首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The leukocyte-specific integrin, LFA-1, can enhance T cell activation. However, it is unclear whether the binding of LFA-1 to its ligand, ICAM-1, functions through intercellular adhesion alone, resulting in an augmentation of the TCR signal, or involves an additional LFA-1-mediated cellular signal transduction pathway. We have previously shown that naive CD4+ lymph node T cells, isolated from DO11.10 TCR transgenic mice, are activated by increasing doses of exogenous OVA peptide presented by transfectants expressing both class II and ICAM-1, but not by cells expressing class II alone. To determine whether LFA-1/ICAM-1 interactions were simply enhancing the presentation of low concentrations of specific MHC/peptide complexes generated from exogenously added peptide, we transfected cells with class II that is covalently coupled to peptide, alone or in combination with ICAM-1. These cells express 100-fold more specific class II/peptide complexes than can be loaded onto class II-positive cells at maximum concentrations of exogenous peptide. Despite this high density of TCR ligand, activation of naive CD4+ T cells still requires the coexpression of ICAM-1. LFA-1/ICAM-1 interactions are not required for effective conjugate formation and TCR engagement because presentation of class II/peptide complexes in the absence of ICAM-1 does induce up-regulation of CD25 and CD69. Thus, high numbers of engaged TCR cannot compensate for the lack of LFA-1/ICAM-1 interactions in the activation of naive CD4+ T cells.  相似文献   

2.
CD8(+) cytotoxic T lymphocytes (CTL) can recognize and kill target cells expressing only a few cognate major histocompatibility complex (MHC) I-peptide complexes. This high sensitivity requires efficient scanning of a vast number of highly diverse MHC I-peptide complexes by the T cell receptor in the contact site of transient conjugates formed mainly by nonspecific interactions of ICAM-1 and LFA-1. Tracking of single H-2K(d) molecules loaded with fluorescent peptides on target cells and nascent conjugates with CTL showed dynamic transitions between states of free diffusion and immobility. The immobilizations were explained by association of MHC I-peptide complexes with ICAM-1 and strongly increased their local concentration in cell adhesion sites and hence their scanning by T cell receptor. In nascent immunological synapses cognate complexes became immobile, whereas noncognate ones diffused out again. Interfering with this mobility modulation-based concentration and sorting of MHC I-peptide complexes strongly impaired the sensitivity of antigen recognition by CTL, demonstrating that it constitutes a new basic aspect of antigen presentation by MHC I molecules.  相似文献   

3.
Ab stimulation of the TCR rapidly enhances the functional activity of the LFA-1 integrin. Although TCR-mediated changes in LFA-1 activity are thought to promote T cell-APC interactions, the Ag specificity and sensitivity of TCR-mediated triggering of LFA-1 is not clear. We demonstrate that peptide/MHC (pMHC) tetramers rapidly enhance LFA-1-dependent adhesion of OT-I TCR transgenic CD8(+) T cells to purified ICAM-1. Inhibition of src family tyrosine kinase or PI3K activity blocked pMHC tetramer- and anti-CD3-stimulated adhesion. These effects are highly specific because partial agonist and antagonist pMHC tetramers are unable to stimulate OT-I T cell adhesion to ICAM-1. The Ag thresholds required for T cell adhesion to ICAM-1 resemble those of early T cell activation events, because optimal LFA-1 activation occurs at tetramer concentrations that fail to induce maximal T cell proliferation. Thus, TCR signaling to LFA-1 is highly Ag specific and sensitive to low concentrations of Ag.  相似文献   

