首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-resolution reflectance spectra in the range of 400–850nm were obtained from Lake Kinneret during a period when densepopulations of the dinoflagellate Peridinium gatunense dominatedthe phytoplankton. Chlorophyll (Chl) concentrations ranged from5.1 to 185 mg m–3 and from 2.4 to 187.5 mg m–3 inthe samples of two independent experiments. The most prominentfeatures of the reflectance spectra were: (i) a wide minimumfrom 400 to 500 nm; (ii) a maximum at 550–570 nm, whichdid not surpass 3% in samples with high Chl concentration (>20mgm–3), indicating a strong absorption by pigments in thegreen range of the spectrum; (iii) a minimum at 676 nm; thiswas {small tilde}1% and was almost insensitive to variationin Chl concentration >10 mg m–3; (iv) a maximum reflectanceshowed near 700 nm; its magnitude and position were highly dependenton chlorophyll concentration. High-spectral-resolution datawere used as a guideline for selection of the most suitablespectral bands for chlorophyll remote sensing. Models were devised,based on the calculation of the integrated area above the baselinefrom 670 to 850 nm and the reflectance maximal height withinthis range. Some algorithms already used m previous studieswere tested and showed a plausible degree of accuracy when appliedto the current data base. However, novel models devised in thisstudy improved substantially the accuracy of Chl estimationby remotely sensed data, by reducing the estimation error from>11 to 6.5 mg m–3 Those models were validated by anindependent data set where Chl concentration ranged over twoorders of magnitude. The use of three relatively narrow spectralbands was sufficient for Chl mapping in Lake Kinneret. Therefore,a relatively simple sensor, measuring only a few bands willbe employed in future applications for Chl monitoring in inlandwaters. Radiometric data were also used to simulate radiancesin the channels of TM Landsat and to find the algorithm forChl assessment. The ratio of channel 4 to channel 3 was usedand enabled Chl estimation with an error of <15mg m–3This algorithm was employed to map Chl in the entire area ofLake Kinneret with 10 gradations.  相似文献   

2.
Cyanobacteria are the main dominant species in inland eutrophic lakes during algae blooms, and measures of cyanobacteria abundance can be used for monitoring and early detection of algal blooms by remote sensing. During May 2013 and August 2016, a total 137 water samples were collected from Lake Taihu and Lake Chaohu. Remote-sensing reflectance was measured, surface water was collected in the field, and chlorophyll-a concentration, phycocyanin concentration, suspended-matter concentration and phytoplankton pigment absorption parameters were measured in the laboratory. The composition and density of planktonic algae were also detected by microscope examination. The remote-sensing reflectance at 15 MERIS bands was simulated based on our measured spectral data, and a two-step method for detecting cyanobacteria abundance using the partial least squares model based on 5 MERIS bands was developed. The results showed that the estimation algorithm can predict cyanobacteria abundance in inland eutrophic lakes with satisfactory accuracy, with RMSE of 7.56 and MAPE of 13.44 %. This algorithm was successfully applied to the MERIS image acquired on August 12, 2010, and showed a reasonable spatial distribution of cyanobacteria abundance in Lake Taihu. It demonstrated that the developed estimation method was an effective way to monitor cyanobacteria abundance in water with a potential to be successfully applied to Sentinel-3 images.  相似文献   

3.
通过林地穿透雨排除的方法模拟降雨减少,测定河南宝天曼自然保护区锐齿栎叶片光合色素含量与反射光谱的季节变化,对减雨处理造成的光合色素变化及其反射光谱的变化进行了定量分析,并探讨了水分控制条件下反射光谱对叶片光合色素变化的响应机制.结果表明: 锐齿栎叶片的光合色素含量和色素比率均呈现明显的季节变化.减雨样地与对照样地叶片的光合色素含量和比率在生长季的各个时期存在差异,其中,叶片叶绿素b(Chl b)含量的差异显著,说明Chl b对减雨处理的敏感性最高,叶片类胡萝卜素(Car)含量的差异较小,说明Car对减雨处理的敏感性相对较弱.550 nm处的光谱反射率对色素季节变化的响应最敏感,以其构造的简单比值指数(SR750,550)与叶片Chl a、Chl b、总Chl和Car含量的正相关关系显著,光化学反射指数(PRI)与叶片Car/Chl的负相关关系显著.550 nm处的光谱反射率对减雨处理造成的色素变化响应最为敏感.SR750,550对减雨处理造成的叶片Chl a、Chl b和总Chl的含量变化表现敏感(P<0.01),对Chl a/b的变化不敏感.PRI对减雨处理造成的叶片Car/Chl变化表现敏感(P<0.01).  相似文献   

