首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integration of the bacteriophage P2 genome into the Escherichia coli host chromosome occurs by site-specific recombination between the phage attP and E. coli attB sites. The phage-encoded 38-kDa protein, integrase, is known to be necessary for both phage integration as well as excision. In order to begin the molecular characterization of this recombination event, we have cloned the int gene and overproduced and partially purified the Int protein and an N-terminal truncated form of Int. Both the wild-type Int protein and the integration host factor (IHF) of E. coli were required to mediate integrative recombination in vitro between a supercoiled attP plasmid and a linear attB substrate. Footprint experiments revealed one Int-protected region on both of the attP arms, each containing direct repeats of the consensus sequence TGTGGACA. The common core sequences at attP and attB were also protected by Int from nuclease digestion, and these contained a different consensus sequence, AA T/A T/A C/A T/G CCC, arranged as inverted repeats at each core. A single IHF-protected site was located on the P (left) arm, placed between the core- and P arm-binding site for Int. Cooperative binding by Int and IHF to the attP region was demonstrated with band-shift assays and footprinting studies. Our data support the existence of two DNA-binding domains on Int, having unrelated sequence specificities. We propose that P2 Int, IHF, attP, and attB assemble in a higher-order complex, or intasome, prior to site-specific integrative recombination analogous to that formed during lambda integration.  相似文献   

2.
E Richet  P Abcarian  H A Nash 《Cell》1986,46(7):1011-1021
Lambda integrative recombination depends on supercoiling of the phage attachment site, attP. Using dimethylsulfate protection and indirect end-labeling, the interaction of the recombination proteins Int and IHF with supercoiled and linear attP has been studied. Supercoiling enhances the binding of Int to attP, but not if a truncated attP site is employed or if IHF is omitted. We reason that the altered affinity reflects the formation of a higher-order nucleoprotein structure, an "attP intasome," that involves Int and IHF assembly of both arms of attP into a wrapped configuration. The good correlation between the degree and sign of supercoiling needed to promote recombination and that needed for the "attP intasome" indicates that the primary role of supercoiling is to drive the formation of the wrapped structure.  相似文献   

3.
Patterns of lambda Int recognition in the regions of strand exchange   总被引:34,自引:0,他引:34  
W Ross  A Landy 《Cell》1983,33(1):261-272
Int protein has two classes of binding sites within the phage att site: the arm-type recognition sequences are found in three specific sites that are distant from the region of strand exchange; the junction-type recognition sequences occur as inverted pairs around the crossover region in both attP and attB. During recombination between attP and attB each of the four DNA strands is cut at a homologous position within each of the junction-type Int binding sites. In all four junction-type sites Int protein interacts primarily with the same face of the DNA helix, as determined by those purine nitrogens that are protected against methylation by dimethylsulfate. Efficient secondary attachment sites for lambda contain sequences with partial homology to the junction-type binding sites. In addition, the sequence between, but not part of, the two junction-type sites (the overlap region) is strongly conserved in secondary att sites. Thus, in the vicinity of strand exchange, attP and a recombining partner, such as attB, are very similar; each comprises two junction-type Int recognition sites and an overlap (crossover) region.  相似文献   

4.
The genome of the Streptomyces temperate phage phiC31 integrates into the host chromosome via a recombinase belonging to a novel group of phage integrases related to the resolvase/invertase enzymes. Previously, it was demonstrated that, in an in vitro recombination assay, phiC31 integrase catalyses integration (attP/attB recombination) but not excision (attL/attR). The mechanism responsible for this recombination site selectivity was therefore investigated. Purified integrase was shown to bind with similar apparent binding affinities to between 46 bp and 54 bp of DNA at each of the attachment sites, attP, attB, attL and attR. Assays using recombination sites of 50 bp and 51 bp for attP and attB, respectively, showed that these fragments were functional in attP/attB recombination and maintained strict site selectivity, i.e. no recombination between non-permissive sites, such as attP/attP, attB/attL, etc., was observed. Using bandshifts and supershift assays in which permissive and non-permissive combinations of att sites were used in the presence of integrase, only the attP/attB combination could generate supershifts. Recombination products were isolated from the supershifted complexes. It was concluded that these supershifted complexes contained the recombination synapse and that site specificity, and therefore directionality, is determined at the level of stable synapse formation.  相似文献   

