose that CU fimbriae form a yet unexplored arsenal of lectins, carbohydrate-binding proteins involved in various aspects of bacterial surface adhesion and tissue tropism. Combined efforts of molecular and structural biologists will be required to unravel the biological contribution of the bacterial lectome, however, current progress has already opened up new perspectives in the design of novel anti-infective strategies.  相似文献   

4.
An overwhelming number of infectious diseases in both humans and animals are initiated by bacterial adhesion to carbohydrate structures on a mucosal surface. Most bacterial pathogens mediate this adhesion by fimbriae or pili which contain an adhesive lectin subunit. The importance of fimbriae as virulence factors led to research elucidating the regulation of fimbrial expression and their molecular assembly process. This review provides an overview of the current knowledge of induction, expression and assembly of F4 (K88) fimbriae and discusses its unique as well as its identical characteristics compared to other intensively studied fimbriae or pili expressed by Escherichia coli.  相似文献   

5.
The pathogenesis of many infectious diseases is critically determined by prokaryotic lectins which enable differential recognition and activation of targeted eukaryotic cells. Some bacterial adhesins mimic and co-opt eukaryotic cell-cell adhesion motifs. This is illustrated by the toxin ofBordetella pertussis. Pertussis toxin mediates intoxication of eukaryotic cells by elevation of cAMP and it serves as an adhesin binding the bacteria to ciliated cells and respiratory macrophages. These activities are mediated by the lectin-like properties of the binding oligomer of the toxin. A comparison of pertussis toxin and the selectins involved in leukocyte trafficking indicates that these prokaryotic and eukaryotic C-type lectins share some element of primary sequence similarity, three dimensional structure, and biological activities. Such mimicry suggests a link between eukaryotic cell-cell adhesion motifs and microbial pathogenesis.  相似文献   

6.
Stenotrophomonas maltophilia is an emerging nosocomial bacterial pathogen associated with several infectious diseases and opportunistic infections, especially in immunocompromised patients. These bacteria adhere avidly to medical implants and catheters forming a biofilm that confers natural protection against host immune defences and different antimicrobial agents. The nature of the bacterial surface factors involved in biofilm formation on inert surfaces and in adherence of S. maltophilia to epithelial cells is largely unknown. In this study, we identified and characterized fimbrial structures produced by S. maltophilia grown at 37 degrees C. The S. maltophilia fimbriae 1 (SMF-1) are composed of a 17 kDa fimbrin subunit which shares significant similarities with the N-terminal amino acid sequences of several fimbrial adhesins (G, F17, K99 and 20K) found in Escherichia coli pathogenic strains and the CupA fimbriae of Pseudomonas aeruginosa. All of the clinical S. maltophilia isolates tested produced the 17 kDa fimbrin. Antibodies raised against SMF-1 fimbriae inhibited the agglutination of animal erythrocytes, adherence to HEp-2 cells and biofilm formation by S. maltophilia. High resolution electron microscopy provided evidence of the presence of fimbriae acting as bridges between bacteria adhering to inert surfaces or to cultured epithelial cells. This is the first characterization of fimbriae in this genus. We provide compelling data suggesting that the SMF-1 fimbriae are involved in haemagglutination, biofilm formation and adherence to cultured mammalian cells.  相似文献   

7.
Adhesion of bacteria and of metastasizing tumour cells have much in common, especially the participation of lectins in this process. In the future it might be possible to inhibit the metastatic process and bacterial adhesion by blocking with lectins specific for appropriate (oligo) saccharides or glycoconjugates. Initial clinical trials are very promising.  相似文献   

8.
Cell surface protein were found to play a role in the sugar-specific molecular mechanism by which bacteria adhere to mammalian cells. We have demonstrated that at least three different types of lectin-like proteins mediate the mannose-sensitive adherence of gram negative bacteria to epithelial cells. One group of such lectins was shown in our study to be associated with the bacterial flagellum. Flagella isolated from Escherichia coli 7343 and Serratia marcescens 8347 exhibited mannose-sensitive agglutination of yeast cells; however, the flagella of the two bacteria differ in the molecular structure of their protein subunits. Another class of lectins comprises the bacterial fimbriae (also known as type 1 pili), which were previously shown to facilitate the mannose-sensitive adherence of various bacteria to mammalian cells. Fimbriae isolated from E. coli 346 were reversibly dissociated by saturated guanidine hydrochloride to their protein subunits. The dissociated subunits retained in part their mannose-binding ability, and were reassembled into fimbriae-like structures by removal of the denaturant under specific conditions. Mannose-sensitive yeast agglutinating activity of E. coli 2699, as well as of its isolated outer membranes devoid of fimbriae or flagella, was abolished by pretreatment with trypsin. It is therefore believed that the mannose-sensitive adherence of these bacteria is mediated also by lectin-like proteins associated directly with the outer membrane.  相似文献   