4.
Nondestructive techniques developed by the authors for assessment of chlorophylls, carotenoids, and anthocyanins in higher plant leaves and fruits are presented. The spectral features of leaf reflectance in the visible and near infrared regions are briefly considered. For pigment analysis only reflectance values at several specific wavelengths are required. The chlorophyll (Chl) content over a wide range of its changes can be assessed during leaf ontogeny using reflectance near 700 nm and, in the absence of anthocyanins, at 550 nm. The approaches used for elimination of Chl interference in the analysis of carotenoids (reflectance at 520 nm) and anthocyanins (at 550 nm) are described. The suitability of reflectance spectroscopy for estimates of carotenoid/chlorophyll ratios during leaf senescence and fruit ripening is demonstrated. The algorithms developed for pigment analysis are presented, and the conditions of their applicability are considered. Further perspectives for the application of reflectance spectroscopy including remote sensing for estimation of plant pigment content and physiological states are discussed.  相似文献   

5.
Primary production, pigment concentrations and spectral measurementsof downwelling irradiance were made at four stations in fourseasons (spring, summer, autumn, winter) during 1994 in thewaters of the South Aegean Sea (Cretan Sea), Eastern Mediterranean.Rates of production were determined using in Situ incubationtechniques and included measurements at the surface microlayer.Depth-integrated values averaged over season were 5.66 mg Cm–2 h–1 for primary production and the correspondingchlorophyll (Ch1) a and phaeophytin (Phaeo) a values had meansof 4.87 and 1.21 mg m–3 respectively. The assimilationratio remained very low (mean over season: 1.19 mg C mg–2Chl a h–1 as did the Phaeo a/Chl a ratio (mean over season:0.24). The annual production for the area was estimated to yield24.79 g C m–2 year–1. Primary production and Chla estimates showed statistically significant seasonal, spatialand depth variations. The spectral values of the attenuationcoefficient Kd (  相似文献   

6.
We examined the functional relationship between chlorophyll concentrations and light spectral absorption in 16 species of woody, vine and herbaceous plants in northern Japan. Leaves of each species from under forest shade and in more open sites were measured for chlorophyll, specific leaf area (SLA) and spectral absorption. In all species, SLA increased and the Chl a : b ratio declined in shade- vs open-grown leaves indicating an adaptive adjustment to forest shade in these leaf characters. However, the expected increase in the ratio of 680 to 700 nm absorption in shade leaves did not occur in all species. Light absorption at 680 relative to 700 nm was lower in the shade leaves of Acer japonicum. Kalopanax pictus, Panax japonicus and Petasites japonicus even with a reduced Chl a : b , a commonly accepted indicator of shade adaptation. Therefore, spectral measurements in these species failed to support Chl concentrations that were expected to confer an improvement in the absorption of red light (<680nm) deficient relative to far-red light (>700 nm) in the forest shade. Compared with other species, the absorption pattern of these four 'non-conforming' species is associated with a higher ratio of shade:open leaves in reflectance spectra in the 600–750 nm range. This suggests an increased reflectance in shade leaves caused by changes in leaf surface properties which are not immediately apparent. We conclude that adaptive spectral absorption cannot always be inferred from changes in specific leaf area and chlorophyll a and b concentrations.  相似文献   