5.
Integrative recombination between specific attachment (att) regions of the bacteriophage lambda genome (attP) and the Escherichia coli genome (attB) results in a prophage flanked by the hybrid recombinant sites attL and attR. Each att site contains sequences to which proteins involved in recombination bind. Using site-directed mutagenesis, we have constructed a related set of point mutations within each of the five Int "arm-type" binding sites located within attP, attL and attR. Footprint analyses of binding demonstrate that mutating the arm-type sites significantly disrupts the binding of Int. Recombination analyses of mutant att sites in vivo and in vitro demonstrate that only three wild-type arm-type sites within attP are required for efficient integrative recombination. Similar analyses demonstrate that efficient excision can occur with two other different sets of wild-type arm-type sites in attL and attR. These results demonstrate that integrative and excisive recombination may involve interactions of Int with distinct and different subsets of arm-type sites.  相似文献   

6.
A M Segall  H A Nash 《The EMBO journal》1993,12(12):4567-4576
Bacteriophage lambda uses site-specific recombination to move its DNA into and out of the Escherichia coli genome. The recombination event is mediated by the recombinase integrase (Int) together with several accessory proteins through short specific DNA sequences known as attachment sites. A gel mobility shift assay has been used to show that, in the absence of accessory proteins, Int can align and hold together two DNA molecules, each with an attachment site, to form stable non-covalent 'bimolecular complexes'. Each attachment site must have both core and arm binding sites for Int to participate in a bimolecular complex. These stable structures can be formed between pairs of attL and attP attachment sites, but cannot include attB or attR sites; they are inhibited by integration host factor (IHF) protein. The bimolecular complexes are shown to represent a synaptic intermediate in the reaction in which Int protein promotes the IHF-independent recombination of two attL sites. These complexes should enable a detailed analysis of synapsis for this pathway.  相似文献   

7.
Bacteriophage phiFC1 integrase (MJ1) was previously shown to perform a site-specific recombination between a phage attachment site (attP) and a host attachment site (attB) in its host, Enterococcus faecalis, and also in a non-host bacterium, Escherichia coli. Here, we investigated biochemical features of MJ1 integrase. First, MJ1 integrase could perform in vitro recombination between attP and attB in the absence of additional factors. Second, MJ1 integrase interacted with att sites. Electrophoretic mobility shift assays and DNase I footprinting revealed that MJ1 integrase could efficiently bind to all the att sites and that MJ1 integrase recognized relatively short sequences (approximately 50 bp) containing an overlapping region within attB and attP. These results demonstrate that MJ1 integrase indeed catalyzes an integrative recombination between attP and attB, the mechanism of which might be simple and unidirectional, as found in serine integrases.  相似文献   

8.
We characterized the minimum length of the DNA sequence of the attachment sites involved in the integrative recombination of staphylococcal bacteriophage L54a. A DNA fragment carrying the functional viral attachment site (attP) or the bacterial attachment site (attB) was sequentially trimmed, recloned, and tested for integrative recombination in vivo. The size of the functional attP site was at least 228 base pairs (bp) but no more than 235 bp. The left endpoint of the attP site was located to between positions -142 and -140, whereas the right endpoint was located to between positions +86 and +93 with respect to the center of the core sequence. The attB site was located to within a 27-bp sequence, from position -15 to +12, which included the 18-bp core sequence.  相似文献   