9.
The first step of the pathogenesis of many infectious diseases is the colonisation of the mucosal surface by the pathogen. Bacterial colonisation of the mucosal surface is promoted by adherence to high molecular weight mucus glycoproteins. We examined the effect of carp intestinal mucus glycoproteins on the adhesion of different bacteria. The bacteria used were 3 strains of Aeromonas hydrophila, and A. salmonicida, Edwardsiella tarda and Yersinia ruckeri. All bacteria adhered to mucus, but at varying intensities. All tested bacteria adhered best to molecules of 670 to 2000 kDa in size, less to molecules larger than 2000 kDa and weakest to molecules of 30 to 670 kDa. In general, bacteria that showed a stronger adhesion to intestinal mucus were cytotoxic to cells in vitro, and bacteria that showed a weaker adhesion to intestinal mucus did not lead to alterations of monolayers of EPC-cells. Furthermore, the involvement of glycan side chains of the glycoproteins for bacterial adhesion was analysed for one A. hydrophila strain. After cleavage of terminal sugar residues by treatment of mucus glycoproteins with different glycosidases, binding of bacteria was modulated. When mannose was cleaved off, adhesion significantly increased. Blocking of glycan receptors by incubation of bacteria with different oligosaccharides had no clear effect on bacterial binding to mucus glycoproteins. Our results suggest that bacteria interact with carbohydrate side chains of mucus glycoproteins, and that the carbohydrates of the core region are involved in bacterial binding.  相似文献   

10.
Approaches to control vector-borne diseases rarely focus on the interface between vector and microbial pathogen, but strategies aimed at disrupting the interactions required for transmission may lead to reductions in disease spread. We tested if the vector transmission of the plant-pathogenic bacterium Xylella fastidiosa was affected by three groups of molecules: lectins, carbohydrates, and antibodies. Although not comprehensively characterized, it is known that X. fastidiosa adhesins bind to carbohydrates, and that these interactions are important for initial cell attachment to vectors, which is required for bacterial transmission from host to host. Lectins with affinity to substrates expected to occur on the cuticular surface of vectors colonized by X. fastidiosa, such as wheat germ agglutinin, resulted in statistically significant reductions in transmission rate, as did carbohydrates with N-acetylglucosamine residues. Presumably, lectins bound to receptors on the vector required for cell adhesion/colonization, while carbohydrate-saturated adhesins on X. fastidiosa's cell surface. Furthermore, antibodies against X. fastidiosa whole cells, gum, and afimbrial adhesins also resulted in transmission blockage. However, no treatment resulted in the complete abolishment of transmission, suggesting that this is a complex biological process. This work illustrates the potential to block the transmission of vector-borne pathogens without directly affecting either organism.  相似文献   

11.
Prevention of bacterial adhesion   总被引:1,自引:0,他引:1  
Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach that imposes selection pressure for resistant bacteria. New approaches are urgently needed. Targeting bacterial virulence functions directly is an attractive alternative. An obvious target is bacterial adhesion. Bacterial adhesion to surfaces is the first step in colonization, invasion, and biofilm formation. As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become valuable weapons for preventing pathogen contamination and fighting infectious diseases in the future.  相似文献   

12.
Cranberry juice has long been believed to benefit the prevention and treatment of urinary tract infections (UTIs). As the first step in the development of infection, bacterial adhesion is of great research interest, yet few studies have addressed molecular level adhesion in this context. P-fimbriated Escherichia coli play a major role in the development of a serious type of UTI, acute pyelonephritis. Experiments were conducted to investigate the molecular-scale effects of cranberry juice on two E. coli strains: HB101, which has no fimbriae, and the mutant HB101pDC1 which expresses P-fimbriae. Atomic force microscopy (AFM) was used to investigate both bacterial surface characteristics and adhesion forces between a probe surface (silicon nitride) and the bacteria, providing a direct evaluation of bacterial adhesion and interaction forces. Cranberry juice affected bacterial surface polymer and adhesion behavior after a short exposure period (<3 h). Cranberry juice affected the P-fimbriated bacteria by decreasing the adhesion forces between the bacterium and tip and by altering the conformation of the surface macromolecules on E. coli HB101pDC1. The equilibrium length of polymer (P-fimbriae) on this bacterium decreased from approximately 148 to approximately 48 nm upon being exposed to cranberry juice. Highly acidic conditions were not necessary for the prevention of bacterial adhesion, since neutralization of cranberry juice solutions to pH = 7.0 allowed us to observe differences in adhesion between the E. coli strains. Our results demonstrate molecular-level changes in the surfaces of P-fimbriated E. coli upon exposure to neutralized cranberry juice.  相似文献   