7.
水稻上部叶片叶绿素含量的高光谱估算模型   总被引:9,自引:1,他引:9  
杨杰  田永超  姚霞  曹卫星  张玉森  朱艳 《生态学报》2009,29(12):6561-6571
叶片叶绿素 (Chl) 状况是评价植株光合效率和营养胁迫的重要指标,实时无损监测Chl状况对作物生长诊断及氮素管理具有重要意义.以不同生态点、不同年份、不同施氮水平、不同类型水稻品种的4个田间试验为基础,于主要生育期同步测定了水稻主茎顶部4张叶片的高光谱反射率及Chl含量,并计算了350~2500 nm范围内任意两波段组合而成的比值(SR[λ1,λ2])和归一化(ND[λ1,λ2])光谱指数以及已报道的对Chl敏感的光谱指数,进一步系统分析了叶片Chl含量与上述光谱指数之间的定量关系.结果表明,红边波段的比值和归一化光谱指数可以较好地预测水稻上部4叶的Chl含量(R~2>0.9),但对于不同Chl指标其最佳组合波段有所差异.估算叶绿素a (Chla)、叶绿素总量(Chla+b)和叶绿素b (Chlb)的最佳比值光谱指数分别为SR(724,709)、SR(728,709)和SR(749,745),方程拟合决定系数R~2分别是0.947、0.946、0.905;最佳归一化光谱指数分别为ND(780,709)、ND(780,712)和ND(749,745),R~2分别是0.944、0.943、0.905.引入445 nm波段反射率对上述光谱指数进行修正,可以降低叶片表面反射差异的影响,提高模型的应用范围.利用不同年份独立的试验资料对所建模型进行了检验,结果表明,修正型比值光谱指数 mSR(724,709)、mSR(728,709) 和 mSR(749,745),以及修正型归一化光谱指数mND(780,709)、mND(780,712) 和 mND(749,745) 预测 Chla、Chla+b 和 Chlb 的效果更好,其测试的RMSE分别为 0.169、0.192、0.052、0.159、0.176、0.052,RE分别为8.18%、7.74%、13.01%、8.26%、7.59%、12.96%,均较修正前降低,说明修正后的光谱指数普适性更好.  相似文献   

8.
利用高光谱参数反演水稻叶片类胡萝卜素含量   总被引:4,自引:0,他引:4       下载免费PDF全文
为了探讨快速、准确预测水稻(Oryza sativa)叶片类胡萝卜素(Car)含量的敏感光谱波段和光谱指数, 通过实施涉及不同年份、不同生态点、不同施氮水平和不同品种类型的4个田间试验, 于主要生育期同步测定了水稻顶部4张叶片的光谱反射率及Car含量, 系统分析了350-2 500 nm范围内任意两波段组合而成的比值(SR (λ1, λ2))、归一化(ND (λ1, λ2))及已报道的对Car敏感的光谱指数与水稻叶片Car含量间的定量关系。结果表明, 不同Car含量水平下水稻叶片光谱反射率存在着明显变化, 以绿光及红边波段对水稻叶片Car含量变化最为敏感。723 nm附近的波段与近红外波段的比值组合以及713 nm附近的波段与近红外波段的归一化组合可以较好地预测水稻叶片Car含量, 以SR (723, 770)和ND (770, 713)表现最好, 线性拟合R2分别达到0.897和0.898。基于独立的试验资料的检验表明, 预测值和实测值的拟合R2分别为0.856和0.858, 均方根差RMSE均为0.072, 平均相对误差RE分别为11.9%和12.0%, 表明SR (723,770)和ND (770, 713)可有效地估算水稻上部叶片的Car含量。  相似文献   

9.
The relationship between the xanthophyll pool [diadinoxanthinplus diatoxanthin normalized to chlorophyll (Chl) a] and irradiancewas examined during phytoplankton blooms in Sagami Bay fromthe end of April to July 2000. In the case of Chl a concentrations>2 mg m-3, a linear correlation was found between the xanthophyllpool and irradiance of the previous day. On the other hand,for Chl a concentrations <2 mg m-3, the xanthophyll poolremained low and was independent of irradiance of the previousday. The results may indicate that photoprotection by xanthophyllpigments assists the development of phytoplankton blooms underhigh-irradiance conditions.  相似文献   