4.
We report a methodology for selecting APC with mutations that have impaired their ability to present Ag to T cells. A20 B lymphoblastoid cells were mutagenized and then repeatedly cocultured with murine T-T hybridomas in the presence of specific Ag. During these cocultures, the T-T hybridomas kill the competent APC, allowing the outgrowth of inactive variants. Two variants, A20.M1 and A20.M2, were isolated and studied in detail. These variants are impaired in their ability to present multiple Ag to T cells. This defect is also observed for the presentation of processing independent peptides by fixed APC indicating that a lesion exists in a post-Ag processing step. The level of expression of MHC molecules is unaffected and the functional defect in the APC is not localized to a particular MHC molecule. In contrast, these mutants were found to have a selective decrease in the expression of the murine homolog of ICAM-1, and the residual ability of these cells to present Ag was not blocked by anti-ICAM-1 mAb. Conversely, Ag presentation by the wild-type A20 is inhibited by anti-ICAM-1 mAb. Similarly, anti-LFA-1 mAb inhibited the response of T cells to Ag presented by the wild-type A20 to a much greater degree than by the mutant cells, indicating that LFA-1 is involved in interaction of T cells with the former, but not latter, APC. In the apparent absence of a contribution of LFA-1 to the T cell-APC interaction, either as a result of mAb blocking or the disruption of the APC membrane, the mutant and wild-type APC have a similar level of Ag-presenting activity. Reconstitution of ICAM-1 expression in these mutants by transfection with murine ICAM-1 cDNA fully restores their ability to present Ag. Together these results demonstrate that a murine ICAM-1 homolog is expressed on A20 B cells, where it functions as a major cell interaction molecule. The degree of functional impairment in these mutant APC gives insight into the contribution of cell interaction molecules to efficient Ag presentation and T cell-B cell interaction. Finally, these results also demonstrate the feasibility of selecting APC with mutations affecting Ag presentation.  相似文献   

5.
6.
We previously showed that LFA-1-dependent in vitro invasion and in vivo migration of a T cell hybridoma was blocked in cells overexpressing a truncated dominant-negative zeta-associated protein (ZAP)-70. The truncated ZAP-70 also blocked LFA-1-dependent chemotaxis through ICAM-1-coated filters induced by 1 ng/ml stromal cell-derived factor-1, but not LFA-1-independent chemotaxis induced by 100 ng/ml stromal cell-derived factor-1. This suggested that LFA-1 engagement triggers a signal that amplifies a weak chemokine signal and that dominant-negative ZAP-70 blocks this LFA-1 signal. Here we show that cross-linking of part of the LFA-1 molecules with Abs causes activation of free LFA-1 molecules (not occupied by the Ab) on the same cell, which then bind to ICAM-2 on other cells. This causes cell aggregation that was also blocked by dominant-negative ZAP-70. Thus, an LFA-1 signal involving ZAP-70 activates other LFA-1 molecules, suggesting that the chemokine signal can be amplified by multiple cycles of LFA-1 activation. The chemokine and the LFA-1 signal were both blocked by a phospholipase C inhibitor and a calpain inhibitor, suggesting that one of the amplified signals is the phospholipase C-dependent activation of calpain. Finally, we show that both Src-homology 2 domains are required for inhibition of invasion, chemotaxis, and aggregation by the truncated ZAP-70, suggesting that ZAP-70 interacts with a phosphorylated immunoreceptor tyrosine-based activation motif (ITAM) sequence. Remarkably, this is not an ITAM in the TCR/CD3 complex because this is not expressed by this T cell hybridoma.  相似文献   

7.
8.
These studies demonstrate that the murine intercellular adhesion molecule-1 (ICAM-1) performs at least two roles in enhancing T cell activation. These two roles are evident in both of our experimental systems: with ICAM-1 expressed on the surface of transfected fibroblast cells, and with purified ICAM-1 immobilized on plastic. First, as has been documented by many investigators, ICAM-1 mediates adhesion between ICAM-1- and lymphocyte function-associated Ag-1 (LFA-1)-bearing cells. This adhesive interaction occurs even in the absence of T cell stimulation, although it is increased by addition of phorbol ester and calcium ionophore. Although ICAM-1 expression does markedly increase intercellular adhesion, the increase is significantly less than the improvement ICAM-1 expression makes in the Ag-presenting ability of MHC class II-transfected fibroblast cells. We have investigated whether this difference is due to LFA-1-mediated signaling, and we present data that demonstrates that although ICAM-1 does not deliver costimulatory signals required for T cell activation, the interaction of LFA-1 with ICAM-1 does synergize with TCR-transduced signals. This synergy is observed for ICAM-1 on live and on chemically fixed accessory cells, and for purified ICAM-1 molecules, but in all cases occurs only when the ICAM-1 and the TCR ligands are on the same surface. Finally, when the ICAM-1 is present on the surface of accessory cells, it enhances T cell activation by changing the Ag dose-dependence of the T cell, but when ICAM-1 and CD3 mAb are co-immobilized, ICAM-1 increases the peak response of the T cell without affecting the dose dependence of the response.  相似文献   