13.
Type 1 fimbriae are heteropolymeric surface organelles responsible for the D-mannose-sensitive (MS) adhesion of Escherichia coli. We recently reported that variation of receptor specificity of type 1 fimbriae can result solely from minor alterations in the structure of the gene for the FimH adhesin subunit. To further study the relationship between allelic variation of the fimH gene and adhesive properties of type 1 fimbriae, the fimH genes from five additional strains were cloned and used to complement the FimH deletion in E. coli KB18. When the parental and recombinant strains were tested for adhesion to immobilized mannan, a wide quantitative range in the ability of bacteria to adhere was noted. The differences in adhesion do not appear to be due to differences in the levels of fimbriation or relative levels of incorporation of FimH, because these parameters were similar in low-adhesion and high-adhesion strains. The nucleotide sequence for each of the fimH genes was determined. Analysis of deduced FimH sequences allowed identification of two sequence homology groups, based on the presence of Asn-70 and Ser-78 or Ser-70 and Asn-78 residues. The consensus sequences for each group conferred very low adhesion activity, and this low-adhesion phenotype predominated among a group of 43 fecal isolates. Strains isolated from a different host niche, the urinary tract, expressed type 1 fimbriae that conferred an increased level of adhesion. The results presented here strongly suggest that the quantitative variations in MS adhesion are due primarily to structural differences in the FimH adhesin. The observed differences in MS adhesion among populations of E. coli isolated from different host niches call attention to the possibility that phenotypic variants of FimH may play a functional role in populations dynamics.  相似文献   

14.
Summary The role of fimbriae in enterobacterial adhesion to roots of grasses and cereals is discussed. All nitrogen-fixing enteric bacteria isolated in Finland had fimbriae. AllEnterobacter isolates had mannose-binding type-1 fimbriae, whereas most of theKlebsiella isolates had both type-1 and type-3 fimbriae. The strains were isolated from a total of ten different grass species, and no specific association was found between grass species and bacterial fimbriation, biogroup or serogroup. Purified, radiolabeled fimbriae bound to roots ofPoa pratensis in vitro, and bacterial adhesion was inhibited by Fab fragments specific for fimbriae.Klebsiella strains carrying type-3 fimbriae adhered to roots of various grasses and cereals more efficiently than type-1- or nonfimbriated strains, and it was concluded that type-3 fimbriae are the major adhesions ofKlebsiella. Immunofluorescence studies revealed that the bacteria preferentially adhered to root hairs, and to a lesser extent, to the zone of elongation and the root cap mucilage. No strict host specificity in enterobacterial adhesion was observed.  相似文献   

15.
Soluble inhibitors find widespread applications as therapeutic drugs to reduce the ability of eukaryotic cells, bacteria, or viruses to adhere to surfaces and host tissues. Mechanical forces resulting from fluid flow are often present under in vivo conditions, and it is commonly presumed that fluid flow will further add to the inhibitive effect seen under static conditions. In striking contrast, we discover that when surface adhesion is mediated by catch bonds, whose bond life increases with increased applied force, shear stress may dramatically increase the ability of bacteria to withstand detachment by soluble competitive inhibitors. This shear stress-induced protection against inhibitor-mediated detachment is shown here for the fimbrial FimH-mannose-mediated surface adhesion of Escherichia coli. Shear stress-enhanced reduction of bacterial detachment has major physiological and therapeutic implications and needs to be considered when developing and screening drugs.  相似文献   