10.
基于高光谱遥感的小麦冠层叶片色素密度监测   总被引:3,自引:0,他引:3  
冯伟  朱艳  田永超  马吉锋  庄森  曹卫星 《生态学报》2008,28(10):4902-4911
作物叶片色素状况是评价植株光合效率和营养胁迫的重要指标,冠层叶片色素密度(单位土地面积叶片色素总量)的实时无损监测对作物生长诊断、产量估算及氮素管理具有重要意义。以包括不同品质类型(高蛋白、中蛋白和低蛋白)的多个小麦品种在不同施氮水平下的连续2a大田试验为基础,研究了小麦叶片色素密度与冠层高光谱参数的定量关系。结果表明,叶片色素(叶绿素a、叶绿素b、叶绿素a+b和类胡萝卜素)密度随施氮水平增加而提高,不施氮处理的叶片色素密度随生育进程而下降,施氮处理的叶片色素密度呈单峰曲线,品种间存在明显差异。群体叶片色素密度的敏感波段主要分布在可见光区,而红边区域导数光谱表现更显著。光谱参数VOG2、VOG3、RVI(810,560)、SRE/SBE和SDr/SDb等与叶绿素密度关系较为密切,线性方程决定系数R^2均在0.858以上,而与类胡萝卜素密度关系减弱,决定系数R^2低于0.780,且参数间差异较小。经独立试验资料的检验表明,VOG2、VOG3、SRE/SBE和SDr/SDb对不同色素的估测结果较好,预测相对误差RE低于17.6%,虽然对叶绿素b的准确性稍低。总体上,光谱参数VOG2、VOG3、SRE/SBE和SDr/SDb与小麦群体叶片色素密度关系密切,特别是对叶片叶绿素a和叶绿素a+b的密度可以进行准确可靠的实时监测。  相似文献   

11.
The effectiveness of eight spectral reflectance indices for estimating chlorophyll (Chl) content in leaves of Eugenia uniflora L., a tropical tree species widely distributed throughout the world and a key species for ecosystem restoration projects, was evaluated. Spectral reflectance indices were tested using sun and shade leaves with a broad variation in leaf mass per area (LMA). Shortly after plants were exposed to chilling temperatures, there was a dramatic visible change in some sun leaves from green to red. Prior to testing Chl-related reflectance indices, the green and red leaves were separated according to the anthocyanin reflectance index (ARI). Slightly green to dark green leaves corresponded to an ARI value less than 0.11 (n = 107), whereas slightly red to red leaves corresponded to an ARI value greater than 0.11 (n = 35). To estimate leaf Chl, two simple reflectance indices (SR680 and SR705), two normalized difference indices (ND680 and ND705), two modified reflectance indices (mSR705 and mND705), a modified Chl absorption ratio index (mCARI705) and an index insensitive to the presence of anthocyanins (CIre) were evaluated. Good estimates of leaf Chl content were obtained using the reflectance indices tested regardless of the presence of anthocyanins and changes in LMA. Based on the coefficients of determination (r 2) and the root mean square errors (RMS?c) the best results were obtained with reflectance indices measured at wavelengths of 750 and 705 nm. Considering the performance of the models the best reflectance indices to estimate Chl contents in E. uniflora leaves with a broad variation in LMA and anthocyanin contents was SR705 and mCARI705.  相似文献   