9.
TNP-specific B cells interact with carrier-specific T hybridoma cells in an antigen-specific, MHC-restricted manner. The formation of T cell/B cell conjugates is time and temperature dependent and results in the formation of a broad area of close contact between the interacting cells. In order to determine which surface molecules on the two cells cluster at the interaction site. T cell/B cell conjugates were formalin-fixed at different times following conjugation and were stained with antibodies directed against cell surface molecules. Results of these studies indicate that the alpha- and beta-subunits of LFA-1 on B cells transiently cluster in the area of cell contact. Maximum clustering of LFA-1 occurs at 45 min, after which time LFA-1 redistributes on the surface of the B cells. Several other B cell-associated molecules (MHC Class II, ICAM-1, Ig, B220, J11D, or CD23) do not cluster at the interaction site at any time point. T cell-associated LFA-1 does not cluster with any specific pattern, but ICAM-1 does. Maximum clustering of ICAM-1 occurs 60 to 90 min after intercellular contact. After this time, ICAM-1 redistributes on the surface of the T cells. Although both the alpha- and beta-subunits of LFA-1 cluster at the interaction site on B cells, antibodies recognizing these subunits differ in their ability to affect conjugation. One antibody recognizing the alpha chain of LFA-1 (M17/4.2) inhibits T-cell/B cell conjugation, whereas another antibody that also recognizes the alpha chain-(G-48) enhances conjugation. In contrast, an antibody that recognizes LFA-1 beta (M18/2.a.8) has no effect. An antibody that recognizes ICAM-1 (YN/1.7), the ligand for LFA-1, inhibits conjugation. These data show that, during T cell/B cell interaction. LFA-1 on B cells and ICAM-1 on T cells transiently cluster with similar, albeit not identical, kinetics to the site of cell-cell contact.  相似文献   

10.
In addition to their role as peptide binding proteins, MHC class II proteins can also function as signal transducing molecules. Recent work using B cells expressing genetically engineered truncated MHC class II molecules has suggested that signaling through the cytoplasmic domains of these proteins plays an important role in the generation of signals required for the activation of some T cell hybrids. Treatment of truncated Ia-expressing B cells with cAMP-elevating agents corrects the deficiency in Ag presentation by these cells. We report that the MHC class II-mediated signal appears to act by a mechanism that increases the efficiency of Ag presentation by B cells thereby lowering the amount of specific Ag required for T cell activation. We further show that the induction of the cAMP-induced signal in B cells is inhibited by cycloheximide and cytochalasin A, implicating protein synthesis as well as cytoskeletal rearrangements in Ag presentation to accessory signal- dependent hybrids. In contrast, these agents do not block Ag presentation to a T cell hybrid previously shown not to require the cAMP-induced signal for activation. The signal-dependent T hybrid is additionally dependent on LFA-1-ICAM-1 interaction for activation, whereas the signal-independent hybrid is not. These observations suggest the existence of two types of T cell hybrid with respect to their requirements for activation: those that require only the recognition of MHC class II-peptide complexes without accessory signals, as shown by their ability to respond to purified Ia on planar membranes, and those that, in addition to recognition of MHC II/Ag, require LFA-1-ICAM-1 interaction and the delivery of additional signal(s) induced in the B cell via signal transduction through MHC class II molecules.  相似文献   