16.
Nitrogen-fixing Klebsiella and Enterobacter strains isolated from several plants were assayed for fimbriae and for adhesion to plant roots in vitro. All eight Klebsiella strains formed type 3 fimbriae, and five strains also formed type 1 fimbriae; all 21 Enterobacter strains had type 1 fimbriae. Three strains of Klebsiella carrying either type 1, type 3, or no fimbriae were used as model organisms in developing an in vitro adhesion test. Adhesion was assayed with bacterial cells labeled with [H]leucine. Fifteen N(2)-fixing strains and the three model strains were compared for adhesion to the roots of seven grasses and five cereals. Type 3-fimbriated Klebsiella strains adhered better than the other strains, and type 3 fimbriae appeared to be major adhesins for the Klebsiella strains. Although variations between plants were observed, no host specificity for bacterial adhesion was found.  相似文献   

17.
Escherichia coli is a common urinary pathogen whose uptake into epithelial cells is mediated by attachment through type 1 fimbriae. In this study, we show by using using human urinary tract epithelial cells that maximal internalization of E. coli is achieved only when bacteria are opsonized with complement. The concentrations of complement proteins in the urine rise sufficiently during infection to allow bacterial opsonization. The complement regulatory protein, CD46 (membrane cofactor protein), acts in cohort with fimbrial adhesion to promote the uptake of pathogenic E. coli. This uptake is inhibited by RNA interference to lower the expression of CD46 and by soluble CD46 that will competitively inhibit opsonized bacteria binding to cell surface CD46. We propose that efficient internalization of uropathogenic E. coli by the human urinary tract depends on cooperation between fimbrial-mediated adhesion and C3 receptor (CD46)-ligand interaction. Complement receptor-ligand interaction could pose a new target for interrupting the cycle of reinfection due to intracellular bacteria.  相似文献   

18.
Helicobacter pylori is the causative agent of peptic ulcer disease. A major virulence factor of H. pylori is VacA, a toxin that causes massive vacuolization of epithelial cell lines in vitro and gastric epithelial erosion in vivo. Although VacA is exported over the outer membrane and is released from the bacteria, a portion of the toxin remains associated with the bacterial surface. We have found surface-associated toxin to be biologically active and spatially organized into distinct toxin-rich domains on the bacterial surface. Upon bacterial contact with host cells, toxin clusters are transferred directly from the bacterial surface to the host cell surface at the bacteria-cell interface, followed by uptake and intoxication. This contact-dependent transfer of VacA represents a cost-efficient route for delivery of VacA and potentially other bacterial effector molecules to target cells.  相似文献   

19.
Cytolethal distending toxin (Cdt) is a newly added member of bacterial protein toxins that hijack the control system of eukaryotic cells. Cdts are produced by several pathogenic bacteria causing chronic infectious diseases. They are composed of three subunits, CdtA, CdtB and CdtC, which together form a ternary complex. CdtB is the active component, and CdtA and CdtC are involved in delivering the CdtB into the cells. The sophisticated strategy of Cdt to control host cells is CdtB-mediated limited DNA damage of the host cell chromosome, which triggers the response of the cell cycle checkpoint and results in G2 arrest in the cells. Cdt also induces apoptotic cell death of lymphocytes, which may be relevant to onset or persistence of chronic infection by the producing bacteria. The study of this toxin is expected to provide us information on a novel strategy by which bacteria interact with host cells.  相似文献   

20.
AIM: Initial colonization of the tooth surface by streptococci involves the attachment of these bacteria to adsorbed salivary components of the acquired pellicle. In dental biofilm this adhesion may also involve lectin-like components, present on the surface of the organisms, which bind to complementary carbohydrates on the surface of the tooth. Therefore, this work aimed to evaluate the potential of six lectins, extracted from seeds of Leguminosae family members, to inhibit the adherence of five streptococci species to acquired pellicle in vitro. METHODS AND RESULTS: The lectins used in this work were extracted from Canavalia ensiformis, Canavalia brasiliensis, Dioclea violacea, Dioclea grandiflora, Cratylia floribunda and Vatairea macrocarpa. Fluorescence micrography was employed to visualize the ability of FITC-labeled lectins to attach to acquire pellicle. Adherence inhibition was performed on saliva-coated microtiter plates at which lectins solutions were previously incubated followed by incubation with the oral streptococci. Glucose-mannose specific lectins attached to acquired pellicle with high intensity, while galactose specific lectins, from V. macrocarpa, exhibits low intensity attachment. CONCLUSIONS: All lectins were able to inhibit the adherence of the microorganisms tested (p < 0.01). SIGNIFICANCE AND IMPACT OF THE STUDY: Our results suggest that lectins may be useful in anti adhesion therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号