12.
There are few long-term data sets on primary production in alake, which can be used to validate the output from a productionmodel. To address this need, we determined the temporal–spatialvariations of chlorophyll a (Chl a) and primary production (PPeu),based on the vertically generalized production model (VGPM)by using 742 samplings at seven sites in Meiliang Bay in LakeTaihu from 1995 to 2003. An empirical model estimating primaryproduction (PPin) was used to validate VGPM PPeu and the dominantfactors controlling PP were determined. Markedly higher Chla and PPeu values were recorded in Meiliang Bay in 1996 and1997 than in other years and a marked decrease in Chl a andPPeu was found between 2001 and 2003. Peaks of Chl a typicallyappeared in summer (June–August) and minima occurred inwinter (January). The highest daily mean PPeu usually occurredin summer (June); the exception was at site 1, where peak dailymean PPeu occurred in spring (April). The lowest daily meanPPeu was recorded in winter (January). In Meiliang Bay, 43.0%of annual PP occurred in only 3 months, from June to August.The relative difference of maximum and minimum PPeu was markedlylarger than the corresponding difference in Chl a. Levels ofboth Chl a and PPeu were markedly decreased from the inner tothe outer areas of Meiliang Bay; the highest annual integratedPPeu was found at site 1, close to the inflow of the River Liangxiand this level was 1.85 and 2.14 times higher than at sites3 and 6, respectively, that were located in outer Meiliang Bay.The estimated daily mean PPeu variation closely matched withthat of the Chl a concentration, implying that Chl a concentrationcan account for the considerable variation of PP. The annualintegrated PPeu of the euphotic zone in Meiliang Bay rangedfrom 3.44 x 104 tC year-1 to 8.59 x 104 tC year-1 with an overallmean of 5.65 x 104 tC year-1. A significant positive linearrelationship was found between VGPM PPeu and empirical modelPPin [PPin = 0.826 (±0.015)PPeu + 272.0 (±25.0),r2 = 0.80, n = 742, P < 0.0001]. By considering the effectof water temperature, photosynthetically active radiation andphotoperiod on PP, the VGPM- generated PPeu more accuratelycaptured monthly variations than did the empirical model thatonly included Chl a concentration.  相似文献   

13.
The relationship between chlorophyll a (Chl a) and primary productivity(PP) in the uppermost water layer and the water column-based(0–15 m) integral values of those variables were examinedusing measurements taken in Lake Kinneret (Israel) from 1990to 2003. In 81% of all Chl a profiles examined, the distributionwas fairly uniform within the entire 0–15 m water column,and 12.3% of instances showed a prominent subsurface maximum,when the lake phytoplankton was dominated by the dinoflagellatePeridinium gatunense. Chl a can be reliably estimated by remotesensing techniques in the productive and turbid water of LakeKinneret, since Chl a concentration at surface layers can beextrapolated to the entire water column. Light vertical attenuationcoefficient average for wavelengths from 400 to 700 nm, Kd,ranged from 0.203 to 1.954 m–1 and showed high degreeof temporal variation. The maximal rate of photosynthetic efficiency,PBopt [average 3.16 (±1.50)], ranged from 0.25 to 8.85mg C m–3 h–1 mg Chl a–1. Using measured dataof Chl a, PBopt, and light as an input, a simple depth-integratedPP model allowed plausible simulation of PP. However, a lackof correlation between photosynthetic activity and temperature(or other variable with remotely sensed potential) renders theuse of models that require input of photosynthetic efficiencyto calculate integrated PP of little value in the case of productiveand turbid Lake Kinneret.  相似文献   

14.
Pigmentation, bio-optical characteristics and photophysiology,were studied in mesocosms with different N:P ratios. No significantdifference in biomass or species composition was seen underdifferent nitrogen to phosphorus ratios (N:P), but a temporalsuccession of different flagellate groups was observed in allmesocosms. An initial bloom of prymnesiophytes containing chlorophyll(Chl) c and 19' hexanoyloxyfucoxanthin (19' HOF) was followedby prasinophytes containing Chl b. Electron microscope analysisconfirmed the presence of genera such as Chrysochromulina (Prymnesiophyceae),Tetraselmis and Pyramimonas (Prasinophyceae). Traces of prasinoxanthinin the pigment samples showed that smaller prasinophytes werealso present. Chl b influenced the photophysiology of the prasinophytesresulting in higher Chl a-specific absorption, but a greaterdifference between absorption and scaled fluorescence excitationspectra indicated that light absorbed by Chl b is associatedwith photosystem I (PSI). Since a larger fraction of the lightwas absorbed by chlorophyll in PSI and/or photoprotective carotenoids,the light-saturated Chl a-specific rate of photosynthesis (PBm)and maximum light utilization coefficient (B) decreased when[Chl b] increased. The highest PBm values were seen when theratios of fucoxanthins to Chl a were high, indicating that prymnesiophytesmight be more efficient in light harvesting and electron transportthrough photosystem II (PSII) by fucoxanthins and Chl c. Ourresults therefore indicate different light acclimation strategiesin prasinophytes versus prymnesiophytes, which may be reflectedin the successional appearance of these communities in the naturalenvironment. We also suggest that grazing by ciliates and rotiferscaused periodic decreases in phytoplankton biomass, which inturn gave rise to the phytoflagellate succession observed inthe mesocosms.  相似文献   