11.
LFA-1 contributes an early signal for NK cell cytotoxicity   总被引:11,自引:0,他引:11  
Cytotoxicity of human NK cells is activated by receptors that bind ligands on target cells, but the relative contribution of the many different activating and inhibitory NK cell receptors is difficult to assess. In this study, we describe an experimental system that circumvents some of the difficulties. Adhesion through beta2 integrin LFA-1 is a common requirement of CTLs and NK cells for efficient lysis of target cells. However, the contribution of LFA-1 to activation signals for NK cell cytotoxicity, besides its role in adhesion, is unclear. The role of LFA-1 was evaluated by exposing NK cells to human ICAM-1 that was either expressed on a Drosophila insect cell line, or directly coupled to beads. Expression of ICAM-1 on insect cells was sufficient to induce lysis by NK cells through LFA-1. Coexpression of peptide-loaded HLA-C with ICAM-1 on insect cells blocked the LFA-1-dependent cytotoxicity of NK cells that expressed HLA-C-specific inhibitory receptors. Polarization of cytotoxic granules in NK cells toward ICAM-1- and ICAM-2-coated beads showed that engagement of LFA-1 alone is sufficient to initiate activation signals in NK cells. Thus, in contrast to T cells, in which even adhesion through LFA-1 is dependent on signals from other receptors, NK cells receive early activation signals directly through LFA-1.  相似文献   

12.
Signaling through the TCR as well as engagement of costimulatory molecules are required for efficient T cell activation and progression into differentiated effector cells. The beta2 integrin LFA-1 (CD11a/CD18) has been implicated in TCR costimulation as well as in cell-cell adhesion function, but its exact role is still ambiguous. The present study focuses on the requirement for LFA-1 in CD8+ T cell activation and effector function using LFA-1-deficient cells expressing the 2C transgenic TCR as a model system. The lack of LFA-1 expression in 2C T cells resulted in severely diminished proliferative response toward allogeneic BALB/c splenocytes. Increase in TCR signaling alone by pulsing stimulators with high affinity peptides, p2Ca or QL9, had minimal effects in restoring proliferation. Addition of exogenous IL-2, however, enhanced the effect of peptide pulsing on proliferation of LFA-1-deficient 2C T cells. LFA-1-deficient 2C CTLs generated from alloantigen stimulation exhibited a defective cytotoxic activity when tested on a variety of target cells. Cytolysis could be improved, but not fully rectified by peptide pulsing of target cells. Thus, in the 2C TCR model, LFA-1 has a requisite role for optimal CD8+ T cell activation and effector function, which cannot be overcome by increasing peptide/MHC density on either the APCs or target cells, respectively.  相似文献   

13.
The role of the cytokines IL-1 alpha, IL-1 beta, and IL-6 and the cell adhesion molecules ICAM-1, LFA-1 (alpha and beta), and Mac-1 as accessory molecules for stimulation of T cells by the superantigen staphylococcal enterotoxin B (SEB) was examined. Both blood monocytes and alveolar macrophages were used as accessory cells because these cells differ in patterns of cytokine expression and thus potentially in accessory cell function for superantigens. The blastogenic response of highly purified T cells to SEB was reconstituted with either monocytes or alveolar macrophages. IL-1 secretion was increased comparably in monocytes and alveolar macrophages by SEB, but IL-6 was not stimulated by SEB. IL-1 alpha plus IL-1 beta reconstituted the response of T cells to SEB but required the addition of accessory cells. The cell adhesion molecules ICAM-1 and LFA-1 but not Mac-1 also functioned as accessory molecules for SEB-induced cluster formation and lymphocyte blastogenesis. Thus, not only must this superantigen bind to Class II MHC on accessory cells as is well known, but also SEB requires at least certain cytokines (IL-1 alpha and IL-1 beta) produced by accessory cells and cell adhesion molecules (ICAM-1 and LFA-1) for activation of T lymphocytes.  相似文献   