9.
The genome of temperate mycobacteriophage L5 integrates into the chromosomes of its hosts, including Mycobacterium smegmatis , Mycobacterium tuberculosis and bacille Calmette-Guérin. This integrase-mediated site-specific recombination reaction occurs between the phage attP site and the mycobacterial attB site and requires the mycobacterial integration host factor. Here we examine the role of supercoiling in this reaction and show that integration is stimulated by DNA supercoiling but that supercoiling of either the attP or the attB substrate enhances recombination. Supercoiling thus facilitates a post-synaptic recombination event. We also show that, while supercoiling is not required for the production of a recombinagenic intasome, a mutant attP DNA deficient in binding of the host factor acquires a dependence on supercoiling for intasome formation and recombination.  相似文献   

10.
11.
Temperate Myxococcus xanthus phage Mx8 integrates into the attB locus of the M. xanthus genome. The phage attachment site, attP, is required in cis for integration and lies within the int (integrase) coding sequence. Site-specific integration of Mx8 alters the 3' end of int to generate the modified intX gene, which encodes a less active form of integrase with a different C terminus. The phage-encoded (Int) form of integrase promotes attP x attB recombination more efficiently than attR x attB, attL x attB, or attB x attB recombination. The attP and attB sites share a common core. Sequences flanking both sides of the attP core within the int gene are necessary for attP function. This information shows that the directionality of the integration reaction depends on arm sequences flanking both sides of the attP core. Expression of the uoi gene immediately upstream of int inhibits integrative (attP x attB) recombination, supporting the idea that uoi encodes the Mx8 excisionase. Integrase catalyzes a reaction that alters the primary sequence of its gene; the change in the primary amino acid sequence of Mx8 integrase resulting from the reaction that it catalyzes is a novel mechanism by which the reversible, covalent modification of an enzyme is used to regulate its specific activity. The lower specific activity of the prophage-encoded IntX integrase acts to limit excisive site-specific recombination in lysogens carrying a single Mx8 prophage, which are less immune to superinfection than lysogens carrying multiple, tandem prophages. Thus, this mechanism serves to regulate Mx8 site-specific recombination and superinfection immunity coordinately and thereby to preserve the integrity of the lysogenic state.  相似文献   

12.
Bacteriophage C31 encodes an integrase, which acts on the phage and host attachment sites, attP and attB, to form an integrated prophage flanked by attL and attR. In the absence of accessory factors, C31 integrase cannot catalyse attL x attR recombination to excise the prophage. To understand the mechanism of directionality, mutant integrases were characterized that were active in excision. A hyperactive integrase, Int E449K, gained the ability to catalyse attL x attR, attL x attL and attR x attR recombination whilst retaining the ability to recombine attP x attB. A catalytically defective derivative of this mutant, Int S12A, E449K, could form stable complexes with attP/attB, attL/attR, attL/attL and attR/attR under conditions where Int S12A only complexed with attP/attB. Further analysis of the Int E449K-attL/attR synaptic events revealed a preference for one of the two predicted synapse structures with different orientations of the attL/attR sites. Several amino acid substitutions conferring hyperactivity, including E449K, were localized to one face of a predicted coiled-coil motif in the C-terminal domain. This work shows that a motif in the C-terminal domain of C31 integrase controls the formation of the synaptic interface in both integration and excision, possibly through a direct role in protein-protein interactions.  相似文献   

13.
CTXphi is a filamentous bacteriophage that encodes cholera toxin and integrates site-specifically into the larger of the two Vibrio cholerae chromosomes. The CTXphi genome lacks an integrase; instead, its integration depends on the chromosome-encoded tyrosine recombinases XerC and XerD. During integration, recombination occurs between regions of homology in CTXphi and the V. cholerae chromosome. Here, we define the elements on the phage genome (attP) and bacterial chromosome (attB) required for CTXphi integration. attB is a short sequence composed of one binding site for XerC and XerD spanning the site of recombination. Together, XerC and XerD bind to two sites within attP. While one XerC/D binding site in attP spans the core recombination region, the other site is approximately 80 bp away. Although integration occurs at the core XerC/D binding site in attP, the second site is required for CTXphi integration, suggesting it performs an architectural role in the integration reaction. In vitro cleavage reactions showed that XerC and XerD are capable of cleaving attB and attP sequences; however, additional cellular processes such as DNA replication or Holliday junction resolution by a host resolvase may contribute to integration in vivo.  相似文献   