15.
基于高光谱遥感的小麦叶干重和叶面积指数监测   总被引:28,自引:0,他引:28       下载免费PDF全文
生物量和叶面积指数(LAI)是描述作物长势的重要参数, 叶干重和LAI的实时动态监测对小麦(Triticum aestivum)生长诊断和管理调控具有重要意义。为分析多种高光谱参数估算小麦叶干重和LAI的效果, 建立小麦叶干重和LAI的定量监测模型, 该研究连续3年采用不同小麦品种进行不同施氮水平的大田试验, 于小麦不同生育期采集田间冠层高光谱数据并测定叶片叶干重和LAI。试验结果显示, 小麦叶干重和LAI随施氮水平的提高而增加, 随生育进程呈单峰动态变化模式。小麦叶干重和LAI与光谱反射率间相关性较好的区域主要位于红光波段(590~710 nm, r<-0.60)和近红外波段(745~1 130 nm, r>0.69)。对于不同试验条件下的叶干重和LAI, 可以使用统一的光谱参数进行定量反演, 其中基于RVI (810, 560)、FD755GM1SARVI (MSS)和TC3等光谱参数的方程拟合效果较好。经不同年际独立试验数据的检验表明, 以参数RVI (810, 560)、GM1SARVI (MSS)、PSSRb、(R750-800/R695-740) -1、VOG2MSR705为变量建立的叶干重和LAI监测模型均给出较好的检验结果。因此, 利用关键特征光谱参数可以有效地评价小麦叶片生长状况, 尤其是光谱参数RVI (810, 560)、GM1SARVI (MSS)可以对不同条件下小麦叶干重和LAI进行准确可靠的监测。  相似文献   

16.
Results are presented of size-fractionated primary productionstudies conducted in the vicinity of the Subtropical Front (STF),an adjacent warm-core eddy, and in Sub-antarctic waters duringthe third South African Antarctic Marine Ecosystem Study (SAAMESIII) in austral winter (June/July) 1993. Throughout the investigation,total chlorophyll (Chl a) biomass and production were dominatedby small nano- and picophytoplankton. No distinct patterns intotal Chl a were evident. At stations (n = 7) occupied in thevicinity of the STF, total integrated biomass values rangedfrom 31 to 53 mg Chl a m–2. In the vicinity of the eddy,integrated biomass at the eddy edge (n = 3) ranged from 24 to54 mg Chl a m–2 and from 32 to 43 mg Chl a m–2 inthe eddy (n = 2). At the station occupied in the Sub-antarcticwaters, total integrated biomass was 43 mg Chl a m–2.Total daily integrated production was highest at stations occupiedin the vicinity of the STF and at the eddy edge. Here, totalintegrated production ranged from 150 to 423 mg C m–2day–1 and from 244 to 326mg C m–2 day–1, respectively.In the eddy centre, total integrated production varied between134 and 156 mg C m–2 day–1. At the station occupiedin the Sub-antarctic waters, the lowest integrated production(141 mg C m–2 day–1) during the entire survey wasrecorded. Availability of macronutrients did not appear to limittotal production. However, the low silicate concentrations duringthe survey may account for the predominance of small nano- andpicophytoplankton. Differences in production rates between theeddy edge and eddy core were related to water column stability.In contrast, at stations occupied in the vicinity of the STF,the control of phytoplankton production appears to be relatedto several processes, including water column stability and,possibly, iron availability.  相似文献   