14.
《The Journal of cell biology》1994,126(5):1277-1286
Intercellular adhesion molecule (ICAM)-3, a recently described counter- receptor for the lymphocyte function-associated antigen (LFA)-1 integrin, appears to play an important role in the initial phase of immune response. We have previously described the involvement of ICAM-3 in the regulation of LFA-1/ICAM-1-dependent cell-cell interaction of T lymphoblasts. In this study, we further investigated the functional role of ICAM-3 in other leukocyte cell-cell interactions as well as the molecular mechanisms regulating these processes. We have found that ICAM-3 is also able to mediate LFA-1/ICAM-1-independent cell aggregation of the leukemic JM T cell line and the LFA-1/CD18-deficient HAFSA B cell line. The ICAM-3-induced cell aggregation of JM and HAFSA cells was not affected by the addition of blocking mAb specific for a number of cell adhesion molecules such as CD1 1a/CD18, ICAM-1 (CD54), CD2, LFA-3 (CD58), very late antigen alpha 4 (CD49d), and very late antigen beta 1 (CD29). Interestingly, some mAb against the leukocyte tyrosine phosphatase CD45 were able to inhibit this interaction. Moreover, they also prevented the aggregation induced on JM T cells by the proaggregatory anti-LFA-1 alpha NKI-L16 mAb. In addition, inhibitors of tyrosine kinase activity also abolished ICAM-3 and LFA-1- mediated cell aggregation. The induction of tyrosine phosphorylation through ICAM-3 and LFA-1 antigens was studied by immunofluorescence, and it was found that tyrosine-phosphorylated proteins were preferentially located at intercellular boundaries upon the induction of cell aggregation by either anti-ICAM-3 or anti-LFA-1 alpha mAb. Western blot analysis revealed that the engagement of ICAM-3 or LFA-1 with activating mAb enhanced tyrosine phosphorylation of polypeptides of 125, 70, and 38 kD on JM cells. This phenomenon was inhibited by preincubation of JM cells with those anti-CD45 mAb that prevented cell aggregation. Altogether these results indicate that CD45 tyrosine phosphatase plays a relevant role in the regulation of both intracellular signaling and cell adhesion induced through ICAM-3 and beta 2 integrins.  相似文献   

15.
To analyze the binding requirements of LFA-1 for its two most homologous ligands, ICAM-1 and ICAM-3, we compared the effects of various LFA-1 activation regimes and a panel of anti-LFA-1 mAbs in T cell binding assays to ICAM-1 or ICAM-3 coated on plastic. These studies demonstrated that T cell binding to ICAM-3 was inducible both from the exterior of the cell by Mn2+ and from the interior by an agonist of the "inside-out" signaling pathway. T cells bound both ICAM ligands with comparable avidity. A screen of 29 anti-LFA-1 mAbs led to the identification of two mAbs specific for the alpha subunit of LFA-1 which selectively blocked adhesion of T cells to ICAM-3 but not ICAM-1. These two mAbs, YTH81.5 and 122.2A5, exhibited identical blocking properties in a more defined adhesion assay using LFA-1 transfected COS cells binding to immobilized ligand. Blocking was not due to a steric interference between anti-LFA-1 mAbs and N-linked carbohydrate residues present on ICAM-3 but not ICAM-1. The epitopes of mAbs YTH81.5 and 122.2A5 were shown to map to the I domain of the LFA-1 alpha subunit. A third I domain mAb, MEM-83, has been previously reported to uniquely activate LFA-1 to bind ICAM-1 (Landis, R. C., R. I. Bennett, and N. Hogg. 1993. J. Cell Biol. 120:1519-1527). We now show that mAb MEM-83 is not able to stimulate binding of T cells to ICAM-3 over a wide concentration range. Failure to induce ICAM-3 binding by mAb MEM-83 was not due to a blockade of the ICAM-3 binding site on LFA-1. This study has demonstrated that two sets of functionally distinct mAbs recognizing epitopes in the I domain of LFA-1 are able to exert differential effects on the binding of LFA-1 to its ligands ICAM-1, and ICAM-3. These results suggest for the first time that LFA-1 is capable of binding these two highly homologous ligands in a selective manner and that the I domain plays a role in this process.  相似文献   