14.
In toxigenic conversion of Corynebacterium diphtheriae C7, beta bacteriophage DNA integrates into either of two chromosomal attachment sites, attB1 or attB2. These attB sites share a 96-base-pair sequence with the attP sites of beta-related phages. The distribution of attB-related sites in other species of Corynebacterium was assessed by hybridization with a DNA probe containing both attB sites of the C7 strain and a second DNA probe containing the attP site of a beta-related phage. All but one of the 15 C. diphtheriae strains tested, regardless of origin or colonial type, contained at least two BamHI fragments that hybridized strongly to both of these probes under conditions of high stringency. Strains of C. ulcerans and C. pseudotuberculosis, species in which conversion to toxinogeny has also been demonstrated, also had one or two hybridizing BamHI fragments. The functionality of these sites as integration sites was demonstrated by isolating lysogens of all three species following single infection with one or more beta-related phages. As predicted, following lysogenization one of the DNA fragments that had exhibited homology with the attB1-attB2 probe was replaced by two hybridizing fragments. Other species of Corynebacterium, including pathogens and nonpathogens from animals, plant pathogens, and soil isolates also carried at least one BamHI fragment that hybridized with the attB1-attB2 and attP probes. The data indicate that sequences homologous to the beta phage integration sites in C. diphtheriae have been conserved in members of the genus Corynebacterium.  相似文献   

15.
Interaction of int protein with specific sites on lambda att DNA.   总被引:21,自引:0,他引:21  
W Ross  A Landy  Y Kikuchi  H Nash 《Cell》1979,18(2):297-307
We have studied the interaction of highly purified Int protein with DNA restriction fragments from the lambda phage attachment site (attP) region. Two different DNA sequences are protected by bound Int protein against partial digestion by either pancreatic DNAase or neocarzinostatin. One Int binding site includes the 15 bp common core sequence (the crossover region for site-specific recombination) plus several bases of sequence adjoining the core in both the P and P' arms. The second Int-protected site occurs 70 bp to the right of the common core in the P' arm, just at the distal end of the sequence encoding Int protein. The two Int binding sites are of comparable size, 30-35 bp, but do not share any extensive sequence homology. The interaction of Int with the two sites is distinctly different, as defined by the observation that only the site in the P' arm and not the site at the common core region is protected by Int in the face of challenge by the polyanion heparin. Restriction fragments containing DNA from the bacterial attachment site (attB) region exhibit a different pattern of interaction with Int. In the absence of heparin, a smaller (15 bp) sequence, which includes the left half of the common core region and the common core-B arm juncture, is protected against nuclease digestion by Int protein. No sequences from this region are protected by Int in the presence of heparin.  相似文献   

16.
The nucleotide sequence of a secondary attachment site for bacteriophage lambda was determined in a region near the rrnB gene at 88 min on the E. coli chromosome. The sequence has a 8 base pair interrupted homology GCT TTTTA to the common core of the primary attachment site (attB) and the corresponding phage sequence (attP). The site of crossover during integration lies probably between nucleotides -3 and +1. The flanking regions have no obvious homology to the arms of either attP or attB.  相似文献   

17.
The integrase gene (int) on the genome of φFSW, which is a temperate bacteriophage of Lactobacillus casei strain Shirota (formerly denoted as S-1), and the four attachment sites on the genomes of the phage and its host were characterized by sequencing. The φFSW integrase was found to belong to the integrase family of site-specific tyrosine recombinase. The attachment sites shared a 40bp common core within which an integrative site-specific recombination occurs. The common core was flanked on one side by an additional segment of high sequence similarity. An integration plasmid, consisting of int, the phage attachment site (attP), and a selectable marker, inserted stably into the bacterial attachment site (attB) within the common core, as did the complete prophage genome at a frequency of more than 10(3)/microg of plasmid DNA. This plasmid was used as a test system for a preliminary mutational analysis of int and attP. The attB common core was located within and near the end of an open reading frame that appears to encode a homolog to glucose 6-phosphate isomerase, an enzyme of the glycolytic pathway. It is unlikely that the prophage integration inactivates this protein, since a change of only the C-terminal amino acid is predicted because of the sequence similarity between attP and attB.  相似文献   