17.
The seasonal variability of phytoplankton in the EquatorialAtlantic was analysed using Sea-viewing Wide Field-of-view Sensor(SeaWiFS)-derived chlorophyll a (Chl a) concentration data from1998 to 2001, together with in situ Chl a and primary productiondata obtained during seven cruises carried out between 1995and 2000. Monthly averaged SeaWiFS Chl a distributions werein agreement with previous observations in the Equatorial Atlantic,showing marked differences between 10° W in the EasternTropical Atlantic (ETRA) and 25° W in the Western TropicalAtlantic (WTRA) provinces (Longhurst et al. 1995. J. PlanktonRes., 17, 1245–1271). The seasonal cycle of SeaWiFS-derivedChl a concentration calculated for 0–10° S, 0–20°W (ETRA) is consistent with in situ Chl a measurements, withvalues ranging from 0.16 mg m–3, from February to April,to 0.52 mg m–3 in August. Lower variability was observedin 10° N–10° S, 20–30° W (WTRA) whereminimum and maximum concentrations occurred in April (0.15 mgm–3) and in August (0.24 mg m–3), respectively.A significant empirical relationship between depth-integratedprimary production and in situ measured sea surface Chl a wasfound for ETRA, allowing us to estimate the seasonal cycle ofdepth-integrated primary production from SeaWiFS-derived Chla. As for Chl a, this model was verified in a small area ofthe Eastern Equatorial Atlantic (0–10° S, 0–20°W), although in this instance it was not completely able todescribe the magnitude and temporal variability of in situ primaryproduction measurements. The annual euphotic depth-integratedprimary production rate estimated for ETRA by our empiricalmodel was 1.4 Gt C year–1, which represents 16% of theopen ocean primary production estimated for the whole AtlanticOcean.  相似文献   

18.
Salicylic acid (SA) is a potent signaling molecule in plants and is involved in eliciting specific responses to biotic and abiotic stresses. The aim of this study is to investigate whether the exogenous application of SA can improve cadmium (Cd) induced inhibition of photosynthesis in castor bean (Ricinus communis L.) plants. The effects of SA and Cd on plant growth, spectral reflectance, pigment contents, chlorophyll fluorescence and gas exchange were examined in a hydroponic cultivation system. Results indicate that Cd exposure significantly decreased the dry biomass, photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), pigment contents, quantum yield of PS II photochemistry (Fv/Fm), and effective quantum yield of PS II (??PS II) in the plants. Pretreatment with SA alone reduced the biomass and Pn in castor bean plants, whereas pigment contents, Fv/Fm and ??PS II remained unaffected. Reduced Gs, Ci and E, as well as increased stomatal limitation (Ls) and water use efficiency (WUE), were observed in plants pretreated with 500???M SA alone, whereas plants treated with 250???M SA were unaffected. Under Cd stress, SA pretreatment led to a significant decrease in Pn, Gs, E, Ci, and chlorophyll contents (Chl a, Chl b, Chl a+b, Car, Chl a/b), and an increase in Ls and WUE. Cd exposure enhanced spectral reflectance in the range 550?C680?nm and 750?C1,050?nm. It also decreased the normalized difference vegetation index (chlNDI), the modified red edge simple ratio index (mSR705), the red edge position (REP), water band index, and red/green ratio, whereas the structure independent pigment index (SIPI) was increased. Significant correlations (P?<?0.01) between spectral indices (mSR705, chlNDI, REP, red/green ratio) and pigment contents. SA significantly worsened plant growth and photosynthesis in Cd-stressed castor bean plants, in which a stomatal limitation was involved. The leaf spectral reflectance is a sensitive indicator in determining Cd toxicity in plants.  相似文献   