16.
The role of the accessory molecule ICAM-1 in activation of subpopulations of human T cells was examined using the bacterial superantigen staphylococcal enterotoxin A (SEA) as a MHC class II and TCR-dependent polyclonal T cell activator. Human T cells responded with different sensitivity to SEA when presented on mouse accessory cells expressing a human transfected MHC class II gene product. Mouse L cells cotransfected with both MHC class II (DR2A or DR7) and ICAM-1-stimulated T cells at 100-fold lower concentrations of SEA as compared to the single transfected cells. mAb reacting with the CD11a, CD18, or ICAM-1 molecules efficiently inhibited T cell activation with the cotransfected HLA-DR2A/ICAM-1 cell but did not influence T cell activation with the HLA-DR2A single transfected cell. Analysis of the ICAM-1 requirement on CD4+ memory (CD4+45RO+) and naive (CD4+45RA+) T cells revealed that CD4+45RA+ naive Th cells were hyporesponsive to SEA-induced activation with the HLA-DR2A single transfectant. However, cotransfection of ICAM-1 enabled these cells to respond to low doses of SEA implicating that they are more dependent on accessory molecules than the CD4+45RO+ cells. rICAM-1 immobilized on a plastic surface, was able to strongly costimulate SEA-induced T cell activation with the HLA-DR2A single transfectant, suggesting that costimulatory signals mediated to the T cells through LFA-1 can be delivered physically separated from the TCR signal. CD4+45RO+ memory and CD4+45RA+ naive Th cells apparently differ in their capacities to be activated by SEA bound to HLA-DR. Although the TCR molecule densities are similar in these two subsets, costimulation with ICAM-1 is required for activation of the CD4+45RA+, but not the CD4+45RO+ T cell subset at 1 to 10,000 ng/ml concentrations of SEA. This observation indicates different activation thresholds of naive and memory Th cells when triggering the TCR over a wide dose interval of superantigen.  相似文献   

17.
The role of leukocyte function-associated Ag-1 (LFA-1, CD11a/CD18) and intercellular adhesion molecule 1 (ICAM-1, CD54) interactions in human T cell and B cell collaboration was examined by studying the effect of mAb to these determinants on B cell proliferation and differentiation stimulated by culturing resting B cells with CD4+ T cells activated with immobilized mAb to the CD3 molecular complex. In this model system, mAb to either the alpha (CD11a) or beta (CD18) chain of LFA-1 or ICAM-1 (CD54) inhibited B cell responses significantly. The mAb did not directly inhibit B cell function, inasmuch as T cell-independent activation induced by formalinized Staphylococcus aureus and IL-2 was not suppressed. Moreover, DNA synthesis and IL-2 production by immobilized anti-CD3-stimulated CD4+ T cells were not suppressed by the mAb to LFA-1 or ICAM-1. Although the mAb to LFA-1 inhibited enhancement of IL-2 production by co-culture of immobilized anti-CD3-stimulated CD4+ T cells with B cells, addition of exogenous IL-2 or supernatants of mitogen-activated T cells could not abrogate the inhibitory effects of the mAb to LFA-1 or ICAM-1 on B cell responses. Inhibition was most marked when the mAb were present during the initial 24 h in culture. Immobilized anti-CD3-stimulated LFA-1-negative CD4+ T cell clones from a child with leukocyte adhesion deficiency could induce B cell responses, which were inhibited by mAb to LFA-1 or ICAM-1. These results indicate that the interactions between LFA-1 and ICAM-1 play an important role in mediating the collaboration between activated CD4+ T cells and B cells necessary for the induction of B cell proliferation and differentiation, and for enhancement of IL-2 production by CD4+ T cells. Moreover, the data are consistent with a model of T cell-B cell collaboration in which interactions between LFA-1 on resting B cells and ICAM-1 on activated CD4+ T cells play a critical role in initial T cell-dependent B cell activation.  相似文献   