18.
The genetic elements required for the integration of the temperate lactococcal bacteriophage phi LC3 into the chromosome of its bacterial host, Lactococcus lactis subsp. cremoris, were identified and characterized. The phi LC3 phage attachment site, attP, was mapped and sequenced. DNA sequence analysis of attP and of the bacterial attachment site, attB, as well as the two phage-host junctions, attR and attL, in the chromosome of a phi LC3 lysogen, identified a 9-bp common core region, 5'-TTCTTCATG'-3, within which the strand exchange reaction takes place during integration. The attB core sequence is located within the C-terminal part of an open reading frame of unknown function. The phi LC3 integrase gene (int), encoding the phi LC3 site-specific recombinase, was identified and is located adjacent to attP. The phi LC3 Int protein, as deduced from the nucleotide sequence, is a basic protein of 374 amino acids that shares significant sequence similarity with other site-specific recombinases of the integrase family. Phage phi LC3 int- and int-attP-defective mutants, conferring an abortive lysogenic phenotype, were constructed.  相似文献   

19.
The site-specific integrase of actinophage R4 belongs to the serine recombinase family. During the lysogenization process, it catalyzes site-specific recombination between the phage genome and the chromosome of Streptomyces parvulus 2297. An in vivo assay using Escherichia coli cells revealed that the minimum lengths of the recombination sites attB and attP are 50-bp and 49-bp, respectively, for efficient intramolecular recombination. The in vitro assay using overproduced R4 integrases as a hexahistidine (His(6))-glutathione-S-transferase (GST)-R4 integrase fusion protein, showed that the purified protein preparation retains the site-specific recombination activity which catalyzes the site-specific recombination between attP and attB in the intermolecular reaction. It also revealed that the inverted repeat within attP is essential for efficient in vitro intermolecular recombination. In addition, a gel shift assay showed that His(6)-GST-R4 integrase bound to the 50-bp attB and 49-bp attP specifically. Moreover, based on a detailed comparison analysis of amino acid sequences of serine integrases, we found the DNA binding region that is conserved in the serine recombinase containing the large C-terminal domain. Based on the results presented on this report, attachment sites needed in vitro and in vivo for site-specific recombination by the R4 integrase have been defined more precisely. This knowledge is useful for developing new genetic manipulation tools in the future.  相似文献   

20.
The P2 Cox protein is known to repress the Pc promoter, which controls the expression of the P2 immunity repressor C. It has also been shown that Cox can activate the late promoter PLL of the unrelated phage P4. By this process, a P2 phage infecting a P4 lysogen is capable of inducing replication of the P4 genome, an example of viral transactivation. In this report, we present evidence that Cox is also directly involved in both prophage excision and phage integration. While purified Cox, in addition to P2 Int and Escherichia coli integration host factor, was required for attR x attL (excisive) recombination in vitro, it was inhibitory to attP x attB (integrative) recombination. The same amounts of Int and integration host factor which mediated optimal excisive recombination in vitro also mediated optimal integrative recombination. We quantified and compared the relative efficiencies of attB, attR, and attL in recombination with attP and discuss the functional implications of the results. DNase I protection experiments revealed an extended 70-bp Cox-protected region on the right arm of attP, centered at about +60 bp from the center of the core sequence. Gel shift assays suggest that there are two Cox binding sites within this region. Together, these data support the theory that in vivo, P2 can exert control over the direction of recombination by either expressing Int alone or Int and Cox together.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号