19.
The utility of absorbance and fluorescence-emission spectra for discriminating among microalgal phylogenetic groups, selected species, and phycobilin- and non-phycobilin-containing algae was examined using laboratory cultures. A similarity index algorithm, in conjunction with fourth-derivative transformation of absorbance spectra, provided discrimination among the chlorophyll [Chl] a/phycobilin (cyanobacteria), Chl a/Chl c/phycobilin (cryptophytes), Chl a/Chl b (chlorophytes, euglenophytes, prasinophytes), Chl a/Chl c/fucoxanthin (diatoms, chrysophytes, raphidophytes) and Chl a/Chl c/peridinin (dinoflagellates) spectral classes, and often between}among closely related phylogenetic groups within a class. Spectra for phylogenetic groups within the Chl a/Chl c/fucoxanthin, Chl a/Chl c/peridinin, Chl a/phycobilins and Chl a/Chl c/phycobilin classes were most distinguishable from spectra for groups within the Chl a/Chl b spectral class. Chrysophytes/diatoms/raphidophytes and dinoflagellates (groups within the comparable spectral classes, Chl a/Chl c/fucoxanthin and Chl a/Chl c/peridinin, respectively) displayed the greatest similarity between/among groups. Spectra for phylogenetic groups within the Chl a/Chl c classes displayed limited similarity with spectra for groups within the Chl/phycobilin classes. Among the cyanobacteria and chlorophytes surveyed, absorbance spectra of species possessing dissimilar cell morphologies were discriminated, with the greatest range of differentiation occurring among cyanobacteria. Among the cyanobacteria, spectra for selected problematic species were easily discriminated from spectra from each other and from other cyanobacteria. Fluorescence-emission spectra were distinct among spectral classes and the similarity comparisons involving fourth-derivative transformation of spectra discriminated the increasing contribution of distinct cyanobacterial species and between phycobilin- and non-phycobilin-containing species within a hypothetical mixed assemblage. These results were used to elucidate the application for in situ moored instrumentation incorporating such approaches in water quality monitoring programmes, particularly those targeting problematic cyanobacterial blooms.  相似文献   

20.
Results are presented from size fractionated chlorophyll a (Chla) and primary production studies along a transect between Antarcticaand southern Africa during the second South African AntarcticMarine Ecosystem Study (SAAMES II), conducted in late australsummer (January to February) 1993. Total integrated Chl a alongthe transect was highest in the vicinity of the Marginal IceZone (MIZ) and Antarctic Polar Front (APF). At these stations,integrated Chl a biomass was always >25 mg Chl a m–2and was dominated by microphytoplankton. Although nominal increasesinChl a biomass were also associated with the Subantarctic Front(SAF) and Subtropical Convergence (STC), total Chl a biomassin these regions was dominated by nanophytoplankton. Withinthe inter-frontal regions, total integrated Chl a biomass waslower, generally <25 mg Chl a m–2, and was always dominatedby nanophytoplankton. An exception was found in the AgulhasReturn Current (ARC) where picophytoplankton dominated. Totaldaily integrated production along the transect ranged between60 and 436 mg C m–2 day–1. Elevated production rateswere recorded at stations occupied in the vicinity of the MIZand at all the major oceanic frontal systems. The contributionsof the various size fractions to total daily production displayedthe same spatial pattern as integrated biomass, with microphytoplanktonbeing the most important contributor in areas characterizedby elevated phytoplankton biomass. Outside these regions, nanophytoplanktondominated the total phytoplankton production. Again, an exceptionwas found in the ARC north of the STC where picophytoplanktondominated total production. There, the lowest production alongthe entire transect was recorded, with total daily integratedproduction always <90 mg C m–2 day–1. The increasedproduction rates recorded in the MIZ appeared to result fromincreased water column stability as indicated by a shallow mixed-layerdepth. Within the inter-frontal regions, the existence of adeep mixed layer appeared to limit phytoplankton production.Low silicate concentrations in the waters north of the APF mayalso have limited the growth of large microphytoplankton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号