18.
Initial adhesive contacts between T lymphocytes and dendritic cells (DCs) facilitate recognition of peptide-MHC complexes by the TCR. In this report, we studied the dynamic behavior of adhesion and Ag receptors on DCs during initial contacts with T-cells. Adhesion molecules LFA-1- and ICAM-1,3-GFP as well as MHC class II-GFP molecules were very rapidly concentrated at the DC contact area. Binding of ICAM-3, and ICAM-1 to a lesser extent, to LFA-1 expressed by mature but not immature DC, induced MHC-II clustering into the immune synapse. Also, ICAM-3 binding to DC induced the activation of the Vav1-Rac1 axis, a regulatory pathway involved in actin cytoskeleton reorganization, which was essential for MHC-II clustering on DCs. Our results support a model in which ICAM-mediated MHC-II clustering on DC constitutes a priming mechanism to enhance antigen presentation to T-cells.  相似文献   

19.
《The Journal of cell biology》1993,123(4):1007-1016
The interaction of lymphocyte function-associated antigen-1 (LFA-1) with its ligands mediates multiple cell adhesion processes of capital importance during immune responses. We have obtained three anti-ICAM-3 mAbs which recognize two different epitopes (A and B) on the intercellular adhesion molecule-3 (ICAM-3) as demonstrated by sequential immunoprecipitation and cross-competitive mAb-binding experiments. Immunoaffinity purified ICAM-3-coated surfaces were able to support T lymphoblast attachment upon cell stimulation with both phorbol esters and cross-linked CD3, as well as by mAb engagement of the LFA-1 molecule with the activating anti-LFA-1 NKI-L16 mAb. T cell adhesion to purified ICAM-3 was completely inhibited by cell pretreatment with mAbs to the LFA-1 alpha (CD11a) or the LFA-beta (CD18) integrin chains. Anti-ICAM-3 mAbs specific for epitope A, but not those specific for epitope B, were able to trigger T lymphoblast homotypic aggregation. ICAM-3-mediated cell aggregation was dependent on the LFA-1/ICAM-1 pathway as demonstrated by blocking experiments with mAbs specific for the LFA-1 and ICAM-1 molecules. Furthermore, immunofluorescence studies on ICAM-3-induced cell aggregates revealed that both LFA-1 and ICAM-1 were mainly located at intercellular boundaries. ICAM-3 was located at cellular uropods, which in small aggregates appeared to be implicated in cell-cell contacts, whereas in large aggregates it appeared to be excluded from cell-cell contact areas. Experiments of T cell adhesion to a chimeric ICAM-1-Fc molecule revealed that the proaggregatory anti-ICAM-3 HP2/19 mAb was able to increase T lymphoblast attachment to ICAM-1, suggesting that T cell aggregation induced by this mAb could be mediated by increasing the avidity of LFA-1 for ICAM-1. Moreover, the HP2/19 mAb was costimulatory with anti-CD3 mAb for T lymphocyte proliferation, indicating that enhancement of T cell activation could be involved in ICAM-3-mediated adhesive phenomena. Altogether, our results indicate that ICAM-3 has a regulatory role on the LFA-1/ICAM-1 pathway of intercellular adhesion.  相似文献   

20.
The staphylococcal enterotoxins and related microbial T cell mitogens stimulate T cells by cross-linking variable parts of the T cell receptor (TCR) with MHC class II molecules on accessory or target cells. We have used cloned human T cells and defined tumor cells as accessory cells (AC) to study the requirements for T cell activation by these toxins. On AC expressing high levels of CD54 (intercellular adhesion molecule-1, ICAM-1) and CD58 (lymphocyte function-associated antigen-3, LFA-3), mAb to CD2 were relatively ineffective in inhibiting the response to the toxins and antibodies to the lymphocyte function-associated antigen-1 (LFA-1) did not inhibit at all. If added together, however, these mAb inhibited the response completely. Similar results were obtained using antibodies to the target structures of CD2 and LFA-1. In contrast, on cells expressing low levels of LFA-3, mAb to LFA-1 but not to CD2 were strongly inhibitory. The same pattern of inhibition was found when these same cells were used as presenters of specific antigen to the T cells. These data show that adhesions via CD2 or LFA-1 are alternatively required for the stimulation of the T cells by superantigenic toxins and demonstrate another similarity between T cell stimulation by superantigens and by specific antigen recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号